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Abstract: Traditional database query languages are based on set theory and crisp first order
logic. However, many applications require retrieval-like queries which return result objects
associated with a degree value of being relevant to the query. Traditionally, retrieval systems
estimate relevance by exploiting hidden object semantics whereas query processing in database
systems relies on matching select-conditions with attribute values. Thus, different mechanisms
were developed for database and information retrieval systems. In consequence, there is a
lack of support for queries involving both retrieval and database search terms. In this work, we
develop a unifying framework based on the mathematical formalism of quantum mechanics and
quantum logic. Van Rijsbergen already discussed the strong relation between the formalism of
quantum mechanics and information retrieval. The goal of this work is to interrelate concepts
from database query processing to concepts from quantum mechanics and logic. As result,
we obtain a common theory which allows us to incorporate seamlessly retrieval search into
traditional database query processing. Exploiting our theoretical results, we introduce the
quantum query language QQL. In contrast to competing approaches, our formalism is based
on quantum logic.
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Abstract: Traditional database query languages are based on set theory and crisp first order
logic. However, many applications require retrieval-like queries which return result objects
associated with a degree value of being relevant to the query. Traditionally, retrieval systems
estimate relevance by exploiting hidden object semantics whereas query processing in database
systems relies on matching select-conditions with attribute values. Thus, different mechanisms
were developed for database and information retrieval systems. In consequence, there is a
lack of support for queries involving both retrieval and database search terms. In this work, we
develop a unifying framework based on the mathematical formalism of quantum mechanics and
quantum logic. Van Rijsbergen already discussed the strong relation between the formalism of
quantum mechanics and information retrieval. The goal of this work is to interrelate concepts
from database query processing to concepts from quantum mechanics and logic. As result,
we obtain a common theory which allows us to incorporate seamlessly retrieval search into
traditional database query processing. Exploiting our theoretical results, we introduce the
quantum query language QQL. In contrast to competing approaches, our formalism is based
on quantum logic.
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Chapter 1

Introduction

In several application areas, e.g. in multimedia or in XML-applications, expressing an informa-
tion need often requires a mixture of traditional database [Cod71, Mai83, DD97], retrieval-like
[BR99, vR79], and proximity search terms. Retrieval functionality, for instance, is required if
database objects are to be searched by a notion of similarity. For example, consider a collection
of XML-documents about paintings. Each contains a textual content description within the
<desc> tag, the paint technique within the <technique> tag, and the century of its cre-
ation within the <century> tag. The query ‘retrieve all oil paintings showing evening twilight
painted about in 16th century’ combines conjunctively a database query (technique=’oil’ ), a
text retrieval query (desc is about ’evening twilight’), and a proximity query (century
≈ 16th).

Information retrieval systems return every result object equipped with a so-called similarity
score which is usually understood as estimated degree of the corresponding object being relevant
to the query. Another type of queries are proximity queries being insufficiently supported by
traditional database systems. It introduces the notion of proximity among values producing
non-discrete truth values.

Traditional database query languages like the relational calculus offer Boolean algebra oper-
ators to construct complex search conditions from atomic conditions. However, such operators
deal with Boolean truth values only. Furthermore, deciding whether a database object belongs
to a query result is based on simple comparisons with attribute values. In retrieval systems,
however, the information being required for exactly evaluating a retrieval object against a query
is not explicitly available. Thus, a retrieval system can only estimate an object’s relevance to
a query.

Historically, for database querying and information retrieval different mechanisms have been
developed causing a problem for complex queries which involve a combination of retrieval and
database query elements. So far, no satisfactory common formalism exists to process such kind
of queries.

We state following requirements for a query language basing on a unifying framework:

1. database query support: The language must be relational complete.

2. information retrieval support: The language must enable us to formulate and to evaluate
retrieval-like and proximity query terms.
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3. unifying theoretical framework: For the language there must exist one unifying theoretical
framework.

A language which meets these requirements is therefore an extension of a classical database
query language. Furthermore, it supports a conjunctive or disjunctive combination of query
terms of different types (database, retrieval, proximity).

In this work, we explain how quantum mechanics and quantum logic provide us a unifying
framework for querying databases and retrieval systems. Quantum mechanics comes with its
own mathematical formalism. This formalism is attractive for tackling our problem since it
combines in a very elegant way concepts from geometry (linear algebra and Hilbert space), logic
(quantum logic as a non-standard logic), and probability theory (Gleason’s theorem). Van
Rijsbergen [vR04] already discussed the strong relation between the formalism of quantum
mechanics and information retrieval concepts. Our focus, however, is on mapping concepts
from database query processing to the formalism of quantum processing and on establishing,
hereby, a connection to information retrieval. The goal of our work is to establish a unifying
framework and to develop the quantum query language QQL. We incorporate the notion of
similarity and proximity into database query processing by applying the formalism of quantum
mechanics and quantum logic. Database tuples are represented by vectors whereas a query
corresponds to a vector subspace. Query evaluation is based on computing the squared cosine
of the minimal angle between them. We will show that although our framework is based on
complex linear algebra concepts query evaluation can be performed using simple arithmetics.

After discussing related work in Chapter 2, we introduce basic concepts of quantum me-
chanics in Chapter 3 and quantum logic in Chapter 4. The main chapter is Chapter 5 where
we demonstrate how traditional database queries basing on Boolean logic are mapped to quan-
tum theory. Furthermore, in this framework, we extend the power of database queries to cope
seamlessly with proximity and retrieval search terms.
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Chapter 2

Related Work

First order logic is a main concept of database query languages like relational calculus, SQL,
and XQuery. Unfortunately, that logic is not adequate for processing queries which combine
retrieval and traditional database search conditions. For example, the query technique =

’oil’ as a typical database query returns a set of paintings for which that condition holds.
Contrarily, the query desc is about ’evening twilight’ is a text retrieval query returning
a list of paintings sorted in descending order by their respective similarity scores. Assume, we
conjunctively combine both queries into one query:

technique = ’oil’ AND desc is about ’evening twilight’

What would be the result, a list or a set of images? The problem here is the illegal logical
combination of an exact query providing us Boolean values with an imprecise retrieval query
returning similarity scores from the interval [0, 1]. There are two prominent approaches to deal
with that conflict.

Boolean Query: The idea realized in most Boolean-logic-based query systems like in the
commercial database system DB2 (text extender) is to transform any retrieval query into a
Boolean one. This is simply achieved by applying a threshold value. That is, every similarity
score greater than the threshold is considered true otherwise false. There are several draw-
backs. First, finding a suitable threshold value is not an easy task. Second, as result, we lose
information of what degree the similarity condition holds. Thus, we cannot discriminate among
paintings from the result set w.r.t. their similarity to evening twilight. Especially in queries
composed of several conditions we need that similarity scores.

Retrieval Query: The idea here is to transform the database query into a kind of a retrieval
query. That is, logic values from the database query evaluation are mapped to the score values
1 for true and to 0 otherwise. These scores can now be arithmetically combined with scores
from a retrieval query, e.g. by a simple weighted sum. However, it is not clear at all which
aggregation formula should be applied for a specific query. There is a plethora of possible
aggregation formulas for that scenario. Furthermore, there is no logic framework (conjunction,
disjunction, negation) supporting the formulation of complex queries.

Summarizing, the first approach lacks support for similarity scores whereas the second one
fails with respect to an available logic for query formulation and processing.
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approach scores distributivity non-dominating

Boolean query no yes –
retrieval query yes – –
fuzzy logic (min/max) yes yes no
fuzzy logic (not min/max) yes no yes
weighted fuzzy logic yes no –

quantum query language yes yes yes

Table 2.1: Properties of different approaches to combine retrieval and database queries

A straightforward solution to the problem is to take advantage of fuzzy logic [Fag98] as
proposed, for example, in [Zad88]. In fuzzy logic, similarity scores as well as Boolean truth
values are interpreted as fuzzy set membership values which can be combined via logical junctors
following complex. Scoring functions t-norm and t-conorm generalize the logical conjunction
and disjunction, respectively. Examples of query languages based on fuzzy logic are the same

algebra [CMPT00], WS-QBE, SDC, and SA as proposed in [SS04, SSH05]. Fagin’s weighting
schema [Fag98] is used in those languages in order to equip search conditions with different
weights of importance. Bellmann and Giertz [BG73] proved that fuzzy logic with t-norm min

for conjunction and t-conorm max for disjunction obeys the rules of the Boolean algebra. Thus,
most query processing techniques known from the database theory are still valid.

The idea of using fuzzy logic for database management is not new. At the beginning of
the nineties, techniques of fuzzy logic [Zad88] were applied to traditional database technology
in order to cope with vagueness. An overview is given in [GUP05]. Much research was done
on developing fuzzy-databases with corresponding fuzzy query languages. [Bol94] introduces
a fuzzy ER-model together with a calculus language using fuzzy-logic. Other examples are
[GMPC98, BP95] which investigate how to develop a fuzzy-SQL language. [Tak93] sketches
the design of a fuzzy calculus, fuzzy algebra, and a mapping between them. However, this work
suffers from an incomplete formalization.

