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Abstract. This paper presents a novel approach to support students to learn a comprehensive domain-specific
terminology and to understand textual descriptions of complex-shaped objects. We implemented an experimen-
tal system where learners can interactively explore textual descriptions and 3D visualizations. We propose a
method for hierarchical content representations of text documents and views on 3D models. Based on these
data structures, user interactions on texts and interactive 3D visualizations are transformed into queries to an
information retrieval system. This enables us to coordinate the content of both media, to focus the attention
of the user on the most salient graphical objects, and to suggest potential relevant text segments in large text
documents and appropriate views on 3D models to illustrate the spatial relations between the relevant domain
objects of the query. Finally, we demonstrated this concept in an interactive tutoring environment based on
standard textbooks on human anatomy.

1 Introduction

Learning material often incorporates text and images in order to benefit from the complementary capabilities of
both media. While complicated processes and contextual information are best described textually, illustrations are
more suitable to provide information about visual and spatial attributes of complex-shaped objects.Secondary
elements in illustrations, such astextual annotations or labels, establish links between both media. Annotations
support two search tasks: readers may use them in order to determine the corresponding visual object for unknown
terms in the text; but the content of textual annotations also provides links to more elaborative descriptions for
visual objects in corresponding text passages (see Fig. 1). To focus the attention of the learner on salient objects,
experienced illustrators also utilize many graphical abstraction techniques.

The creation of expressive illustrations that carefully reflect the subject matter of the corresponding text is very
expensive. Moreover, the space required to include these illustrations into tutoring materials also increases the
costs for printed versions. Hence, illustrators often aim to minimize the number of illustrations which results in
illustrations with many labels. But the limited cognitive capacity makes both search tasks mentioned in the last
paragraph more complicated. Furthermore, learners often have to understand complicated spatial configurations—
but illustrations depict 2D projections of 3D objects.

Therefore, on-line versions of these tutoring materials offer new possibilities to support learners: Efficient retrieval
mechanisms ease the access to sections containing information required for user-specific tasks in large documents
while interactive 3D visualizations support the mental reconstruction of complex spatial configurations. Moreover,
a dynamic layout of secondary elements can make illustrations more effective.

This paper proposes a novel technique to coordinate the content of visual and textual elements in on-line tutoring
systems. As the majority of the application domains define a standard terminology, unified retrieval methods are



applied on large text corpora and annotated 3D models. User interactions on both media—text and graphics—
initiate queries to an information retrieval system; the retrieval results are then presented to the learner. Our system
addresses both main search tasks of text↔image relations. On the one hand, users can select text passages to obtain
corresponding renditions of 3D models. The relevance of terms and their corresponding visual objects is considered
to determine good views on 3D models. As a single view might not sufficiently correspond to the content of
text paragraphs, these 3D visualizations can be explored interactively. On the other hand, user selected points of
3D views are considered as queries; corresponding text passages of the underlying text corpus are automatically
obtained and presented to the learner.

After this introduction, Sec. 2 presents the related work of those fields involved in this paper and introduces their
fundamental terminology. Sec. 3 discusses the architecture of our framework, which comprises some preprocessing
steps for information retrieval techniques (Sec. 4). Sec. 5 describes how both search tasks (see Fig. 1) are handled
in our approach and how the search results are presented in both cases. To intuitively refine the search queries,
Sec. 6 introduces techniques for both images and text. Finally, Sec. 7 discusses some limitations of our work and
the future work to be done in this field.

2 Related Work

This section presents related work and fundamental terminology of research areas that influenced our approach:
automatic text illustration, information retrieval, and the determination of good viewpoints for 3D models.

2.1 Text illustration

The automatic generation of technical documentation with coordinated content in several media (e.g., text, images,
and animation) was pioneered by the COMET [7] and WIP system [28]. These research prototypes aim at adopting
the content of on-line documents to user specific tasks, preferences, or contextual requirements. Moreover, coherent
multi-lingual variants should be generated from a single source. Therefore, a multitude of planning mechanisms
is used in the automatic content selection and in media-specific content generators. But the enormous amount of
required formal representations as well as the need to approve all document variants according to legal aspects
prevented the application of this powerful technique.

