
EduComponents: Experiences in E-Assessment in
Computer Science Education

Mario Amelung
Otto-von-Guericke-Universität

P.O. Box 4120
39016 Magdeburg, Germany

amelung@iws.cs.uni-
magdeburg.de

Michael Piotrowski
Otto-von-Guericke-Universität

P.O. Box 4120
39016 Magdeburg, Germany

mxp@iws.cs.uni-
magdeburg.de

Dietmar Rösner
Otto-von-Guericke-Universität

P.O. Box 4120
39016 Magdeburg, Germany

roesner@iws.cs.uni-
magdeburg.de

ABSTRACT
To reduce the workload of teachers and to improve the effective-
ness of face-to-face courses, it is desirable to supplement them with
Web-based tools which support the creation, management, submis-
sion, and assessment of assignments and tests. This paper presents
our approach for supporting computer science education with soft-
ware components which are integrated into a general-purpose con-
tent management system (CMS). We describe the design and im-
plementation of these components, and we report on our practical
experience with deploying the software in our courses.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted instruc-
tion (CAI); K.3.2 [Computer and Information Science Educa-
tion]: Computer science education

General Terms
Design, Human Factors, Management, Measurement, Performance

Keywords
E-Assessment, Automatic assessment, Student tracking, Content
management

1. MOTIVATION
For us, freedom of teaching includes that teachers are liberated

from avoidable administrative work, so that they are free to con-
centrate on teaching and tutoring. For students, learning should not
be unnecessarily confined by temporal or local restrictions.

1.1 Problem
Lectures are typically accompanied by exercise courses or tutori-

als. These courses allow students to review and to apply the knowl-
edge presented in the lecture; they also provide for some monitor-
ing of the students’ performance. Exercise courses are therefore an
important part of the studies. We felt, however, that many of our

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE 2006June 26-28, 2006, Bologna, Italy
Copyright 2006 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

exercise courses were inefficient: They offered only relatively lit-
tle motivation for students and allowed only restricted conclusions
about the students’ performance during the course, whereas the ad-
ministration of the courses required a lot of work.

One of the reasons for this situation was that the assignments,
which the students handed in on paper, could only be checked se-
lectively. Typically, each assignment was presented on the black-
board by one student in the course, so that teachers only saw a
small percentage of the assignments. It was therefore difficult to
detect recurring problems and to judge the overall performance and
progress of the class.

This situation was also unsatisfactory for students, since their
solutions and their problems frequently could not be discussed in
detail due to time constraints.

Teachers also had to handle paper forms and had to transfer the
data from these forms into the computer to track student perfor-
mance and to eventually issue course certificates.

The problems were especially grave for programming assign-
ments. Handing in programs on paper and discussing them on
the blackboard is only viable for very small programs, and prac-
tical problems (e.g., syntax errors) are hard to detect. It is also
time-consuming, so only few programming assignments could be
handed out. Requiring the submission of programs via e-mail en-
abled teachers to test the submissions, but it added to their work-
load, as there was no framework for the management of electronic
submissions.

1.2 Goals and approach
We did not want to abolish face-to-face courses, but we wanted to

make the courses more efficient and, hopefully, also more effective.
To achieve this goal, we envisioned a three-step approach:

1. Complement the traditional, mostly essay-like assignments
with regular electronic multiple-choice tests. Multiple-choice
tests allow to assess the performance ofall students of a class
without the need for extra grading work for the teacher.

2. Electronic submissions for essay-like assignments and sup-
port for the assessment and grading process.

3. Automatic checking and assessment of programming assign-
ments.

On a technical level, the major goal was the central management
of tests, assignments, and submissions in a framework covering the
whole process: Creation, submission and grading of assignments
and tests.

The following sections describe our approach in more detail.

Figure 1: Example multiple choice test in LlsMultipleChoice.

2. EDUCOMPONENTS
We were already using the Plone1 content management system

(CMS) for our Web site, which includes online course material for
the courses offered by our research group. It was therefore impor-
tant to us that all software we would develop to achieve the goals
outlined above would fit seamlessly into this framework.

Plone is an open-source Web-based content management sys-
tem built on top of the Zope2 Web application framework. Like
Plone, Zope is open-source. Zope and Plone are written in Python3,
a widely-used and highly portable open-source programming lan-
guage. This enables Zope and Plone to run on a large number of
platforms, including practically all UNIX and UNIX-like systems
(e.g., Linux, BSD variants, Mac OS X), as well as Microsoft Win-
dows.

