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Preface

On the occasion of the 50th birthday of Victor Mitrana on June 26, 2008, the Research
Group Formal Languages and Automata of the Otto von Guericke University Magdeburg
has organized a colloquium at the Faculty of Computer Science. At this time, Victor
Mitrana has been visiting our research group as a fellow of the Alexander von Humboldt
Foundation. The scientific programme of the colloquium consisted of one invited lecture
and three contributions. This volume contains the papers of all presented talks.

Victor Mitrana was born in Bucharest, Romania. He obtained the Master’s Degree
in Mathematics and Computer Science from the University of Bucharest in 1986 and
the Doctoral Degree in 1993 with a thesis on Distributed Grammar Systems. In 2002,
he was appointed professor at the University of Bucharest and, in 2003, he became a
professor at the Rovira i Virgili University in Tarragona, Spain, thanks to the Ramón y
Cajal Programme of the Spanish Government.

Victor Mitrana is a very active researcher in the field of formal languages, grammars
and automata as well as in computational models inspired by biology. The results were
published in more than 170 papers in international journals and conference proceedings
as well as in several books.

This picture was taken by György Vaszil during
the conference Automata and Formal Languages

in Balatonfüred, Hungary, in May 2008.

We would like to mention a few mile-
stones of Victor Mitrana’s scientific success.
He is one of the inventors of grammars sys-
tems. During the last two decades, more
than 500 papers have been written on gram-
mar systems. One of the first papers on this
topic, however, was written by Victor Mitrana
together with Adrian Atanasiu on Modular
Grammars. He also invented hybrid grammar
systems and has published several papers on
systems of automata. Until then, only gram-
mar systems had been studied but not their au-
tomata like counterparts.

A second field, we would like to mention,
is duplication. This is one operation that can
be applied to words where a copy of a word
is inserted into that word. Victor Mitrana has
investigated many different features of dupli-
cation. There are some papers on grammars which use duplication as an operation, some-
times only the duplication (duplication grammars). However, because the motivation
came from biology, there are also some papers on evolutionary grammars where duplica-
tion is one of the operations and some other operations are used in addition. To both kinds
of grammars, Victor Mitrana has contributed a lot. He has also investigated combinatorial
properties of duplication and its relation to coding theory.
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iv J. DASSOW, B. TRUTHE: Preface

A third topic, he worked on, concerns evolutionary networks. Originally introduced
by Erzsébet Csuhaj-Varjú and Arto Salomaa as networks of language processors, Victor
Mitrana considered networks where the processors are of a certain type. In one direction,
processors implement point mutations (insertion, deletion or substitution of a single let-
ter), in another direction, the basic operation of the processors is splicing. Also, he has
studied generating networks as well as accepting networks. Further, he investigated some
complexity measures and was able to characterize some complexity classes by means
of evolutionary networks. Additionally, he considered applications of such networks for
solving NP-problems in polynomial time.

Victor Mitrana has contributed to other topics, too. They inclcude weighted automata
and automata over groups, combinatorics of words, especially some types of sequences,
contextual grammars, regulated grammars, the hairpin operation.

Victor Mitrana and our research group have been cooperating for many years. In the
years 1995/96, he was a member of the group as a fellow of the Alexander von Humboldt
Foundation of Germany. Also before and after this long term stay, he visited Magdeburg
for shorter periods of time. There exist 25 joint papers with members of our reseach group
– this number is still increasing.

As the invited speaker, György Vaszil gave a lecture on Multiset languages and P
Automata. He did not only cooperate with Victor Mitrana scientifically, they also have
in common, that both of them spent more than a year at our university as fellows of
the Humboldt Foundation. The other talks were given in this order by Ralf Stiebe On
the Complexity of the Control Language in Tree Controlled Grammars, Bianca Truthe
On Small Networks of Evolutionary Processors with Regular Filters, and Jürgen Dassow
on Some Operations Preserving Primitivity of Words. All these talks address topics that
have also been studied by Victor Mitrana. Further, there exists cooperation with all four
speakers.

Finally, we would like to thank all those who made this colloquium possible, espe-
cially the speakers for their contributions. A very special thank goes to Victor Mitrana for
many years of kind and stimulating collaboration.

Dear Victor, we wish you all the best
for your future!

Jürgen Dassow and Bianca Truthe
Magdeburg, October 2008



I N V I T A T I O N

On the occasion of the 50th birthday of

Prof. Dr. Victor Mitrana
University of Bucharest

at present
Fellow of the Alexander von Humboldt Foundation

Otto von Guericke University Magdeburg
Faculty of Computer Science

Department of Knowledge and Language Engineering

the hosting Working Group Formal Languages and Automata organizes a

C O L L O Q U I U M

on Friday, 27 June 2008, in Building 29, Room 301.