Fig. 1: Media coordination in tutoring material: The most relevant objects for a learning task are emphasized in descriptive texts
and illustrations (Source: [23, p.127])



Based on the observation that authors of scientific textbooks, technical documentations, or maintenance manuals
reuse and improve large text databases with a standardized domain-specific terminology, several researchers devel-
oped (semi-)automatic systems to illustrate on-line texts. In order to select appropriate 3D models and to control
render parameters for expressive visualizations, the TEXTILLUSTRATOR [20] employs a database of annotated
3D models. This system extracts exact matches between terms in the document and media descriptors and high-
lights those objects that are mentioned in the visible text portion in a 3D visualization. This illustrative browsing
metaphor enables a quick access to large scientific texts but fails to detect morphological and syntactical variants
of terms, synonyms, and implicit semantic associations between domain objects. Therefore, the Agile system [12]
integrates a morphological analysis and a shallow syntactic text parsing. Moreover, the Agile system incorporates a
formal domain representation with semantic networks and thesauri for media- and language-specific realizations of
formal concepts. In contrast to multimedia generation systems, Agile only requires partial formal representations.
Moreover, for some application domains like human anatomy, the number of domain concepts is rather limited.

Semantic associations between domain objects can be inferred without an in-depth analysis of the syntactic or
semantic structure of the text. To implement this, inference mechanisms based on graph structures were applied on
the same underlying semantic network: Schlechtweg and Strothotte [21] employed degree-of-interest functions [8]
while Hartmann et al. [12] used spreading activation [3]. The open mind common sense project [15] proved the
wealth of these inference mechanisms on large semantic networks that haver been automatically extracted from
corpora.

2.2 Information retrieval

In contrast to query languages that are designed for large struc-

Fig. 2: According to the cosine measure the docu-
ment d2 is most similar to query q.

tured databases (e.g., SQL), information retrieval (IR) has to cope
with partial matches between terms in the query and those used
within the documents in a text database. Therefore, text retrieval
techniques are based on similarity measures for documents and
employ different strategies to rank the retrieved results. For an ef-
ficient representation of a large corpus of documents, we employ
the standardvector space model [19], where both the queryq and
the documentsd ∈ D are transformed into a vector representation
d andq, respectively (see Fig. 2). Hence, IR systems can also be
used to determine similarities between given documents and doc-
uments in databases. While these systems efficiently handle terms
in natural language, the search for semantic concepts is still very
limited.

In order to compute vector descriptions, our system first extracts
descriptors for text documentsD as well as for 3D modelsM. In
order to reduce the dimension of the vector space, we apply stan-
dard preprocessing methods: Very frequent words (stop words)
are not considered and simple transformation rules aiming at nor-
malizing morphological variants of words are applied to the re-
maining terms. Finally, by the sorted set of the remaining terms, we obtain anindex (or dictionary) TD defining a
linear order over the set of terms used in a document setD. The same procedure is applied to object descriptors
and textual annotations associated with geometric objects in the 3D model to construct theindex for 3D models
and their viewsTM.

Then, based on the obtained dictionariesTD andTM we compute the document vectors for each document. The
document vectord specifies weightswd

t for all termst in the dictionary for a given documentd. In order to obtain



descriptive weight vectors, we apply a standard measure [18] that considers both the frequency tfd
t of the termt in

the current documentd as well as its frequency in the respective databaseC:

wd
t = tfd

t · log(N/nt), (1)

whereN denotes the size of the document collectionC andnt refers to the number of documents inC that contain
termt. These document vectors are created for each document for the databases containing the text documentsD
as well as for 3D modelsM and, if necessary, for a given query vectorq.

In contrast to the standard model, we additionally integrate aboost function, which enables us to increase or
decrease the importance of a specific term during user interaction by modifying the document weight for a termt,
where

boost(t) < 1.0 : de-emphasized termt;
boost(t) = 1.0 : normal;
boost(t) > 1.0 : emphasized termt.