Building on portable open-source software avoids license fees
and vendor lock-in, and offers benefits like complete control over
the software and the data, the possibility of adapting it to one’s
specific needs and benefits from a large developer community.

Zope and Plone are extensible through so-calledproducts. Prod-
ucts can add new types of content objects to the CMS. They share
the same look and feel and they can leverage the facilities provided
by the CMS framework, e.g., user and role management, access
control and data storage. Custom content types also automatically
benefit from Plone features like timed publication, metadata, or in-
dexing and retrieval.

Based on results of our research and on experience gathered with
previous partial implementations, we designed, implemented and
deployed three Plone products:LlsMultipleChoice, ECAssignment-
Box, andECAutoAssessmentBox. These products provide special-
ized content types which support the creation and management of
assignments and tests, as well as the submission and automated as-
sessment of students’ solutions within a general-purpose CMS.

1http://plone.org/
2http://zope.org/
3http://python.org/

Figure 2: Example assignment box view.

2.1 LlsMultipleChoice
LlsMultipleChoice is an extension module for Plone for the cre-

ation and delivery of multiple-choice tests (see also [11]). The
product supports single-answer as well as multiple-answer ques-
tions. Related questions can be grouped into question groups, which
are then treated as a unit. Questions and answers can be displayed
in fixed or randomized order. It is also possible to present different
randomly selected subsets of questions and answers to each stu-
dent. Figure 1 shows a typical test view.

For self-assessment tests, students can be provided with instant
result and/or be allowed to take a test multiple times. Answers can
be annotated with explanations which are shown to the candidate
in instant-results mode.

Teachers can access detailed reports, providing an overview of
the performance of all students. The reports can also be exported
for further processing in a spreadsheet or statistics program.

Tests and individual questions and answers can be imported and
exported using the IMS QTI v2.0 standard [8].

LlsMultipleChoice is fully internationalized and can easily be ad-
apted to different language environments using Plone’s localization
facilities. LlsMultipleChoice currently comes with English, Ger-
man, and French messages.

We’re working on support for more test types and more detailed
statistical reports.

2.2 ECAssignmentBox
ECAssignmentBox is a Plone product which allows the creation,

submission and grading of online assignments (exercises, home-
work), both for traditional on-site courses and for e-learning.

The basic idea is that teachers write and save assignment texts in
a folder-like content object – theassignment box– into which stu-
dents submit their answers or solutions. The submissions are stored
asECAssignmentobjects inside the assignment box. They are then
put through a number ofworkflow states, typically ‘submitted,’ ‘ac-
cepted,’ and ‘graded.’ Teachers can view the submissions, assign
grades and add feedback.

Each assignment box consists of a title and the text of the as-

http://plone.org/
http://zope.org/
http://python.org/

Figure 3: Example assignment box evaluation view.

signment. Also, the submission period, i.e., the time frame during
which students are allowed to submit their answers, can be speci-
fied.

Figure 2 shows the students’ view of an assignment box. Stu-
dents can read the assignment text and enter their answer into the
text field or upload a file. If the submission period is restricted, it
will also be displayed when the submission period ends.ECAssign-
mentBox allows multiple attempts to answer assignments until the
submission period has ended or until the submission is reviewed.

The assignment box provides an ‘assignments’ tab, which allows
the teacher to see a list of all submissions to this box. Students can
use this tab to view their own submissions, including the current
workflow state and assigned grades (fig. 3). By selecting a submis-
sion, students can view the teacher’s feedback.

The assessment of student submissions inECAssignmentBox is
semi-automated, meaning that the teacher does the assessing and
is aided by the tool during the entire process of grading students’
work and giving feedback. ThereforeECAssignmentBox defines
a specialized workflow for student submissions. The workflow is
designed to accommodate different ways of handling submissions.
The following workflow states are provided4:

1. Possible states during the submission period; students are al-
lowed to resubmit another version:

• Submitted: An answer was submitted, but it may be
superseded by a later submission. This is the initial
state of an assignment.

• Superseded: An assignment is automatically moved to
this state if the student has submitted another assign-
ment.

2. Possible states during the assessment process; students are
no longer allowed to submit another version:

• Pending: The assignment is under review.

• Accepted: The assignment has been reviewed and has
been accepted.

• Graded: The solution has been reviewed, accepted and
graded.

• Rejected: The assignment has been reviewed and has
been rejected.