You are cordially welcome.

Programme:

9:15 Jürgen Dassow (Otto von Guericke University Magdeburg)
Welcome and Laudatio

9:25 György Vaszil (Hungarian Academy of Sciences, Budapest)
Multiset Languages and P Automata

10:05 Ralf Stiebe (Otto von Guericke University Magdeburg)
On the Complexity of the Control Language in Tree Controlled Grammars

10:25 Bianca Truthe (Otto von Guericke University Magdeburg)
On Small Networks of Evolutionary Processors with Regular Filters

10:45 Jürgen Dassow (Otto von Guericke University Magdeburg)
Primitivity Preserving Operations

11:00 Closing
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Multiset Grammars, Multiset Automata, and
Membrane Systems

GYÖRGY VASZIL

Computer and Automation Research Institute, Hungarian Academy of Sciences
Kende utca 13-17, H-1111 Budapest, Hungary

vaszil@sztaki.hu

Abstract: We review how different multiset processing devices, namely multiset
grammars, multiset automata, membrane systems with symport/antiport, or P au-
tomata can be used to characterize multiset and string languages and also show how
P automata can describe languages over infinite alphabets.

Keywords: Multiset processing devices, P automata, languages over infinite alpha-
bets.

1. Introduction

Multiset languages, sets consisting of multisets, have been studied from several different
points of view. In [7] a Chomsky-like hierarchy of multiset rewriting devices, so called
multiset grammars, were presented for their characterization. In [2] multiset automata
were introduced and a correspondence between the different types of multiset automata
and grammars was established.

Another class of multiset processing devices called membrane systems are studied
in the field of membrane computing. Membrane systems, or P systems were introduced
in [11] as computing models inspired by the functioning of the living cell. Their main
components are membrane structures consisting of membranes hierarchically embedded
in the outermost skin membrane. Each membrane encloses a region containing a multiset
of objects and possibly other membranes. Each region has an associated set of operators
working on the objects contained by the region.

One of the most interesting variants of the model was introduced in [10] called P
systems with symport/antiport. In these systems the modification of the objects present in
the regions is not possible, they may only move through the membranes from one region
to another. The movement is described by communication rules called symport/antiport
rules associated to the regions. See the monograph [12] for a summary of notions and
results of the area.
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2 György Vaszil

In the following we review how multiset grammars, multiset automata, and sym-
port/antiport systems can be used to characterize multiset languages. We recall the re-
sults showing the equivalence of regular multiset grammars and multiset finite automata
and that of monotone multiset grammars and multiset linear bounded automata. While
regular multiset grammars and multiset finite automata characterize the Parikh sets of
regular (string) languages, the class of multiset languages determined by monotone mul-
tiset grammars and multiset linear bounded automata are strictly included in the class of
Parikh sets of monotone (that is, context-sensitive) string languages. We show, however,
that this class can be characterized in terms of symport/antiport membrane systems, so
called exponential-space symport/antiport acceptors. Finally, we review some basic re-
sults concerning P automata, an other variant of accepting symport/antiport P systems
which also characterize the class of regular and context-sensitive languages, and more-
over, can also be used for capturing the notion of languages over alphabets containing an
infinite number of symbols.

2. Preliminaries

Let Σ be a set of symbols called alphabet, and let Σ∗ be the set of all words over Σ, that
is, the set of finite strings of symbols from Σ, and let Σ+ = Σ∗−{ε} where ε denotes the
empty word. The set of finite subsets of Σ is denoted by 2Σ.

Let U be a set of objects, and let N denote the set of non-negative integers. A multiset
is a mapping u : U →N which assigns to each object a ∈ U its multiplicity u(a) in u. The
support of u is the set supp(u) = {a | u(a)≥ 1}. If supp(u) is a finite set, then u is called
a finite multiset. The set of all finite multisets over the set U is denoted by U◦.

For two multisets u1, u2 over the same set of objects U , we have u1 ⊆ u2 if and only
if u1(a)≤ u2(a) for all a ∈ U ; the union of the two multisets is defined as

(u1∪u2)(a) = u1(a)+u2(a), a ∈ U ;

the difference is

(u1−u2)(a) = u1(a)−u2(a) for a ∈ U,

provided that u2 ⊆ u1.