(2)

Thus, the computation of weights as defined in Eq. 1 is changed to:

wd
t = boost(t) · tfd

t · log(N/nt). (3)

Theboost function allow us to considers the visual dominance of terms in the presentation (i.e., highlighted text
or terms in the center of the visualization), as described in more detail in Sect. 4.

Based on the document vectors we are now able to search for documents that are similar to a given queryq or
similar to another documentd′, in which caseq := d′. By comparing the query vector with each document in
the collectiond ∈ D we can rank all documents according to their similarity with the queryq. Here, we apply
the commonly used cosine similarity [18], which is computed by the inner product of both normalized document
vectorsd andq:

sim(d,q) =
d ·q
|d| · |q|

(4)

Similar approaches have been used in information retrieval techniques on multimedia databases, especially to re-
trieve bitmaps that correspond to a given query. Our approach, however, aims at analyzing a corpus of 3D models
and automatically extracted views with respect to their relevance for a vector of weighted terms. Users can bidirec-
tionally interact with explanatory texts and visualizations of 3D models. By proposing corresponding 3D views to
interactively selected text or corresponding text segments to selected 3D views, the system coordinates the content
of both media.

2.3 Determination of ’good’ views

The determination of optimal camera parameters for a view on a 3D model given a specific task requires long-time
experience and usually comprises an iterative process of trial and error. Automatic methods have been developed
which use the geometrical representation of scenes in order to determine qualitative viewpoints.

Uninformed methods to determine ’good’ views are purely based on topological properties of the geometric object
or on evaluations of visible or occluded geometric features. Many researchers propose measures for ’good views’
that aims to minimize the number of degenerated faces as seen under orthogonal projection [13] or maximize the
amount of detail shown in a view [17]. Vázquez et al. [26] proposed theviewpoint entropy, a new measure based
on Shannon’s formalization of entropy [22]. Theviewpoint entropy of a pointp is defined as:

Hp(X) =−
Nf

∑
i=0

Ai

At
log

Ai

At
, (5)

whereNf refers to the number of faces of the scene,Ai denotes to the projected area of facei, At is the total area
covered over the sphere, andA0 represents the projected area of background in open scenes. In a closed scene,
or if the point does notsee the background, the whole sphere is covered by the projected areas and consequently



A0 = 0. The maximum entropy is obtained when a certain point cansee all the visible faces with the same relative
projected areaAi/At .

The viewpoint entropy measure yields a good balance between the number of visible faces and the area covered by
them, but can also be used if the elements’ visibility we want to maximize are objects instead of polygonal faces
([27]), provided that we can identify each of the parts we are measuring.

3 Framework

We implemented an interactive application, where users can interact with elements of both media (text and graph-
ics). These interactions are transformed into search tasks; information retrieval techniques improve the learner’s
facilities to explore the content of both media. Fig. 3 illustrates that several data structures are created in a pre-
processing step. For a collection of descriptive textsD and of 3D modelsM, this comprises indicesTD,TM and
document vectors forparagraphs within the source documentd ∈ D as well as forviews on 3D models (see
Fig. ?? and Sect. 2.2 for further details). We use the open-source search engine LUCENE [4] to determine similar-
ities between descriptions of views and text segments. Hence, appropriate views for the content of user-selected
text segments and vice versa can be determined during runtime.

Fig. 3: The architecture of our approach.

We have chosen human anatomy as an initial application domain as (i) comprehensive corpora of tutoring material
are available4 and (ii) the comprehension of a domain-specific terminology and (iii) complicated spatial configu-
rations are important learning tasks. In contrast to standard information retrieval systems, we employ hierarchical
content descriptors (see Fig.??): The coarse level contains document vectors for large structures of text documents
(e.g., books, chapters, and sections) or descriptors for 3D models. Moreover, the content of the coarse level is
further processed to extract more fine-grained content descriptors.