Furthermore assignment boxes can be grouped together using a
special folder (ECFolder), which provides a custom view on all

4The exact meaning of these states is up to the end-users, but we’ll
describe the typical usage.

Figure 4: Example ECFolder statistics.

included assignment boxes and statistics for all submissions. EC-
Folders can be nested and can be used to represent, for example,
courses and weekly worksheets.

To get an overview of the performance of all students we are
using workflow states and grades assigned to student submissions.
Teachers can specify the number of planned assignments for a course
and the state or states which indicate that a submission is com-
pleted.ECAssignmentBox can automatically summarize workflow
states and grades for each student’s submissions. This way it is
possible to show the success of a student based on planned and
completed assignments. Also, overall average and median grades
are calculated (see fig. 4).

While computer-aided assistance in the areas of instruction, feed-
back, and student tracking is not new (cf., for example, [2]),ECAs-
signmentBox is distinguished by its integration into a general-purpose
CMS and the application of CMS workflow concepts to assign-
ments.

2.3 ECAutoAssessmentBox

2.3.1 Background
Programming is an essential topic in the introductory courses

of computer science curricula. In addition to the more conceptual
aspects, programming includes practical aspects as well, e.g., tech-
niques of testing and debugging programs and the use of a pro-
gramming environment.

It is therefore not surprising that the first systems supporting
marking and grading of student solutions for programming exer-
cises were developed and used as soon as 1960 (cf. [5]). Since that
time the motivation (among others, large numbers of students) and
topics remained relevant: Some of them are security, plagiarism
detection, and automatic assessment (cf. [6], [10], and [4]).

CourseMaster (formerly known as Ceilidh) [7] is a widely used
system for the automatic assessment of programming exercises. It
evaluates student programs on the basis of their output.5 The
tool uses regular expressions to find the substantial values in the
output and to compare it with a model solution. Since this can be
exhausting and error-prone, Saikkonen et al. developed their own
solution for the automatic evaluation of assignments in Scheme,
calledScheme-robo[13]. Scheme-robo takes advantage of the fact
that in functional programming languages programs are functions
whose values can be compared directly with the values of the model

5It was also tried to evaluate the quality of student solutions using
different software metrics and to transfer these metrics to programs
in Prolog as well as exercises in object-oriented analysis and object-
oriented design. However the latter was not really successful.

solution.
We also utilized this fundamental property of functional lan-

guages in our software toolLlsChecker [12]. It was based on a
generic architecture, which allowed us to support more than one
functional language (Haskell, Scheme, and CommonLisp). How-
ever,LlsChecker was not integrated into Plone, which is why we
decided to redesign it.

2.3.2 Features and implementation
Starting from our experience with automatic assessment systems

for programming exercises, e.g., CourseMaster, TRAKLA2[9], and
Kassandra[14], as well asLlsChecker, we designed and implemented
ECAutoAssessmentBox.

ECAutoAssessmentBox is a Plone product derived fromECAs-
signmentBox, i.e., it has the same basic functionality as described
above. In addition,ECAutoAssessmentBox provides special sup-
port for programming assignments and automatic evaluation of stu-
dent submissions (currently for Python, Haskell, Scheme, Com-
monLisp and Prolog). The benefits of automatic assessment of pro-
grams are obvious:

• A larger number of programming exercises can be offered so
that students get more practical programming experience.

• Feedback is given to the students at any time and any place.

• Teachers can concentrate on tasks which cannot be automated,
such as guidance and tutoring.

The automatic assessment of programs is handled byECSpooler.
ECSpooler is a Web service, which, similar to a printer spooler,
manages a submission queue and several backends. A backend im-
plements syntax checking and testing for a specific programming
language. Backends can use different approaches for testing: For
example, we have implemented a backend for Haskell which com-
pares the output of the student solution with the output of a model
solution for a set of test data; as an alternative, we have imple-
mented a backend for Haskell which uses QuickCheck [3] for test-
ing based on properties. Backends are derived from general back-
end classes.

When creating an auto-assignment box, teachers select a back-
end and specify the data required for automatic testing by the se-
lected backend, e.g., a model solution and test data or QuickCheck
properties.

When a student submits a program, it is saved into the auto-
assignment box, then passed toECSpooler, which in turn passes
it on to the backend specified by the teacher for this assignment.
The results of the tests performed by the backend are immediately
returned and displayed, see fig. 5.