Nevertheless, there are some common problems of the fuzzy approaches in our context.
First, applying the standard fuzzy norms min and max suffers from a specific property: The
minimum as well as the maximum of two certain scores returns always just the smaller (greater)
one of them and ignores completely the greater (smaller) one. For example, assume two con-
junctively combined retrieval conditions. The condition which returns smaller scores dominates
the result semantics. Contrarily, a non-dominating t-norm which respects both scores simul-
taneously would better meet our understanding of query combination. Actually, fuzzy logic
introduces different non-dominating t-norms, e.g. the algebraic product. Unfortunately, none of
them holds idempotence. Thus, in combination with a t-conorm, e.g. the algebraic sum, distrib-
utivity cannot be guaranteed. Furthermore, we are faced with problems of failing associativity
and distributivity [SS02] when Fagin’s weighting schema is applied to a t-norm-conorm-pair.
Table 2.1 summarizes the properties of the approaches discussed so far. Later we will show
that our proposed language QQL (quantum query language) fullfills all three properties.

The problem of dominance turns out to be even more serious when we examine the way
how fuzzy logic is utilized for query evaluation. As shown in Fig. 2.2 (left), fuzzy-based query
processing relies on importing scores and truth values and interpreting them as membership
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∧ ∧

a ab c

e1: max(min(a, b),min(a, c))
e2: a ∗ b + a ∗ c − a ∗ b ∗ a ∗ c
e3: a(b + c − bc)

a b c e1 e2 e3

0.5 0.5 0 0.5 0.25 0.25
0.5 0.5 1 0.5 0.625 0.5

Figure 2.1: Example query and three evaluations e1, e2, and e3

values. Thus, the generation of membership values is not under control of fuzzy logic. In
consequence, there is a high risk that scores are incommensurable due to different scoring
functions. Thus they produce an error-prone dominance. Figure 2.3 depicts exemplarily two
incommensurable fictive scoring functions. Such a monotonic increasing scoring function maps
perceived similarity values to jugded similarity values (scores). Due to the high number of
different ways to calculate similarity scores, including e.g. distance-based and cosine-based,
incommensurability is very likely to occur. If we combine the scores from both function in
Figure 2.3 by using the min-function the scores from function A would dominate the ones from
function B. Even worse, assume a and b are differently perceived similarity values w.r.t. two
properties. Using incommensurable scoring functions can even swap the order of scores (b <
a but a’ < b’) making any comparison meaningless.

Example 2.1 The example query given in Figure 2.1 left demonstrates the problem of domi-
nance and simply importing scores into a fuzzy-based formalism. Evaluation e1 is the standard
t-norm/conorm evaluation and e2 uses the algebraic product and sum. For the given a, b, c val-
ues, both evaluations produce unexpected overall scores (if interpreted as probability values)
which are highlighted as bold numbers. The problems are caused by dominance (e1) and miss-
ing distributivity (e2). In consequence, we conclude that a correct dealing with distributivity
requires more than just importing the values for a, b, and c into a fuzzy formalism. Instead, we
apply a quantum-based approach. The correct evaluation formula presented as e3 is obtained
by applying our quantum-based evaluation algorithm.

A different approach to combine the worlds of information retrieval and database proposed
in [FR97] is to apply probability theory directly. There, the relational model and the relational
algebra are enhanced by the concept of probability. To every tuple an event expression is
assigned which allows the computation of probability values. Basic events are assumed to be
assigned to explicitly given probability values. Here again, score values are simply imported in
the formalism.

Our idea is to take quantum mechanics and logic as formalism to unify the generation of
similarity and proximity scores, classical database evaluations as well as their combination via
a logic, see Figure 2.2 (right). In this way, we alleviate the problem of incommensurability1.

The development of quantum mechanics dates back to the beginning of the last century. The
theory was strongly influenced by famous physicists like Einstein, Planck, Bohr, Schrödinger,

1In fact, many researchers believe that the problem of incommensurability cannot be completely solved.
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and Heisenberg. It deals with specific phenomena of elementary particles like uncertainty
of measurements in closed microscopic physical systems and entangled states. In last years,
quantum mechanics became an interesting topic for computer scientists who try to exploit its
power to solve computationally hard problems. The works [Gru99, CNC00, RP00] provide
non-physicists an introduction to quantum computing.

One appealing part of the mathematical formalism of quantum mechanics is quantum logic
initially developed by von Neumann [vN32]. Quantum logic, see [BvF81, Loc85a, Loc85b,
Zie05], is a non-standard logic based on projectors of a complex separable Hilbert space.

Many concepts of information retrieval [BR99, vR79] are embedded in the formalism of
linear algebra and probability theory. Van Rijsbergen as one prominent information retrieval
expert discusses in his book [vR04] the strong relationship between concepts of quantum me-
chanics and information retrieval. We establish here the relationship to database query process-
ing.
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Chapter 3

Quantum Mechanics and its

Relation to Probability Theory

This chapter gives a short introduction to the formalism of quantum mechanics and its relation
to probability theory. After introducing some notational conventions, we briefly present the
four postulates of quantum mechanics. Here, we assume the reader being familiar with linear
algebra.

The formalism of quantum mechanics deals with vectors of a complex separable Hilbert
space H. Without losing generality in our context and for a better understanding we restrict
our formalism to the real-valued vector space R

n equipped with the standard scalar product
as inner product. The Dirac notation [Dir58] provides an elegant means to formulate basic
concepts of quantum mechanics:

• A so-called ket vector |x〉 represents a column vector identified by x. Let two special

predefined ket vectors be |0〉 =

(
1
0

)

and |1〉 =

(
0
1

)

.

• The transpose of a ket |x〉 is a row vector 〈x| called bra whereas the transpose of a bra
is again a ket. Both form together a one-to-one relationship.

• The inner product between two kets |x〉 and |y〉 returning a scalar equals the scalar
product defined as the product of 〈x| and |y〉. It is denoted by a bracket ’〈x|y〉’. The
norm of a ket vector |x〉 is defined by || |x〉 || ≡

√

〈x|x〉.

• The outer product between two kets |x〉 and |y〉 is the product of |x〉 and 〈y| and is
denoted by ’|x〉〈y|’. It generates a linear operator expressed by a matrix.

• The tensor product between two kets |x〉 and |y〉 is denoted by |x〉 ⊗ |y〉 or short by |xy〉.
If |x〉 is m-dimensional and |y〉 n-dimensional then |xy〉 is an m·n-dimensional ket vector.
The tensor product of two-dimensional kets |x〉 and |y〉 is defined by:

|xy〉 ≡ |x〉 ⊗ |y〉 ≡
(

x1

x2

)

⊗
(

y1

y2

)

≡







x1y1

x1y2

x2y1

x2y2







.
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The tensor product between matrices is analogously defined.

Next, we sketch the famous four postulates of quantum mechanics:

Postulate 1: Every closed physical microscopic system corresponds to a separable complex
Hilbert space1 and every state of the system is completely described by a normalized (the norm
equals one) ket vector |ϕ〉 of that space.

Postulate 2: Every evolution of a state |ϕ〉 can be represented by the product of |ϕ〉 and an
orthonormal2 operator O. The new state |ϕ′〉 is given by |ϕ′〉 = O|ϕ〉. It can be easily shown
that an orthonormal operator cannot change the norm of a state: ||O|ϕ〉 || = || |ϕ〉 || = 1.

Postulate 3: This postulate describes the measurement of a state which means to compute
the probabilities of different outcomes. If a certain outcome is measured then the system is
automatically changed to that state. Here, we focus on a simplified measurement given by
projectors (each one represents one possible outcome and is bijectively associated with one
vector subspace). A projector p =

∑

i |i〉〈i| is a symmetric (pt = p) and idempotent (pp = p)
operator defined over a set of orthonormal vectors |i〉. Multiplying a projector with a state
vector means to project the vector onto the respective vector subspace. The probability of an
outcome corresponding to a projector p and a given state |ϕ〉 is defined by

〈ϕ|p|ϕ〉 = 〈ϕ|
(
∑

i

|i〉〈i|
)

|ϕ〉 =
∑

i

〈ϕ|i〉〈i|ϕ〉.

Thus, the probability value equals the squared length of the state vector |ϕ〉 after its projection
onto the subspace spanned by the vectors |i〉. Due to normalization, the probability value,
furthermore, equals geometrically the squared cosine of the minimal angle between |ϕ〉 and the
subspace represented by p.

Postulate 4: This postulate defines how to assemble various quantum systems to one system.
The base vectors of the composed system are constructed by applying the tensor product ’⊗’
on the subsystem base vectors.

Figure 3.1 illustrates the connection between quantum mechanics and probability theory
for the two-dimensional case. Please notice that the base vectors |0〉 and |1〉 are orthonormal.
The measurement of the state |ϕ〉 = a|0〉 + b|1〉 with || |ϕ〉 || = 1 by applying the projector
|0〉〈0| provides the squared portion of |ϕ〉 on the base vector |0〉 which equals a2. Analogously,
the projector |1〉〈1| provides b2. Due to Pythagoras and the normalization of |ϕ〉 both values
sum up to one. In quantum mechanics where |0〉〈0| and |1〉〈1| represent two possible outcomes
of a measurement the values a2 and b2 give the probabilities of the respective outcomes. Note
that both outcomes correspond to independent events (〈0|1〉 = 0) and together they cover the
complete event space (|0〉〈0| + |1〉〈1| = I).