A multiset u over the finite set of objects V can be represented as a string w over the
alphabet V with |w|a = u(a) where a ∈ V and |w|a denotes the number of occurrences
of the symbol a in the string w, and with ε representing the empty multiset. Let |w|
denote the length of w, that is, the cardinality of the multiset represented by w. A multiset
can also be represented as the Parikh vector of the corresponding string, thus, there is a
natural, one-to-one correspondence between multiset languages and sets of vectors with
integer coordinates.
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3. Multiset Grammars and Multiset Automata

A multiset grammar, [7], is a construct G = (N,T,S,P ) where N,T are the disjoint
alphabets of nonterminals and terminals, S is a multiset over N ∪T and P is a finite set
of multiset rewriting rules of the form u→ v with u,v ∈ (N ∪T )◦ and u(A)≥ 1 for some
A∈N . For two multisets α1,α2 over (N ∪T ), we write α1⇒α2 if there exists u→ v ∈P
such that u⊆α1 and α2 =α1−u∪v. We denote by⇒∗ the reflexive and transitive closure
of⇒. The language generated by G is defined as L(G) = {α ∈ T ◦ | S⇒∗ α}.

Grammars as above are said to be monotone if |u| ≤ |v| for all rules u→ v ∈ P ,
context-free if |u|= 1 for all rules u→ v ∈ P , or regular if |u|= 1 and v = aB or v = a
for some a ∈ T , B ∈N .

We denote by mRE,mMON,mCF,mREG the families of multiset languages gen-
erated by arbitrary, monotone, context-free, or regular multiset grammars, respectively.
By RE, MON, CF, REG, we denote the families of recursively enumerable, context-
sensitive, context-free, and regular languages, respectively, and by psX for a language
family X ∈ {RE,MON,CF,REG}, we denote the families of Parikh vectors associated to
the languages in X .

A multiset finite automaton, [2], consists of a finite control unit, an input store in
which a multiset is placed, and a reading head which can detect whether or not a given
symbol appears in the input. The automaton changes its state depending on the former
state and the detection of a symbol in the input. If a symbol is detected, it is removed.
If the input is eventually empty and the current state is an accepting state, the automaton
accepts the initial multiset, otherwise it is rejected.

A multiset linear bounded automaton is a multiset finite automaton which can also
“write” to the stored multiset. The multiset linear bounded automaton also changes its
state based on the former state and the detection of a symbol in the stored multiset, but it
can also add a symbol to the stored multiset.

Formally a multiset finite automaton is a structure M = (Q,V,δ,q0,F ) where Q is a
finite set of states, V is the input alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of
final states, and δ : Q×V → 2Q is the transition mapping.

A multiset linear bounded automaton is a construct M = (Q,V,U,δ,q0,F ) with Q, V ,
q0, F as above, and the transition mapping δ : Q×V → 2Q×(U∪{ε}).

The configuration of a multiset automaton is a pair (q,u) where q ∈ Q is the current
state and u ∈ V ◦ (or u ∈ (V ∪U)◦ in the case of multiset linear bounded automata) is the
contents of the multiset store. We define the relation (q,u) ` (s,v)

• for multiset finite automata, if and only if there is an a ∈ V such that u(a) ≥ 1,
s ∈ δ(q,a) and v = u−a, and

• for multiset linear bounded automata, if and only if there is a pair

(a,b) ∈ V × (U ∪{ε})
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such that u(a)≥ 1, (s,b) ∈ δ(q,a) and v = u−a∪ b.

The reflexive and transitive closure of ` is denoted by `∗. The language accepted by
a multiset automaton M is defined as L(M) = {u ∈ V ◦ | (q0,u) `∗ (q,ε), q ∈ F}. The
classes of languages accepted by multiset finite automata and multiset linear bounded
automata are denoted by L(MFA) and L(MLBA), respectively.

Since the proof of the equivalence of finite automata and regular string grammars
with respect to their computational power can easily be transformed for the multiset case,
and since the Parikh sets of regular and context-free languages coincide, we have the
following.

Proposition 1 [2]. L(MFA) =mREG =mCF = psREG = psCF.

A similar equivalence holds also in the case of linear bounded automata.

Proposition 2 [2]. L(MLBA) =mMON.

The classes of mMON and psMON however, are different. From [7], we have that

mMON ⊂ psMON,

that is, that the language class defined by the Parikh sets of context-sensitive grammars
strictly include the multiset languages generated by monotone multiset grammars. (The
unary language {a2n | n≥ 1}, for example, is in psMON−mMON.) In the following we
show how to characterize psMON in terms of membrane systems.

4. Symport/antiport Acceptors and P Automata

A membrane system, or P system is a structure of hierarchically embedded membranes,
each having a label and enclosing a region containing a multiset of objects and possibly
other membranes. The out-most membrane which is unique and usually labeled with 1, is
called the skin membrane. The membrane structure is denoted by a sequence of match-
ing parentheses where the matching pairs have the same label as the membranes they
represent.

The evolution of the contents of the regions of a P system is described by rules associ-
ated to the regions. Applying the rules synchronously in each region, the system performs
a computation by passing from one configuration to another one. Several variants of the
basic notion have been introduced and studied proving the power of the framework, see
the monograph [12] for a summary of notions and results of the area. In the following we
concentrate on communication rules called symport or antiport rules.