3. EXPERIENCE
We have been using online multiple-choice tests and automatic

testing of programs since winter semester 2003/2004 in various
courses offered by our research group. The software used started
from initial stand-alone prototypes. It was continuously improved
according to the insights gained and has now reached the state de-
scribed above.

ECAssignmentBox and ECAutoAssessmentBox
Results of examinations in previous years had indicated that a sig-
nificant number of students tried to avoid solving programming as-
signments. In the exercise courses they managed to get by with
presenting (or rather sketching) solutions for programming tasks
on the blackboard that they had copied from other students. The

Figure 5: Example assignment view.

format of these exercise courses obviously did not motivate some
students sufficiently to really work on programming tasks.

Students are now required to submit working programs through
ECAutoAssessmentBox. This does not only ensure that they work
on the programming assignments, but students reported that they
are now much more motivated, since they get immediate feedback
for their solutions. The motivation is also due to the fact that they
know that their submissions are actually reviewed, while previously
only a small number of solutions could actually be discussed. Re-
viewing larger numbers of student submissions is now possible be-
cause the submissions are pre-tested and collected at a central loca-
tion, so that teachers can easily browse and inspect them before the
exercise course. Instead of wasting time for copying programs to
the blackboard, teachers are now able to discuss specific problems
observed in the submitted programs.

Basically the same applies to non-programming assignments and
ECAssignmentBox. Students especially value the reporting and sta-
tistics features, which help them to track their learning progress,
again resulting in better motivation. Furthermore students find it
helpful that their assignments are stored centrally, and can quickly
accessed for discussion in the course.

Plagiarism in assignments in general and especially in program-
ming assignments is a well-known problem. Copying the solution
of a “helpful” peer is easy. So teachers need to think about how
they want to deal with this issue. In contrast to the previous sys-
tem of paper-based exercises, where students could hide behind
more commited peers,ECAssignmentBox andECAutoAssessment-
Box offer much better means to cope with the problem. In our expe-
rience, the simple knowledge that their teachers can easily review
and compare all submissions suffices to discourage many students
from plagiarizing.

LlsMultipleChoice
Formative assessment can play a vital role in motivating learners:
Learners can see that they are actually acquiring knowledge, it en-
ables them to track their progress and to identify areas where more
work is required, and to thereby remain motivated to improve fur-
ther. It is therefore desirable to expand the use of formative assess-
ment.

Online multiple-choice tests are particularly useful in this con-
text. They can help to make the frequent use of assessments viable
through lower costs of deployment and provide greater flexibility
with respect to location and timing, and automatic marking allows
to give instant feedback.

In contrast to other disciplines (e.g., medicine) where multiple-
choice questionnaires are employed regularily, the reputation of
multiple-choice tests is poorer in computer science education and
the issue often leads to religious debates. Our impression is that
this is primarily due to tests that only check for ‘knowledge’ (and
may be simple ‘comprehension’) in the sense of Bloom’s taxonomy
[1].

We are employing formative test on a weekly basis in all our
lectures and we decisively design these tests to cover higher ranked
objectives of Bloom’s taxonomy (e.g., ‘analysis’ or ‘evaluation’).

To illustrate our approach we take an example from our course in
‘document processing’. A chapter in this course deals with XML
technology. Analytical thinking can here, for example, be trained
and demonstrated when students are exposed to a DTD and have to
decide, which of a number of document instances given as answer
are valid instances of the DTD. Of course the other way round is
equally useful and possible: The question exposes a document in-
stance and the answer set is made up of DTD candidates for this
instance. Our experience in general is that once you are as a teacher
acquainted with this format of analytical multiple-choice tests the
effort to create new tests significantly decreases and is less of a
burden.

LlsMultipleChoice has proven to support this use of multiple-
choice tests very well. Teachers are enabled to quickly and easily
create tests and the reporting features provide a good overview of
the students’ performance. The ease of creation and deployment
allows to use multiple-choice tests more frequently, resulting in a
better tracking of the learning progress. However, the acceptance
and the effectiveness of multiple-choice tests heavily depends on
their design.

4. CONCLUSION
We have presented software components which extend a general-

purpose CMS with educational content types for tests, essay-like
assignments, and automatically tested programming assignments.

The integration into the CMS has proven to be a good decision,
resulting in robust and easy-to-manage products. The CMS pro-
vides a uniform look and feel, which makes the products easy-to-
use. Students’ comments on the products are consistently positive,
and teachers report that they have a much better overview of stu-
dents and assignments, helping them to improve their teaching.