Following [vR04] we discuss two aspects which explain why quantum mechanics may serve
as an appropriate model for information retrieval:

1For simplicity, we restrict ourselves to the vector space R
n.

2An operator O is orthonormal if and only if OtO = OOt = I holds where the symbol ’t’ denotes the

transpose of a matrix and ’I ’ denotes the identity matrix.
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|0〉

|1〉

|ϕ〉

b

a

〈0|ϕ〉〈ϕ|0〉 = a2

〈1|ϕ〉〈ϕ|1〉 = b2

a2 + b2 = 1

Figure 3.1: Pythagoras and probabilities

1. Information retrieval means to estimate the probability that a database object is rele-
vant to a given retrieval query. One frequently used retrieval model is the vector space
model where the scalar product is utilized for the required estimation. Thus, quantum
measurement is conceptually very near3 to the vector space model.

2. Quantum mechanics provides an elegant framework for unifying the notion of geometry,
probability, and logic4. Gleason’s theorem [Gle57] establishes the connection between
probability theory and geometry. First, we define a probability measure. Let the join
(disjunction) of projectors be denoted by ’∨’, H be a vector space, L(H) be the set of all
subspaces of H, and p be a projector which bijectively corresponds to a subspace from
L(H).

Definition 3.1 (probability measure) A (countably additive) probability measure on
L(H) is a mapping µ : L(H) → [0, 1] such that µ(I) = 1 and, for any sequence of pair-wise
orthogonal5 projectors pi and i = 1, 2, . . . : µ(∨ipi) =

∑

i µ(pi).

Theorem 3.1 (Gleason) Let H be a vector space having more than two dimensions.
Then every countably additive probability measure on L(H) has the form µ(p) = 〈ϕ|p|ϕ〉
for a normalized vector |ϕ〉 of H.

The main idea of supporting database querying by the formalism of quantum mechanics
is to model database objects as state vectors and queries as projectors within a well-designed
vector space. A state vector as database object encapsulates all the possible results of potential
measurements whereas projectors as queries define subspaces. Together they form a probabil-
ity measure. Table 3.1 relates concepts from database querying to concepts from quantum
mechanics.

3Quantum measurement yields the squared cosine whereas the vector space model returns the cosine of the

enclosed angle.
4Quantum logic will be introduced in next chapter .
5Orthogonality between two projectors is symmetric and defined by p1p2 = p2p1 = 0.
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database querying quantum mechanics

database tuple state vector
query projector
query processing quantum measurement
truth values probability values
boolean logic quantum logic

Table 3.1: Related concepts from database querying and quantum mechanics.
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Chapter 4

Quantum Logic

Following [Zie05], we develop here the main concepts of quantum logic originally developed by
von Neumann [vN32]. The starting point is the set P of all projectors of a vector space H of
dimensions greater than two. Each projector p ∈ P is bijectively related to a closed subspace
via p(H) = {p|ϕ〉 | |ϕ〉 ∈ H}. The subset relation p1(H) ⊆ p2(H) on P which is equivalent to
p2p1 = p1p2 = p1 forms a complete poset. Furthermore, we obtain a lattice1 with the binary
operations meet (∧) and join (∨) being defined as

pp1(H) ∧ pp2(H) ≡ pp1(H)∩p2(H)

pp1(H) ∨ pp2(H) ≡ pclosure(p1(H)∪p2(H)).

Quantum logic in general does not constitute a Boolean logic since the distribution law is
violated. For example, if |x〉 and |y〉 were two mutually orthonormal ket vectors then we can
define three projectors: p1 = |x〉〈x|, p2 = |y〉〈y|, and p3 = |v〉〈v| where |v〉 = (|x〉 + |y〉)/

√
2.

Then we obtain
p3 ∧ (p1 ∨ p2) = p3 6= 0 = 0 ∨ 0 = (p3 ∧ p1) ∨ (p3 ∧ p2)

violating the distribution law. The negation (orthocomplement) for our quantum logic is
defined as ¬p ≡ I − p encompassing all projectors orthogonal to p. Including the negation,
we obtain an ortholattice fulfilling (1) compatibility (p1(H) ⊆ p2(H) =⇒ ¬p2(H) ⊆ ¬p1(H))
and (2) invertibility (p∨¬p = I, p∧¬p = 0, and ¬¬p = p). From these laws the de Morgan laws
can be derived. The ortholattice of projectors fulfills furthermore the law of orthomodularity
(p1(H) ⊆ p2(H) =⇒ p1 ∨ (¬p1 ∧ p2) = p2) providing us an orthomodular lattice of projectors.

In this work, we have to embed Boolean logic exploited from relational calculus into quan-
tum logic. Actually, quantum logic can be seen as a generalization of a Boolean logic: The
sublattice over every equivalence class comprising commuting projectors constitutes a boolean
logic.

Definition 4.1 (commuting projectors) Two projectors p1 and p2 of a vector space H are
called commuting projectors if and only if p1p2 = p2p1 holds.

From linear algebra we know that two projectors p1 =
∑

i |i〉〈i| and p2 =
∑

j |j〉〈j| commute if
and only if their ket vectors |i〉 and |j〉 are basis vectors of the same orthonormal basis of the

1The laws of commutativity, associativity, and absorption are fulfilled.
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underlying vector space. In that case, we can write p1 =
∑

i1
|ki1〉〈ki1 | and p2 =

∑

i2
|ki2〉〈ki2 |

where the ket vectors |ki〉 form an orthonormal basis. If two projectors commute then their
join corresponds to the union of the respective one-dimensional oprators |kij 〉〈kij | and their
meet to the intersection. Thus, all projectors over a given orthonormal basis form a Boolean
logic. This is affirmed by the following theorem.

Theorem 4.1 (Foulis-Holland) Let L be an orthomodular lattice and a, b, c in L such that
any one of them commutes with the other two. In this particular case the distributivity law
holds.

The following quotation from [Mar77] summarizes the main idea of quantum theory: ‘Quan-
tum theory is simply the replacement in standard probability theory of event-as-subset-of-a-set
(abelian, distributive) by event-as-subspace-of-a-vector-space (non-abelian, non-distributive).’

16



Chapter 5

Quantum Retrieval

In this chapter we develop basic concepts for mapping database tuples and relational calculus
queries to the formalism of quantum mechanics and quantum logic (see Table 3.1). In this way,
we extend the power of classical database query processing by dealing with probability values
in order to support retrieval queries as well as proximity queries. By exploiting quantum logic
on projectors we are able to construct complex queries. Please note, that in quantum logic
projectors are combined to new projectors before any measurement w.r.t. an object takes place.
Thus, a projector is capable to embody the complete semantics of every query.

Following, we distinguish between categorical and ordinal attributes.

5.1 Categorical Attributes

Categorical data are data on which no meaningful order exists. In our example, the different
paint techniques (oil, pencil, watercolor) may be regarded as categorical data. The main
idea of our quantum mapping is to bijectively assign each categorical value to exactly one basis
vector:

Definition 5.1 (mapping categorical values) A categorical value cv of a domain D with
|D| = n is expressed by a vector of a predefined basis of R

n. The vector space R
n is spanned

by the predefined set of n orthonormal basis vectors |c〉 where each |c〉 corresponds bijectively
to a value c ∈ D.

Next, we define projectors for select-queries.

Definition 5.2 (mapping categorical select-queries) Let C ⊆ D contain the required cat-
egories of a select-condition. Such a condition is expressed by the projector pC =

∑

c∈C |c〉〈c|.

Example 5.1 The basis vectors |oil〉 = (1, 0, 0)t, |pencil〉 = (0, 1, 0)t, and |watercolor〉 =
(0, 0, 1)t represent three different paint techniques whereas the condition demanding oil or
pencil paint technique is encoded by |oil〉〈oil| + |pencil〉〈pencil|.

Since all possible projectors pC are based on the same basis they commute to each other. In
consequence, following Theorem 4.1, negation, conjunction and disjunction on those projectors
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altogether constitute a Boolean logic. These logical operations correspond to set operations on
the respective sets of orthonormal categorical basis vectors: ¬pC = pD\C , pC1 ∧ pC2 = pC1∩C2

and pC1 ∨ pC2 = pC1∪C2 .

The following theorem shows that quantum measurement (Postulate 3) on categories yields
same evaluation results as evaluating corresponding classical database select-queries.

Theorem 5.1 (measuring categorical values) The measurement result of a projector pC

on a categorical vector |cv〉 is given by

〈cv|pC |cv〉 =

{
1 : cv ∈ C
0 : otherwise.