4 Preprocessing of Text and 3D Models

In our approach document vectors represent the content of textual as well as visual elements. For sake of a hier-
archical content description, the input data are subdivided to the desired level of granularity. Therefore, a simple
parser segments text documents into paragraphs. On the graphical side, view descriptors provide more fine-grained
content specifications for 3D models. Obviously, the denotations of geometric objects cannot be extracted purely
from their shape. But often hierarchical geometric models (e.g., scene graphs) use technical terms to identify their
constituting components. Moreover, our system allows to add or manipulate textual annotations for geometric ob-
jects directly within the 3D visualization of 3D models. This information is stored in an annotation table that links
unique color codes for geometric components to technical terms.View descriptors specify those components, that
are visible from the given point of view. In a final pre-processing step, 2 indices for the paragraph descriptorsIP
4 Our corpus comprises an electronic version of Gray’s popular textbook on human anatomy [10] and all anatomic models

contained in the Viewpoint library of 3D models [6].



and the view descriptorsIV are created (see Fig. 5). Subsequently, the resulting paragraphip and view indicesiv
can be used for search queries (see Sec. 5).

Fig. 5: Preprocessing steps.

In the following, the extraction of content descriptors for text documents and 3D models is described in dedicated
sections (Sec. 4.1 and Sec. 4.2). To clarify these methods, we first proposebasic methods, but our experimental
application usesoptimized methods with further enhancements to improve the retrieval results.

4.1 Paragraph descriptors

In well-structured documents, the layout reflects the rhetorical structure of the presentation. Especially paragraphs
embrace related arguments that form a self-contained semantic context. Thus, our system uses paragraphs as ba-
sic contextual groups. Document vectors represent the content of individual paragraphs; all other levels of our
hierarchical content representations can be constructed from these basic entities.

The basic methodsegments input documentsd ∈ D into paragraphsp. Subsequently, document vectorsdp for
these paragraph are constructed. Theoptimized method considers additional layout information. Authors use
several layout conventions to emphasize more relevant terms. Therefore, the boost functionboost(t) of Eq. 2 is
used to assign a higher term weight to emphasized terms (see Eq. 3). Fig. 6 summarizes the process to create
paragraph descriptors.

boost(t) =


1 : et ≡ normal;
3 : et ≡ bold∨ italic ∨ underlined;
5∗∆ : et ≡ changed font size (factor∆);
10 : et ≡ heading.

(6)

4.2 View descriptors

In our application domain, the majority of textual descriptions is dedicated to explain spatial relations between
many complex-shaped objects. It is a challenging task for illustrators to select a single point of view, which presents
all relevant objects. Moreover, characteristic object features should be visible. Hence, the visibility of the individual
components from a given point of view determines their potential to complement textual descriptions.

The information of the annotation table (objectId7→ technical terms) is used to assign unique colors to the indi-
vidual components of a 3D model. Our system incorporates methods to determine visible objects by color-coded
renditions into hidden buffers. We precompute descriptors for views, that are equally distributed on an orbit around
the bounding sphere. Theoretically, an infinite number of views could be sampled. In order to limit the preprocess-
ing time and the storage size, users can specify the number of samples in a range [10..10000].



In the basic methodthe weights of the terms (object descriptor) in a view descriptor reflect whether or not the
corresponding geometric object is visible (see Fig. 7). In theoptimized methodtherelative size of visible objects
and theircentricity on the projection are used as boost factors. Users can weight the influence of both factors. Thus,
the boost value of each object-term is calculated by the weighted sum of both relative size and centricity. This
means that objects which are (i) big and/or (ii) central are getting a higher boost value in the view’s descriptor than
(i) small and/or (ii) eccentric objects. Additionally, theview entropy can reveal how much contextual information
an entire view possesses.

Relative Size and Centricity: Important objects should be optimally

Fig. 8: Determination of the centricity of the
projection of a visual object.

visible. For all geometric objectso of an 3D model we determine the
maximal projection sizeosizemax in the set of sample view points. For a
given view therelative size is determined as follows:

importancesize=
osizeview

osizemax

(7)

Moreover, the most important objects are often presented in the center
of an illustration. In order to determine thecentricity, we first determine
the objects bounding box. In this bounding box we inscribe 10 concen-
tric ellipses which define the multiplicative factor for each pixel of the
objects (see Fig. 8). Finally, we sum up the objects’ score in each ellip-
tical region.