The CMS also serves asitem bank, a central repository of tests
and assignment, enabling the reuse of teaching and learning ma-
terials. In the long run, when the repository of learning materials
is large enough, it might even be conceivable to create personal-
ized tests and assignments based on the metadata stored with the
objects.

5. ACKNOWLEDGMENTS
The work described in this paper was partially supported by the

federal state of Saxony-Anhalt, Germany, grant no. 0047M1/0002A.

6. REFERENCES
[1] B. S. Bloom, M. D. Engelhart, E. J. Furst, and W. H. Hill.

Taxonomie von Lernzielen im kognitiven Bereich. Beltz,
Weinheim, 5 edition, 1976.

[2] R. Carver. Computer-Assisted instruction for a first course in
computer science. InElectronic Proceedings for FIE 1996
Conference. IEEE, 1996.

[3] K. Claessen and J. Hughes. QuickCheck: a lightweight tool
for random testing of haskell programs. InICFP ’00:
Proceedings of the fifth ACM SIGPLAN international
conference on Functional programming, pages 268–279,
New York, NY, USA, 2000. ACM Press.

[4] C. Daly and J. Waldron. Assessing the assessment of
programming ability. In D. Joyce, D. Knox, W. Dann, and
T. L. Naps, editors,Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education,
SIGCSE 2004, Norfolk, Virginia, USA, March 3-7, 2004,
pages 210–213. ACM, 2004. ISBN 1-58113-798-2.

[5] G. E. Forsythe and N. Wirth. Automatic grading programs.
Commun. ACM, 8(5):275–278, 1965.

[6] M. Ghosh, B. Verma, and A. Nguyen. An automatic
assessment marking and plagiarism detection. In
International Conference on Information Technology and
Applications, IT in Engineering: AI, Signal/Image
Processing, ICITA02, pages 274–279, 2002.

[7] C. Higgins, P. Symeonidis, and A. Tsintsifas. The marking
system for CourseMaster. InITiCSE ’02: Proceedings of the
7th annual conference on Innovation and technology in
computer science education, pages 46–50. ACM Press, 2002.

[8] IMS Global Learning Consortium.IMS Question and Test
Interoperability Version 2.0 Final Specification. 2005.

[9] M. Laakso, T. Salakoski, A. Korhonen, and L. Malmi.
Automatic assessment of exercises for algorithms and data
structures – a case study with TRAKLA2. InProceedings of
the 4th Finnish/Baltic Sea Conference on Computer Science
Education, October 1-3, 2004, Koli, Finland, pages 28–36,
2004.

[10] L. Malmi, A. Korhonen, and R. Saikkonen. Experiences in
automatic assessment on mass courses and issues for
designing virtual courses. InProceedings of the 7th Annual
Conference on Innovation and Technology in Computer
Science Education, pages 55–59. ACM, 2002.

[11] M. Piotrowski and D. Rösner. Integration von E-Assessment
und Content-Management. In D. T. Jörg M. Haake,
Ulrike Lucke, editor,DeLFI2005: 3. Deutsche e-Learning
Fachtagung Informatik der Gesellschaft für Informatik e.V.,
Lecture Notes in Informatics (LNI) - Proceedings, pages
129–140, Bonn, 2005. GI-Verlag. ISBN 3-88579-395-4;
ISSN 1617-5468.

[12] D. Rösner, M. Amelung, and M. Piotrowski. LlsChecker –
ein CAA-System für die Lehre im Bereich
Programmiersprachen. In D. T. Jörg M. Haake,
Ulrike Lucke, editor,DeLFI2005: 3. Deutsche e-Learning
Fachtagung Informatik der Gesellschaft für Informatik e.V.,
Lecture Notes in Informatics (LNI) - Proceedings, pages
307–318, Bonn, 2005. GI-Verlag. ISBN 3-88579-395-4;
ISSN 1617-5468.

[13] R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic
assessment of programming exercises. InITiCSE ’01:
Proceedings of the 6th annual conference on Innovation and
technology in computer science education, pages 133–136.
ACM Press, 2001.

[14] U. von Matt. Kassandra: the automatic grading system.
SIGCUE Outlook, 22(1):26–40, 1994.

	Motivation
	Problem
	Goals and approach

	EduComponents
	LlsMultipleChoice
	ECAssignmentBox
	ECAutoAssessmentBox
	Background
	Features and implementation

	Experience
	Conclusion
	Acknowledgments
	References