(5.1)

Proof

〈cv|pC |cv〉 = 〈cv|
(
∑

c∈C

|c〉〈c|
)

|cv〉 =
∑

c∈C

〈cv|c〉〈c|cv〉

Due to orthonormality of the basis vectors |c〉 we can write 〈cv|c〉 = δ(cv, c) where δ is the
Kronecker delta. That is, the measurement yields the value 1 only if cv ∈ C holds. Otherwise,
we obtain the value 0. 2

The theorem shows that our formalism supports complex select-queries as known from classical
database theory on single-attribute categorical values obeying the rules of Boolean logic.

Remark: Our mapping allows for a state a probabilistic superposition of an ensemble E
of categorical values by linearly combining the respective basis vectors (|E〉 =

∑

e∈E

√
Pe|e〉)

with their probabilities Pe. The measurement (〈E|pC |E〉 =
∑

e∈E∩C Pe) provides the summed
up probability values of the matched categories.

5.2 Ordinal Attributes

Next, we introduce the mapping of ordinal attribute values and queries to our formalism. A
domain of values is called ordinal if there is a meaningful order on its values. Thus, we are
interested in distinguishing comparisons between two values which are close neighbors from
those which lie far away from each other.

Initially, we assume a non-negative, ordinal numerical a ∈ [0,∞] as given to be mapped to
a state vector. Please recall that state vectors need to be normalized. Therefore, we cannot
directly map attribute values to a one-dimensional ket vector. Instead we need at least two
dimensions. A two-dimensional quantum system in the field of quantum computation is called a
qubit (quantum bit). Since every normalized linear combination of two basis vectors |0〉 = (1, 0)t

and |1〉 = (0, 1)t is a valid qubit state vector we can encode infinitely many ordinal attribute
values. That is, we take advantage of the superposition principle of quantum mechanics. Please
notice that no more than two vectors can be encoded as independent (orthogonal) state vectors
within a one-qubit system.

Definition 5.3 (mapping ordinal values to qubit states) The normalized qubit state |a〉
for a database value a ∈ [0,∞] is defined by

a 7→ |a〉 =
1√

a2 + 1

(
1
a

)

.
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Thus, the database value is expressed by the normalized ratio between the two basis vectors |0〉
and |1〉.

Definition 5.4 (mapping ordinal select-queries) In accordance with Def. 5.3, a select-
condition with an associated non-negative numerical constant c is expressed by the projector
pc = |c〉〈c|.

Computing the degree of matching between a qubit state |a〉 and a select-condition pc = |c〉〈c|
by quantum measurement yields

〈a|pc|a〉 =
(1 + ac)2

(a2 + 1)(c2 + 1)
(5.2)

which equals the squared cosine of their enclosed angle. We obtain a proximity value near
to zero (orthogonality in the geometric interpretation) only if one value is very high whereas
the other one equals zero. Figure 5.1 depicts the corresponding graph for proximity values
obtained from comparing two values from [0 . . . 7]. Please notice that the dashed isolines for
the proximity value 0.95 diverge from the diagonal with increasing attribute values. That is,
the measurement is more sensitive to differences between small values than to those between
large values.

    0.95

 0  1  2  3  4  5  6  7  0  1  2  3  4  5  6  7

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

a
c

Figure 5.1: Graph for (1+ac)2

(a2+1)(c2+1)

Next, we introduce a user-defined bijection f : dom(A) → [0,∞] on the ordinal domain of
an attribute A which we apply before quantum encoding following Def. 5.3 is performed. This
gives the user a means to assign some meaningful semantics to resulting proximity values. As
a positive side effect, such a mapping enables us to encode non-numerical values.

Example 5.2 (user-defined value mapping) In our introduced example, we want to en-
code the eight centuries from the 13th to the 20th. First, these ordinal values are bijectively
mapped to the integers 0 to 7 (’13th’ → 0, . . . ,’20th’→ 7). Second, we map those integers to
qubit state vectors producing measured proximity values dependent solely on the difference
d = |a − c|. Thus, they represent the absolute error between attribute value a and a query
condition constant c. Such a symmetry is achieved by linearly mapping the eight values to
angles from 0 to π/2 realized by applying the function f : a 7→ tan aπ/16. Figure 5.2 depicts
the geometry of that mapping. Since the measurement value between two qubit states equals
the squared cosine of the enclosed angle the tangent mapping produces a measurement result
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Figure 5.2: Equi-angular mapping
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Figure 5.3: Graph for (1+f(a)f(c))2

(f(a)2+1)(f(c)2+1)
and f(x) = tan xπ/16

given by cos2 dπ/16. The corresponding measurement graph is depicted in Figure 5.3. Please
notice that the dashed isolines are now parallel to the diagonal. That is, the measurement is
equally sensitive to differences between small values and between large values.

Applying a user-defined bijection does not enable the simulation of any arbitrary similarity
function s(a, b) on ordinal values a, b ∈ dom(A). Instead, several restrictions on s(a, b) are
implicitly stated. Due to the computation of the squared cosine of the enclosed angle we
obtain three restrictions on s(a, b):

1. ∀a, b ∈ dom(A) : s(a, b) ∈ [0, 1],

2. ∀a ∈ dom(A) : s(a, a) = 1, and

3. ∀a, b ∈ dom(A) : s(a, b) = s(b, a).

Let the vectors for three ordinal values a, b, c ∈ dom(A) lie on a plane1 and the angles α, β, γ
be the corresponding angles. Then, we can recompute the enclosed angle between |a〉 and |b〉
by

|α − β| = arccos
√

s(a, b).

1Since we use a one-qubit system.
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Taking three ordinal values of a qubit system into account, we obtain an additional restriction:

s(b, c) = cos2(β − γ)

= cos2 | arccos
√

s(a, c) ± arccos
√

s(a, b)|.

Thus, only similarity function fulfilling these restriction can be simulated by mapping it to a
qubit system.

One disadvantage of the ordinal mapping is the missing support of disjunction and con-
junction on the same attribute. For example, there is no way to express the condition
’(century = 15th) ∨ (century = 16th)’ in a single-qubit system. The disjunction of conditions
with different constants corresponds to the join operation which involves the computation of
the vector space closure. As result, we obtain the projector I = |0〉〈0| + |1〉〈1| which corre-
sponds to the true-statement in Boolean logic. Analogously, the conjunctive combination of
conditions with different constants produces a vector subspace containing just the origin as
intersection of the respective vector subspaces (meet). The resulting null-matrix corresponds
to the false-statement in Boolean logic.

So far, we showed that our mapping of categorical values supports the complete Boolean
logic but due to the orthogonality of the mapped values there is no support of proximity queries.
Contrarily, quantum processing of ordinal values supports the notion of proximity but fails to
support conjunction and disjunction. Later on, we discuss this aspect in more detail.

5.3 Multi-Attribute Tuples

A typical database tuple contains more than one attribute value. Therefore, we have to adapt
our mapping to the multi-attribute case. A multi-attribute tuple can be regarded as a composite
quantum system. Adopting Postulate 4, we use the tensor product for constructing multi-
attribute state vectors.

Definition 5.5 (database tuple as tensor product of single-attribute states)
Assume, a database tuple t = (a1, . . . , an) contains n attribute values and |a1〉, . . . , |an〉
are their respective state vectors (regardless whether categorical or ordinal). Then, the ket
vector

|t〉 = |a1〉 ⊗ . . . ⊗ |an〉 = |a1..an〉

represents tuple t.

A single-attribute select-condition Aj = c on a multi-attribute-tuple must be prepared
accordingly. Thus, a single-attribute condition |c〉〈c| needs to be combined with all orthonormal
basis vectors (expressed by the identity operator) of the non-restricted attributes.

Definition 5.6 (single-attribute select-condition) Assume, Aj = c is a select-condition
on attribute Aj . Its projector pc expressing the condition against an n-tuple is given by

pc = I ⊗ . . . ⊗ I
︸ ︷︷ ︸

(j−1)×

⊗|c〉〈c| ⊗ I ⊗ . . . ⊗ I
︸ ︷︷ ︸

(n−j)×

.

21



The following measurement formula yields the measurement value for a given database
tuple |t〉=|a1..an〉.

〈a1..an| I ⊗ . . . ⊗ I
︸ ︷︷ ︸

(j−1)×

⊗|c〉〈c| ⊗ I ⊗ . . . ⊗ I
︸ ︷︷ ︸

(n−j)×

|a1..an〉

= 〈a1|I|a1〉 . . . 〈aj−1|I|aj−1〉〈aj |c〉 ∗
〈c|aj〉〈aj+1|I|aj+1〉 . . . 〈an|I|an〉 = 〈aj |c〉〈c|aj〉. (5.3)

This formula equals the measurement of the single-attribute case. That is, the computation of
the measurement becomes very easy since we can completely ignore non-restricted attributes.

5.4 Equality-Conditions

Equality-conditions require value equivalence of different attributes of the same type. Again,
we distinguish between equality-conditions on categorical values and on ordinal values. The
main idea is to construct a projector which refers to the vector subspace minimally containing
all possible pairs of equal attribute values.