View’s Entropy: This measure reflects the available contextual information for a given point of view. Once again,
the impact of this measure on the comprehension of a views can be specified by the user. Therefore, a weight is
assigned to these measures that can be adjusted with sliders during run-time. Our implementation uses a modified
metric proposed by Vázquez et al. [27], where the probability distributions are the relative numbers of pixels of a
certain object with respect to the size of the view, while Vázquez’ original proposal [26] is based on the total solid
angle subtended by the face of interest divided by the solid angle of the view.

5 Interactive Browser and Mutual Queries

Our system allows learners to explore comprehensive tutoring materials stored in multi-modal databases in an inter-
active browser. In order to coordinate the content presented in text and graphics, user interactions are transformed

Fig. 6: The extraction of paragraph descriptors.



into queries to an information retrieval system. Two precomputed data structures enable us to find corresponding
text descriptors↔ view descriptors in real-time. Subsequently, a text and a 3D browser are used to present the
retrieved results (see Fig. 9).

This section highlights the need of adoptive and coordinated multi-modal presentations in our application domain.
As in many scientific or technical areas, students of human anatomy have to learn a large number of technical
terms. Moreover, anatomic textbooks focus on descriptions of geometric properties: chapters onosteology, for
example, contain descriptions of characteristic features of complex-shaped bones, chapters onmyology employ
the features of these bones as landmarks to describe the course of muscles, thesyndesmology explains the direction
of movements in joints. These examples illustrate (i) the wealth of labeled illustrations to learn a domain-specific
terminology, (ii) the relevance of basic learning tasks in anatomy for almost all scientific or technical domains, and
(iii) the need to complement textual descriptions with expressive illustrations. The integration of a real-time label
layout system and the automatic selection of appropriate 3D models and views from a database in our system aim
at supporting all these learning tasks.

Text 7→ view queries:Medical students can select text segments in descriptive texts or textual labels in the 3D vi-
sualization where they need additional background information (see Fig. 12). These interactions raise the demand
to search for corresponding textual descriptions and adopted illustrations.

The content of user-selected text fragments are transformed into query vectors as described in Sec. 4.1. The view
index IV allows to retrieve views on 3D models that correspond to the most relevant terms in the query. The
best fitting 3D model in the best view is loaded and presented immediately; the remaining good views of other
3D models are presented in small overview windows on the side of the 3D screen; they are loaded if they are
selected by the learner. To support the interactive exploration of q 3D model, the quality of views with respect to
the current context defined by the query terms is presented on a colored sphere.

Moreover, the label layout within these computer-generated illustrations should reflect this new context. Hence,
only relevant graphical objects are annotated. Therefore, the 3d visualization component of our system integrates
a real-time layout for secondary elements that aims at minimizing the visual flow of during user interactions
(see [11]). Finally, the renderer employs transparency to de-emphasize unimportant objects.

View 7→ paragraph queries: As many learners prefer visualizations to explore complex spatial configurations,
our system also supports ’visual’ queries. Therefore, information on visible objects, their relative size and the
viewpoint entropy are extracted from the current view and used to construct a query vector as described in Sec. 4.2

Fig. 7: The extraction of view descriptors.



(see Fig. 13). Using this view descriptor the paragraph indexIP is used to determine appropriate text segments for
user defined views. The search result is sorted according to the relevancy and presented to the user. User-selected
paragraphs are then presented in their original content of the chosen document.

6 Interactive Query Refinement

In this section interactive tools to refine search queries are presented. We introduce intuitive extensions for both
search tasks using the techniques described in the previous sections.

Refining text 7→ view queries: As the layout is tightly coupled with the relevance of terms, we allow users to
emphasize or de-emphasize text segments interactively. Text selections in combination with some control keys or
with specific mouse buttons increase or decrease the font size. Moreover, additional terms can be added to the
query. We believe that this interaction technique can be used intuitively. As the layout is already considered in the
boosting function, this interaction directly influences the weights of the query terms and helps to improve the view
retrieval results. Fig. 10 presents an example of a refinement to a text query (blue mark). Fig. 10-top contains the
original paragraph as printed in the textbook, a learner used the font size to signal a major interest on some terms
(i.e., conus arteriosus) and minor interest on another term (i.e., right coronary artery). The video shows how this
interaction affects the search results (views).