Definition 5.7 (mapping of a categorical equality-condition) The equality between two
categorical values |c1〉 and |c2〉 of a two-attribute tuple |c1c2〉 with c1, c2 ∈ D is expressed by the
projector

pcc =
∑

c∈D

|cc〉〈cc|.

The measurement of two categories yields the value 1 on equality and 0 otherwise.

Example 5.3 The equality-condition on two paint technique attributes is given by
|oil oil〉〈oil oil|+|pencil pencil〉〈pencil pencil|+|watercolor watercolor〉〈watercolor watercolor|.

Constructing a projector for the equality of two ordinal values is more complicated. The
representation of a two-value-tuple (a1, a2) is given by the state

|a1a2〉 =
1

√

a2
1 + 1

√

a2
2 + 1







1
a2

a1

a1a2







⇔
|00〉
|01〉
|10〉
|11〉.

Here, we show also the bitcode representation of the corresponding canonical basis vectors. For
a state with a1 = a2 we require the equivalence of the components |01〉 and |10〉. Therefore,
both are combined into one normalized query vector: (|01〉 + |10〉)/

√
2. Thus, the subspace of

(a1=a2)-vectors is spanned by the orthonormal vectors |00〉, (|01〉 + |10〉)/
√

2, and |11〉.

Definition 5.8 (mapping of an ordinal equality-condition) The equality between two
ordinal values |a1〉 and |a2〉 of a two-attribute tuple |a1a2〉 is expressed by the projector

paa = |00〉〈00| + (|01〉 + |10〉)(〈01| + 〈10|)
2

+ |11〉〈11|.
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Measuring an ordinal two-attribute tuple |a1a2〉 on equality using the two-attribute equality
projector paa yields

〈a1a2|paa|a1a2〉 =
a2

1a
2
2 + (a1+a2)2

2 + 1

a2
1a

2
2 + a2

1 + a2
2 + 1

. (5.4)

The result equals the value 1 if and only if a1 equals a2. Otherwise, we obtain a value smaller
than 1 but greater than 0.5. The function converges to the value 0.5 if one value is zero whereas
the other one grows towards infinity. Figure 5.4 depicts the graph when we apply the tangent
encoding as described in Example 5.2.
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Figure 5.4: Graph for equi-angular ordinal values

Besides the two-attribute case, an equality-conditions can require the equivalence of more
than two attributes. Whereas this generalization is obvious for categorical attributes this is not
the case for ordinal ones. The procedure to construct the ordinal equality-subspace is analogous
to the two-attribute case. All vectors of the canonical basis sharing the same number of ones
in their bitcodes (e.g. the three-attribute ket vectors |001〉, |010〉, and |100〉 share exactly only
one 1 in their bitcode) need to be combined into one basis vector of the equality subspace.

Definition 5.9 (mapping of a general ordinal equality-condition) Assume, an n-
attribute qubit state is given. The condition requiring the equality of all n ordinal single-attribute
qubit states is expressed by the projector

p =

n∑

i=0

|bi〉〈bi|

with |bi〉 = 1/
√
(

i
n

)∑

j |b
j
i 〉 which groups all 2n-dimensional vectors |bj

i 〉 of the canonical basis

containing exactly i ones in their bitcodes into one normalized subspace basis vector.

Example 5.4 The projector for a three-attribute equality-condition is given by p = |b0〉〈b0|+
|b1〉〈b1| + |b2〉〈b2| + |b3〉〈b3| with

|b0〉 = |000〉
|b1〉 = (|001〉 + |010〉 + |100〉)/

√
3

|b2〉 = (|011〉 + |101〉 + |110〉)/
√

3

|b3〉 = |111〉
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The measurement value of an n-attribute equality-condition w.r.t. an arbitrary state |a1..an〉
is given by

n∑

i=0

∑

j〈a1..an|bj
i 〉〈b

j
i |a1..an〉

(
i
n

) .

Analogously to constant-select-conditions, equality-conditions can be extended by non-
restricted attributes using the tensor product.

5.5 Negation, Conjunction and Disjunction

A complex condition of the relational calculus is constructed by recursively applying conjunc-
tion, disjunction and negation on atomic conditions. Database disjunction, conjunction, and
negation have their counterparts in quantum logic. That is, for combining two projectors con-
junctively we apply the meet operator returning a new projector. Analogously, disjunction
corresponds to the join operator and the negation of a condition is related to the negation of
a projector. Despite dealing with probability values, quantum logic behaves like Boolean logic
if involved projectors do commute.

Negation: The following theorem relates the negation of projectors to a measurement result.

Theorem 5.2 (negation) Assume, a projector pc expressing an arbitrary condition c is given.
The measurement of its negation p¬c on a database tuple |t〉 equals the subtraction of the non-
negated measurement from 1:

〈t|p¬c|t〉 = 1 − 〈t|pc|t〉. (5.5)

Proof Exploiting the definition of quantum negation and a state vector, we obtain

〈t|p¬c|t〉 = 〈t|I − pc|t〉 = 〈t|I|t〉 − 〈t|pc|t〉 = 1 − 〈t|pc|t〉.

2

Quantum negation extends Boolean negation. However, if a measurement returns a probability
value between 0 and 1 then the effect may be surprising. For example, assume an attribute
A of the three-valued ordinal domain {a, b, c} is given. Surprisingly, as shown in Table 5.1,
the negated condition ¬(A = b) does not equal the condition (A = a) ∨ (A = c). Instead,
that condition yields the dissimilarity between the attribute value and the value b. Thus, the
measurement value of the ordinal value a is smaller than 1. This effect is the direct consequence
of dealing with proximity of values.

Conjunction: Since we already discussed disjunction and conjunction on the same ordinal
attribute we assume here conditions to be combined with disjoint sets of restricted attributes.
Thus, they do commute and constitute, therefore, a Boolean algebra.

Theorem 5.3 (conjunction of disjoint conditions)
Let pa = p1

a ⊗ . . . ⊗ pn
a be a projector on n attributes and k restrictions on the attributes
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query database value
condition a b c

A = b 0.75 1 0.75
A = a ∨ A = c 1 0.75 1

¬(A = b) 0.25 0 0.25

Table 5.1: Negation and proximity values using the tangent encoding

{a1, .., ak} ⊆ [1..n] with

pi
a =

{
an ai-restriction : i ∈ {a1, .., ak}
I : otherwise

and pb = p1
b⊗. . .⊗pn

b be a further projector with l restrictions on the attributes {b1, .., bl} ⊆ [1..n]

pi
b =

{
a bi-restriction : i ∈ {b1, .., bl}
I : otherwise

and {a1, .., ak} ∩ {b1, .., bl} = ∅. Their conjunction yields the projector pa∧b = p1
a∧b ⊗ . . .⊗ pn

a∧b

with

pi
a∧b =







an ai-restriction : i ∈ {a1, .., ak}
a bi-restriction : i ∈ {b1, .., bl}
I : otherwise

Proof The meet operation is defined over the intersection of the corresponding subspaces.
Thus, we obtain following derivation

pa ∧ pb = (p1
a ⊗ . . . ⊗ pn

a) ∧ (p1
b ⊗ . . . ⊗ pn

b )

= (p1
a ∧ p1

b) ⊗ . . . ⊗ (pn
a ∧ pn

b )

= pp1
a(H)∩p1

b
(H) ⊗ . . . ⊗ ppn

a (H)∩pn
b
(H).

Due to the disjointness {a1, .., ak}∩{b1, .., bl} = ∅ the vector space of every attribute restriction
is intersected with H producing identical restrictions. Thus, all restriction are simply taken
over. 2

Remark: Theorem 5.3 deals with select-conditions only. Obviously, as long as the disjoint
clause is fulfilled the theorem applies analogously if equality-conditions are involved.

Computing the measurement on a database tuple |t〉 yields

〈t|pa∧b|t〉 = 〈t|pa|t〉〈t|pb|t〉 (5.6)

due to the rule 〈a1b1|a2b2〉 = 〈a1|a2〉〈b1|b2〉. Thus, the measured results for conjunctively
combined disjoint projectors are simply multiplied. This conforms the probabilistic conjunction
of independent events.
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Example 5.5 Our introduced example query ‘retrieve all oil paintings showing evening twi-
light painted about in 16th century’ combines conjunctively a categorical (technique), a text
retrieval (desc), and a proximity (century) query. Since these query components are indepen-
dent from each other their respective measurement results w.r.t. a certain XML-document are
simply multiplied.

Special cases: In Theorem 5.3, we assumed conditions with restrictions being disjoint on
attribute level. Thus, we obtain commuting projectors and therefore a Boolean logic. Next,
we introduce four special cases where the demand for disjointness is abandoned due to com-
mutativity of the conjunctively combined projectors.

1. categorical attributes: Since categorical values are bijectively mapped to orthonormal
basis vectors overlapping conditions do always commute.

2. select-condition and select-condition: Two projectors which express select-conditions and
overlap on some ordinal attributes do commute only if the overlapping select-conditions
require the same select-constant. This includes also the negated case. That is, fol-
lowing the notation from Theorem 5.3, we require ∀i ∈ {a1, .., ak} ∩ {b1, .., bl} : pi

a ∈
{|c〉〈c|,¬|c〉〈c|} ∧
pi

b ∈ {|c〉〈c|,¬|c〉〈c|} with a fixed ordinal value c.

3. equality-condition and equality-condition: Two conjunctively combined equality-
conditions overlapping on some ordinal attributes can be merged to one large equality-
condition. For example, we can prove that pa1=a2 ∧ pa2=a3 equals pa1=a2=a3 . This rule is
used to remove overlapping ordinal equality-conditions.

4. equality-condition and select-condition: An equality-condition conjunctively combined
with an overlapping ordinal select-condition (or its negation) is transformed to non-
overlapping select-conditions. We can prove that the rule (pa1=a2 ∧ pa1=c) =⇒
(pa1=c ∧ pa2=c) always holds.

Thus, requiring disjoint conditions with the exceptions of the four listed special cases guarantees
that the corresponding projectors commute and, therefore, constitute a Boolean logic.

Disjunction: From Chapter 4 we know that quantum logic respects the de Morgan law.
Therefore, we can compute the measurement for the disjunction of projectors over conjunction
and negation and obtain

〈t|pa∨b|t〉 = 1 − (1 − 〈t|pa|t〉)(1 − 〈t|pb|t〉) (5.7)

= 〈t|pa|t〉 + 〈t|pb|t〉 − 〈t|pa∧b|t〉.

The discussed semantics of disjoint conjunction, disjunction, and negation obey the rules of
probability theory for independent events. Furthermore, the logical operations on disjoint
projectors equal the algebraic product and the algebraic sum being a t-norm and a t-conorm
of fuzzy-logic [Zad88], respectively. However, our theory is richer with respect to the semantics
of underlying conditions. For example, Formulas 5.6 and 5.7 are valid on non-overlapping
conditions only. The problem of violated idempotence of the algebraic product does not occur
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in our theory (see the special cases): The meet and the join operation collapse the combination
of equal conditions (second special case) automatically to one condition fulfilling the demand
of idempotence.

5.6 Commuting Quantum Query Processing

In this section we define a new query language and a feasible algorithm to process corresponding
queries. The language is recursively built from atoms and formulas.

Definition 5.10 (commuting quantum query language) The commuting quantum query
language is based on a given relation schema of n attributes A1, .., An. Assume, function
type: {A1, . . . , An} 7→ {cat, ord} returns for every attribute its type (ordinal or categorical).
An atom is defined to be one of three alternatives:

1. A select-condition ’Ai = c’ with constant c is an atom.

2. An equality-condition ’Ai1 = . . . = Aik’ on k attributes of the same type is an atom.

3. A set-containment on a categorical attribute ’Ai ∈ C’ is an atom.

A set of atoms At is called commuting if the following condition holds:

∀atom1 ∈ At : ∀atom2 ∈ At :

∀Ai ∈ involved(atom1) : ∀Aj ∈ involved(atom2) :

(atom1 6= atom2 ∧ Ai = Aj) =⇒ (type(Ai) = cat) .

The function involved returns the set of all attributes restricted by an atomic condition2.

A commuting quantum query on a commuting atom set At is recursively defined as follows:

1. Every atom of At is a query.

2. If q is a quantum query then ¬q is a query.

3. If q1 and q2 are two queries then (q1 ∧ q2) and (q1 ∨ q2) are queries.

As result, we obtain commuting query expressions for which the rules of Boolean algebra apply.

Evaluation algorithm: The general goal is to evaluate a given commuting quantum query
with respect to a tuple (v1, .., vn). We will show that such an evaluation does not require
complex algorithms from linear algebra. Instead, our algorithm is based on simple boolean
transformations and basic arithmetic operations.

A direct evaluation of conjunction and disjunction by applying Formula 5.6 and 5.7 is
not possible since the formulas were defined on expressions with non-overlapping conditions.
However, our language allows overlaps as long as the underlying atom set is commuting. Our

2Please note, that the notion of a commuting set respects the four special cases. Instead of explicitly allowing

the third and the fourth special case, we assume such conditions to be transformed accordingly in advance in

order to obtain a commuting set.
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idea is to apply Boolean rules to transform expressions with overlapping conditions into non-
overlapping ones. Actually, we need to resolve overlaps just on ordinal attributes. Categorical
literals (negated or non-negated atomic conditions) produce boolean values which are correctly
respected by Formula 5.6 and 5.7 regardless whether they overlap or not. The algorithm for
transforming an arbitrary commuting quantum query e is given in Figure 5.5.

input: commuting quantum language expression e
output: e without ordinal overlaps

(1) transform expression e into

disjunctive normal form x̂1 ∨ . . . ∨ x̂m

where x̂i are conjunctions of literals

(2) simplify expression e by applying

idempotence and invertibility3rules

(3) if there is an overlap on an ordinal

attribute between some conjunctions x̂i then

(3a) let o be a literal of an attribute

common to at least two conjunctions

(3b) replace all conjunctions x̂i of e
with (o ∧ x̂i) ∨ (¬o ∧ x̂i)

(3c) simplify e by applying idempotence,

invertibility, and absorption and obtain

e = (o ∧ x̂1) ∨ . . . ∨ (o ∧ x̂m1)∨
(¬o ∧ x̂m1+1) ∨ . . . ∨ (¬o ∧ x̂m2)

(3d) replace e with (o ∧ e1) ∨ (¬o ∧ e2) where

e1 = x̂1 ∨ . . . ∨ x̂m1 , e2 = x̂m1+1 ∨ . . . ∨ x̂m2

(3e) continue with step (3) for e1 and e2

(4) transform innermost disjunctions to

conjunctions and negations by applying

de-Morgan-law

Figure 5.5: Transformation algorithm to resolve overlaps

Analyzing the transformation result, we observe that the subformulars of the innermost
disjunctions (the leaves of the corresponding tree) are mutually non-overlapping on ordinal
attributes4 before we apply the fourth step. That is, we can apply Formula 5.7. All other
disjunctions are based on exclusive subformulas (generated by step (3d)). That is, we can
simply drop the conjunction term from Formula 5.7 before we apply this formula. That is,
we simply add the scores. Since, furthermore, all conjunctions are based on non-overlapping
subformulas Formula 5.6 directly applies. The fourth step is to simplify arithmetic calculation
of multiple disjunctions.

3invertibility: a ∨ ¬a = 1, a ∧ ¬a = 0,¬¬a = a
4Otherwise the algorithm would not have stopped.
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Since overlaps on ordinal attributes are now resolved we can directly apply Formulas 5.1,
5.3, 5.4, 5.5, 5.6, and 5.7 in order to evaluate the query against a database tuple.

Next, we demonstrate the evaluation using an example. The atoms of our example query are
presented in Table 5.2. The condition on the textual description of a painting is a text retrieval
query, the condition on the century of its creation is a proximity query, and the conditions
on the three different painting techniques are classical database (categorical) queries. Their
evaluations w.r.t. to a tuple t = (tdtctt) are shown on the right side. For the text retrieval
evaluation we simply take the squared cosine of the angle between the corresponding text
vectors. The proximity evaluation is performed in accordance with Example 5.2.

In our example query given in Figure 5.6, we search for paintings which show a crucifixion
or for watercolor paintings. The crucifixion should be painted with oil if created in the 17th
century, otherwise with pencil. Figure 5.6 demonstrates the transformation algorithm step by
step and the final arithmetic evaluation formula with respect to a given tuple t = (tdtctt).

condition evaluation

d: desc=’crucifixion’ dt = 〈td|′crucifixion′〉2
c: century=’17th’ ct = cos2 |4 − tc| · π/16

t1: technique=’oil’ tt1 =

{
1 : tt =′oil′

0 : otherwise

t2: technique=’pencil’ tt2 =

{
1 : tt =′pencil′

0 : otherwise

t3: technique=’watercolor’ tt3 =

{
1 : tt =′watercolor′

0 : otherwise

Table 5.2: Atomic conditions and their evaluations w.r.t. tuple t = (tdtctt)

(d ∧ ((c ∧ t1) ∨ (¬c ∧ t2))) ∨ t3

(c ∧ d ∧ t1) ∨ (¬c ∧ d ∧ t2) ∨ t3

(c ∧ d ∧ t1) ∨ (c ∧ t3) ∨ (¬c ∧ d ∧ t2) ∨ (¬c ∧ t3)

(c ∧ ((d ∧ t1) ∨ t3)) ∨ (¬c ∧ ((d ∧ t2) ∨ t3))

(c ∧ ¬ (¬ (d ∧ t1) ∧ ¬t3)) ∨ (¬c ∧ ¬ (¬ (d ∧ t2) ∧ ¬t3))

arithmetic evaluation w.r.t. tuple t:

ct
(
1 −

(
1 − dttt1

) (
1 − tt3

))
+

(
1 − ct

) (
1 −

(
1 − dttt2

) (
1 − tt3

))

(1)(2)

(3a)(3b)(3c)

(3d)

(4)

o = c

Figure 5.6: Example transformations and arithmetic evaluation
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5.7 Quantum Queries

Our commuting quantum query language introduced in Definition 5.10 is based on a commuting
set of atoms. Different select-conditions on a common ordinal attribute are not allowed5.
Thus, we cannot express queries like desc=’crucifixion’ ∨ desc=’martyr’ or century ≤
’14th’ (century = ’13th’ ∨ century = ’14th’). As shown in Section 5.2, a disjunction
of non-commuting conditions would produce the true-statement and its conjunction the false-
statement. This results from the way how quantum matching is performed: In general, quantum
processing supports a matching of a value (normalized vector) against a set of ’orthonormal’
values (projector). In case of a categorical attribute all values are orthonormal per definition.
In the ordinal case this does not hold. Thus, the query value set is restricted to contain just
one value.