Refining view 7→ text queries: Our system also employs (non-linear) magnifications as a visual counterpart to
textual emphasis techniques. In contrast to global enlargements, this illustration technique is able to emphasize
important objects while preserving contextual objects. Even though many approaches have been proposed for this
task, the majority can only be applied on predefined focus objects (e.g., [2,29]). But our application requires to
enlarge arbitrary regions that correspond to certain objects. General distortions [14] is a powerful technique but
real-time algorithm are not available yet.

To enlarge user-selected objects we use image-based nonlinear magnifications. Our system employs theSpringLens-
technique [9] which provides complex, interactive, nonlinear magnifications. TheSpringLensalgorithm treats im-
ages as flexible surfaces. The image is covered with a grid of particles connected with springs. By changing the rest
lengths of the springs and applying a physical simulation, the grid is distorted. The particles self-organize, such
that the focus regions are magnified. In this new application of theSpringLensalgorithm we enlarge the rest length
of springs that corresponds to regions in focus and distort renditions of the 3D scene. As the query construction

Fig. 9: Search tasks: Text↔Illustration.



Fig. 10: Refinement of a text query.

considers the relative size of objects on the projection in the boost function (see Sec. 4.2), non-linear distortions
directly alter the weights of the query terms.

Fig. 11 presents an exemplary refinement of a view query (blue mark). The left illustration shows the 3D object
from a selected view with its original size. On the right side the user enlarged some objects (i.e., atrium dextrum)
while others were shrinked (i.e., aorta). The search results (paragraphs) are affected by these refinements.

Fig. 11: Refinement of a view query.

7 Discussion and Future Work

The very efficient indexing mechanism of vector-based search engines permits the access to an almost unlimited
number of documents. In our approach, we construct content descriptions for all paragraphs within voluminous
tutoring documents and for a user-selected number of views onto a library of 3D models. User evaluations have
to analyze whether a finer level of granularity (e.g., sentences) in the representation of the textual content or more
view descriptors are required.

The rendering engine of experimental application employs semi-transparency in order to focus the attention of the
user to the most salient visual objects in result of a text→image query. Moreover, a dynamic label layout is used to
convey more detailed information for salient objects and to highlight their relevance. More elaborated illustration
techniques such as correct transparency, cut-aways, ghost views, adjusted lighting, or NPR rendering styles were
proposed for interactive 3D visualizations of surface and voxel models (e.g., [5,24]).

The presentation in this paper suggested to annotate the individual components of a 3D model with a single descrip-
tor in natural language. While this approach is appropriate for application domains with a standardized terminology,



our system already provides mechanisms to define language-specific object descriptors. This mechanism allows
to integrate interactive 3D-visualizations into a multi-lingual tutoring environment based on translated documents
or completely different documents for all languages. Moreover, several techniques were proposed in information
retrieval to cope with the multitude of possible denotations for objects in natural language. Multi-word terms are
another challenging problem for information retrieval approaches. Our current text parser segments documents
into paragraphs and words. Hence, multi-word terms are not directly represented in the document descriptors, only
their components. We consider two solutions: (i) to extract those multi-lingual terms from annotated 3D models
prior to the text indexing or (ii) to employ text mining techniques to determine proper names and technical terms
from arbitrary texts.

Our approach is highly scalable: users or domain experts can easily add new text documents or 3D models. Beside
a dynamic index creation, the support of more file formats, drag&drop mechanisms, or a plug-in to import data
from a web browser would improve the user interface. Medical tutoring systems would benefit from expressive
renditions of volumetric datasets in addition to or in combination with renditions of polygonal models. Especially
the visible human dataset [16] has been exhaustively annotated, hence this data set is very attractive for our tutoring
application. As all required components have already been successfully applied to volumetric data (e.g., expressive
visualizations [25]), real-time label layout [1], viewpoint entropy) the integration of them could be done nearly
seamlessly.

Currently, we are performing a user study to evaluate (i) the influence of relative size and centricity to the users
decision of a good view of important objects and to (ii) assess our algorithms for the selection of views to given
text segments as well as the selection of text segments to given views.
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