What should be our target semantics of a disjunction like desc=’crucifixion’ ∨
desc=’martyr’? We require:

1. The disjunction restricted to crisp truth (boolean) values should obey the laws of boolean
logic (commutativity, associativity, boundary condition, monotonicity, and idempotence).

2. Every returned score should be interpretable as a probability value produced by a com-
muting query.

Both requirements are fulfilled by applying the standard fuzzy t-conorm max. Analogously, the
conjunction corresponds to the standard t-norm min.

Given a query being non-commuting due to different conditions on common ordinal at-
tributes, our idea is to single out such conditions and to evaluate them in isolation from quan-
tum evaluation by applying the min/max-functions. Since min/max return always one input
score as output score the output can be interpreted as a value produced by just one common
ordinal condition. Therefore, we can regard all non-commuting conditions on a common at-
tribute as just one ordinal condition multiply used. In this way, we obtain a commuting query
and can therefore apply the transformation algorithm proposed in Figure 5.5. Next, we define
syntax and evaluation of a quantum query.

Definition 5.11 (quantum query language) The quantum query language is based on a
given relation schema of n attributes A1, .., An. Assume, function type: {A1, . . . , An} 7→
{cat, ord} returns for every attribute its type (ordinal or categorical). An atom is defined
to be one of four alternatives:

1. a select-condition ’Ai = c’ with constant c;

2. an equality-condition ’Ai1 = . . . = Aik’ on k attributes of same type;

3. a set-containment ’Ai ∈ C’;

4. a range-condition on an ordinal attribute ’Ai ≤ c’ or ’Ai ≥ c’;

A quantum query on an atom set At is recursively defined as follows:

5Please note, due to categorical conditions our language is at least as powerful as a classical database query

language.
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1. Every atom of At is a quantum query.

2. If q is a quantum query then ¬q is a quantum query.

3. If q1 and q2 are two quantum queries then (q1 ∧ q2) and (q1 ∨ q2) are quantum queries.

Again, we assume special cases three and four to be transformed accordingly in advance. That
is, any condition conjunctively combined with an overlapping equality condition is copied to
the second attribute and overlapping equality conditions are merged.

Definition 5.12 (conflict attribute A, conflict set, and conflict class) An ordinal at-
tribute A of a quantum query is called conflict attribute if:

∃atom1, atom2 ∈ At(atom1 6= atom2 ∧
A = involved(atom1) ∧ A = involved(atom2)) ∨
∃C(′A ∈ C ′ ∈ At) ∨
∃c(′A ≤ c′ ∈ At) ∨ ∃c(′A ≥ c′ ∈ At).

The set of all conflict attributes of a quantum query is called conflict set. The following
equivalence relation which relates two arbitrary attributes A and B of a conflict set if

1. A and B are identical: A = B or

2. A and B are connected (possibly transitively) by a equality condition: ′A = B′ ∈ At

produces a set of equivalence classes called conflict classes.

For evaluation of a quantum query we have to check if its conflict set is empty or not. An
empty conflict set means a commuting query wich is processed as described in the previous
section .

Otherwise, we replace every atom which involves a conflict attribute of a conflict class with
a conflict substitute. A conflict substitute represents exactly one conflict class and is from now
on regarded as one normal atom. Applying this substitution, we obtain a commuting quantum
query which is processed as described in previous section .

For example, see the query given in Figure 5.7. The ordinal attributes desc and century are
conflict attributes. Each of them represents a conflict class (cc1={desc} and cc2={century}).
Replacing conflicting atoms with their conflict substitutes provides the commuting query illus-
trated in Figure 5.8. Given the evaluation cc1t, cc2t, and techniquet with respect to a tuple
t = (tdtctt), we obtain from our evaluation algorithm the formula cc1t ∗ cc2t ∗ techniquet.

The remaining open question is how to evaluate conflict substitutes.

Definition 5.13 (evaluation of conflict substitutes) For a given conflict class of a non-
commuting quantum query perform the following three steps:

1. Find the largest subqueries which do not contain any conflict attribute of the conflict class.
If such a subquery is conjunctively connected to the remaining formula then replace it
with the true-statement and with a false-statement in case of a disjunction.
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∧

∨

desc=’crucifixion’desc=’martyr’

century≤’14th’
technique= ’oil’

Figure 5.7: Non-commuting example query

∧

∨

cc1 cc1

cc2
technique= ’oil’

Figure 5.8: Commuting example query

2. Simplify the formula by applying border conditions and idempotence.

3. Replace every conjunction with the min-function and every disjunction with the max-
function.

If we apply these steps to the example substitutes we obtain

cc1t = max( evalt (desc =′ crucifixion′),

evalt (desc =′ martyr′))

cc2t = eval(century ≤′ 14th′)

Last but not least, we have to define the evaluation of a set-containment and a range-condition.

Definition 5.14 (evaluation of an ordinal set-containment) The evaluation of a set-
containment ′A ∈ C ′ with respect to a tuple t is defined by

evalt(′A ∈ C ′) = max
c∈C

evalt(′A = c′).

Definition 5.15 (evaluation of an ordinal range-condition) The evaluation of a range-
condition
′A ≤ c′ with respect to a tuple t is defined by

evalt(′A ≤ c′) = max
v∈dom(A)∧v≤c

evalt(′A = v′)

=

{
1 : At ≤ c
evalt(′A = c′) : otherwise

.

The evaluation of ′A ≥ c′ is analogously defined.
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5.8 Incorporating Weights into Conjunction and Disjunction

During constructing a complex query from ordinal conditions there is often a need to put more
weight on one condition than on the other one. Consider for example a query where we search
for a person with a long nose and short hair, and we are more sure about the nose than the
hair. Thus, the nose condition should stronger influence the result. Similar to Fagin’s weighting
schema [Fag98], we state for a weight θ ∈ [0, 1] on an operand of a conjunction or a disjunction
following requirements:

1. equi-weighted case: Equal weights on both operands produce the same result as the
unweighted case.

2. zero weight: A zero-weighted operand should not have any influence on the result. That
is, the result is the same as if that operand is completely removed.

3. linearity: The weighting formula interconnects linearly both extremes (equi- and zero
weight).

4. Boolean logic: Incorporating weights into disjunction and conjunctions does not invalidate
the rules of Boolean logic6.

∧

x

ywθ
∧

x

ywθ
∨

∨

Figure 5.9: Weighted conjunction and disjunction

In our approach, we assume at least one operand having full weight (θ = 1). Weighting the
remaining operand with θ ≤ 1 is realized by applying a special weighting operator on that
operand. As illustrated in Figure 5.9, we introduce the weighting operator wθ

∧ above operand
x directly before performing conjunction, and wθ

∨ before disjunction, respectively. Following,
we define a weighting fulfilling the first three requirements.

Definition 5.16 (weighted conjunction and disjunction) Assume, condition x of a con-
junction ’x∧y’ and a disjunction ’x∨y’ is given a weight θ ∈ [0, 1]. With respect to a given tuple
t we define the following evaluations by taking into account our conjunction and disjunction
evaluations (see Formulas 5.6 and 5.7):

evalt(wθ
∧(x) ∧ y) = (1 − θ(1 − xt))yt

evalt(wθ
∨(x) ∨ y) = θxt + yt − θxtyt

where xt stands for evalt(x) and yt for evalt(y).

6Please note, that Fagin’s weighting schema does not fulfill that requirement.
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Please note, that following rules hold:

wθ1
∧

(

wθ2
∧ (x)

)

= wθ1∗θ2
∧ (x)

wθ1
∨

(

wθ2
∨ (x)

)

= wθ1∗θ2
∨ (x)

wθ
∧ (x) = ¬wθ

∨ (¬x)

wθ
∨ (x) = ¬wθ

∧ (¬x)

Theorem 5.4 (Boolean logic rules for evaluations including weights) Weighting an
operand of a disjunction or a conjunction as defined in Definition 5.16 obeys the laws of
Boolean logic if identical conditions are equally weighted.

Proof [sketch] Following Theorem 4.1 we need to show that we are able to realize evaluations
according to Definition 5.16 by commuting projectors. Our main idea is to double the number
of underlying dimensions by introducing a shadow vector space. That is, every tuple |t〉 is
mapped to

|t〉 7→
∣
∣
∣
∣

t
0

〉

=

(
1
0

)

⊗ |t〉.

Due to the zero multiplier the shadow space has no impact on any evaluation. Analogously,
we double the space of any projector of an atomic condition

p 7→
(

1 0
0 0

)

⊗ p.

The basic idea of our weighting is to move query ’energy’ between the original space and the
shadow space. If the weight of an operator decreases then the projector approaches the null
matrix for disjunction and the identity matrix for conjunction, respectively:

wθ
∧(px) = rot1−θ ∗ (I − px) ∗ rotT1−θ + px

wθ
∨(px) = rotθ ∗ px ∗ rotTθ

where

rot1−θ =











1 − θ 0 −
√

2θ − θ2 0
. . .

. . .
0 1 − θ 0 −

√
2θ − θ2

√
2θ − θ2 0 1 − θ 0

. . .
. . .

0
√

2θ − θ2 0 1 − θ











rotθ =











θ 0 −
√

1 − θ2 0
. . .

. . .
0 θ 0 −

√
1 − θ2

√
1 − θ2 0 θ 0

. . .
. . .

0
√

1 − θ2 0 θ











Please notice, that rotθ and rot1−θ as well as their transposes are orthonormal matrices which
just rotate ’energy’ between the original and the shadow dimensions. Furthermore, their sizes
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can be adapted to the number of required dimensions. It can be easily shown that for a database
tuple |t〉 and two commuting projectors wθ

∧(px) (or wθ
∨(px)) and py

〈
t
0

∣
∣
∣
∣
wθ
∧(px) ∧ py

∣
∣
∣
∣

t
0

〉

= (1 − θ(1 − xt))yt and

〈
t
0

∣
∣
∣
∣
wθ
∨(px) ∨ py

∣
∣
∣
∣

t
0

〉

= θxt + yt − θxtyt

hold where xt stands for evalt(x) = 〈t|px|t〉 and yt for evalt(y) = 〈t|py|t〉. But are wθ
∧(px) (or

wθ
∨(px)) and py really commuting projectors? We know that

1. if p is a projector and rot an orthonormal matrix then rot ∗ p ∗ rotT is also a projector,

2. if p is a projector then I − p is also a projector, and

3. adding two projectors which represent disjoint vector spaces produces again a projector.

As result, it turns out that wθ
∧(px) and wθ

∨(px) are projectors. Next, we have to show that
given two commutative projectors a weighting produces again commutative projectors. The
projector’s definition is based on a set of orthonormal basis vectors. Checking commutativity
can be broken down to the underlying basis vectors of a projector. Commutativity of two
projectors is satisfied if and only if their basis vector sets are subsets from one common set of
orthonormal basis vectors. That is, basis vectors from two commutative projectors are either
identical or orthogonal. Applying our weighting operator on a doubled basis vector |x〉 equals

rotθ

∣
∣
∣
∣

(
1
0

)

⊗ x

〉

=

∣
∣
∣
∣

(
θ√

1 − θ2

)

⊗ x

〉

.

Furthermore, regarding the scalar product we obtain

〈(
θ1√

1 − θ2
1

)

⊗ x1

∣
∣
∣
∣

(
θ2√

1 − θ2
2

)

⊗ x2

〉

=

〈
θ1√

1 − θ2
1

∣
∣
∣
∣

θ2√

1 − θ2
2

〉

〈x1|x2〉.

Thus, we conclude that orthonormality (〈x1|x2〉=0) is unaffected by any weighting.

But what about original identical basis vectors (〈x1|x2〉=1). For keeping identity we simply
require the same weight. Let us consider a basis vector restricting an ordinal attribute. Due to
our dealing with conflicting ordinal attributes (see previous chapter ) different conditions on a
common ordinal attribute do not occur for a given database tuple7. Thus, we can guarantee
commutativity if the same ordinal condition is weighted equally. We require the same for
identical conditions on categorical attributes. Since different conditions on a same categorical
attribute are mutually orthogonal we can ignore that case.

But how to check weight equality for a given query? In order to check equal weight on
same conditions it is enough to check the path within the query tree from that condition to the

7Different conditions with weight are dealt with the min /max operators. Interestingly, it can be easily shown

that applying our weighting operator wθ produces the same weighting as Fagin’s formula with the substitution

θ1 = 1+θ
2

and θ2 = 1−θ
2

.
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current logical operator. Please remember, that conjunction/disjunction on commutative pro-
jectors corresponds to intersection/union on their sets of basis vectors. Thus, the weighting of
a condition remains unaffected by any conjunction/disjunction. On the path we select just the
weighting operators and the negations. Applying our weighting rules, we can transform all con-
junctive weight operators into disjunctive one, multiply subsequent weights and simplify double
negations. At the end we obtain as a weight normal form a path of alternating negations and
disjunctive weighting operators which can be easily compared with the one of other branches. 2

5.9 The Quantum Query Language QQL

In this section we briefly discuss the transition of our language towards the query language
QQL. The transition is similar similar to the transition of propositional logic to first order
logic.

• Relations: So far, we evaluated queries against a given database tuple. As an extension,
we introduce variables. Analogously to the relational domain calculus we assume finite
relations with tuples being available in form of relation predicates. Relation predicates
are Boolean although they can contain ordinal attribute values.

• Quantors: Originally, the quantors ∃ and ∀ are defined on Boolean values. However, due
to ordinal conditions and weighting of our language we obtain truth values from [0, 1].
The question is how to evaluate such quantors in this case? From predicate logic we
know how to transform any logical formula into the prenex normal form. As result, the
quantors do not have any impact on the evaluation of single tuples. In order to evaluate
an ∃ quantor on a variable we apply the maximum function to the evaluation results
of different variable-to-value-substitutions. Analogously, we use the minimum for the ∀
quantor.

Next, we define our complete query language QQL.

Definition 5.17 (QQL) The quantum query language QQL is based on a set {Ri} of relation
schemata. Each contains a subset of {A1, . . . , An}. Assume, function type: {A1, . . . , An} 7→
{cat, ord} returns for every attribute its type (ordinal or categorical) and a set of variables {Xi}
is given. An atom is defined to be one of five alternatives:

1. a relation predicate ’Ri(Xj1 , . . . ,Xjk
)’;

2. a select-condition ’Xi = c’ with constant c;

3. an equality-condition ’Xi1 = . . . = Xik’ on k variables of same type;

4. a set-containment ’Xi ∈ C’;

5. a range-condition on an ordinally bound variable ’Xi ≤ c’ or ’Xi ≥ c’;

A quantum query on an atom set At is recursively defined as follows:
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1. Every atom of At is a quantum query.

2. If q is a quantum query then ¬q is a quantum query.

3. If q1 and q2 are two quantum queries then (q1 ∧ q2) and (q1 ∨ q2) are quantum queries.

4. If q1 and q2 are two quantum queries and θ ∈ [0, 1] a weight constant then (wθ
∧(q1)∧ q2),

(q1 ∧ wθ
∧(q2)), (wθ

∨(q1) ∨ q2), and (q1 ∨ wθ
∨(q2)) are quantum queries.

5. If q is a quantum query and X is a free variable of q then (∃X)(q) and (∀X)(q) are
quantum queries.

The query is called valid if no multiply used atom is differently weighted (see Section 5.8).

For a finite query processing we require any valid query to be a safe query. As result of query
processing we obtain variable-to-value substitutions together with their corresponding score
values. The score value must be higher than zero.

Please notice, that if we restrict our language to cardinal conditions we obtain the relational
domain calculus8. However, our query language extends the relational domain calculus by deal-
ing with uncertainty and proximity. Thus, our language incorporates concept from information
retrieval into a classical database language basing on one unifying theoretic framework.

8Remark: a smaller-than and a greater-than condition on a classical database attribute can be simulated by

a set-containment condition on a cardinality attribute.
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Chapter 6

Conclusion and Outlook

In this work, we mapped traditional database queries basing on Boolean logic to the formalism
of quantum mechanics and logic. As result, we obtain a new view of the process of database
query processing. There is a rich set of techniques from linear algebra available in order to
try to solve database problems. Furthermore, we used that formalism in order to extend the
expressiveness power of database queries to cope seamlessly with proximity and retrieval search
terms. A retrieval search can be simply incorporated into our formalism by adding a retrieval
vector space via the tensor product to a given quantum vector space.

Quantum measurement results can be regarded as probability values. Furthermore, one
interesting result is that quantum conjunction, disjunction and negation conforms the rules of
probability theory. In contrast to competing approaches, e.g. fuzzy databases, a quantum query
represented as projector does not just combine given non-discrete truth values but embodies
entirely the underlying query semantics.

Our work describes mainly theoretical results. In order to realize these results it is not
necessary to completely simulate quantum systems. Instead, a relatively small algorithm (not
presented here) can be developed on the basis of the formulas 5.2, 5.4, 5.5, 5.6, and 5.7.

In future, we plan to include the quantifiers ∃ and ∀ into our quantum formalism in order to
cover the complete power of relational calculus. Analogously to our similarity relational calculus
approach using fuzzy logic described in [SS04], we will develop a complete query system which
enables us to combine retrieval, proximity and database queries in a user-friendly and efficient
way.
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