A symport rule is of the form (x,in) or (x,out),x ∈ V ◦. If such a rule is present in a
region i, then the objects of the multiset x can enter from the parent region or can leave
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to the parent region, respectively. An antiport rule is of the form (x,in;y,out),x,y ∈ V ◦,
in this case, objects of x enter from the parent region and in the same step, objects of y
leave to the parent region. All types of these rules might be equipped with a promoter
or inhibitor multiset, denoted as (x,in)|Z ,(x,out)|Z , or (x,in;y,out)|Z , with x,y ∈ V ◦,
Z ∈ {z,¬z | z ∈ V ◦}, where if Z = z then the rules can only be applied if region i contains
the objects of multiset z, or if Z = ¬z, then region i must not contain any of the elements
of z. (For more on symport/antiport see [10], for the use of promoters see [8].)

A P system with symport/antiport of degree n≥ 1 is a construct

Π = (V,µ,E,w1, . . . ,wn,R1, . . . ,Rn,F, in)

where

• V is an alphabet of objects,

• µ is a membrane structure of n membranes,

• E ⊆ V is a set of objects (the ones which can be found in the environment in an
arbitrary number of copies),

• wi ∈ V ◦, 1≤ i≤ n, are the initial contents of the n regions,

• Ri, 1≤ i≤ n, are the sets of symport/antiport rules associated to the regions,

• F is a set of final configurations, and

• in ∈ {0,1, . . . ,n} is the label of the input membrane, where if i = 0, the input is
read from the environment.

The n+ 1-tuple of finite multisets of objects present in finite number of copies in the
environment and in the n regions of the P system Π describes a configuration of Π with

(ε,w1, . . . ,wn) ∈ (V ◦)n+1

being the initial configuration.

The transition mapping of a symport/antiport P system is a mapping

δ : V ◦× (V ◦)n+1→ 2(V ◦)n+1
.

For two configurations c= (u0,u1, . . . ,un), c′ = (u′0,u
′
1, . . . ,u

′
n) and a multiset u ∈ V ◦,

(u′0,u
′
1, . . . ,u

′
n) ∈ δ(u,(u0,u1, . . . ,un))

holds if there exists a maximal set of rules which, when applied in a parallel and syn-
chronous manner in the regions, transfer the system from configuration (state) c to c′ with
input u, that is, while the multiset u enters the system from the environment.
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We first consider the model called exponential-space symport/antiport acceptor intro-
duced in [5]. Such a system is a symport/antiport system with

• a set of terminal objects T ⊆ V containing a distinguished symbol $,

• in= 0, which means that the input is read from the environment,

• rules of the following four types in the set R1 corresponding to the skin region:

1. (u,in;v,out), u,v ∈ (V −T )◦, |v| ≥ |u|,
2. (ua, in;v,out), u,v ∈ (V −T )◦, |v| ≥ |u|, and a ∈ T ,

3. (u,in;v,out)|a, u,v ∈ (V −T )◦, a ∈ T ,

4. for every a ∈ T there is at least one rule of the form (u,in;a,out),

• rules of the form (u,in;v,out), u,v ∈ (V −T )◦, in the regions different from the
skin region.

We can consider the multiset languages, the set of multisets accepted by an exponential-
space symport/antiport acceptor Π as

Lm(Π) =
⋃
mT (u1)∪mT (u2)∪ . . .∪mT (ut)

where c0, c1, . . . , ct is a sequence of configurations with ci+1 ∈ δ(ui+1, ci) and $ 6∈ ui for
all 0≤ i≤ t−1, $ ∈ ut, and where c0 is the initial configuration, ct ∈ F , and mT (u) ∈ T ◦
is the multiset of terminal objects contained by the multiset u ∈ V ◦, that is, mT (u) ⊆ u
and u−mT (u) ∈ (V −T )◦.

We can also associate strings to the accepted multisets. A string a1 . . .an$ with
ai ∈ T −{$}, 1 ≤ i ≤ n, is accepted if the terminal symbols are brought into the sys-
tem from the environment in the required order (by rules of type 2) and after reading the
end marker $, the computation halts.

Lstr(Π) =
⋃
strT (u1) · strT (u2) · . . . · strT (ūt)

where c0, c1, . . . , ct is a sequence of configurations with δ(ui+1, ci) = ci+1 and $ 6∈ ui
for all 0 ≤ i ≤ t− 1, ūt = ut− $, and where c0 is the initial configuration, ct ∈ F , and
strT (u) ∈ T ∗ is the set of terminal strings corresponding to the multiset mT (u) ∈ T ◦ of
terminal symbols from u.

Let us call an exponential-space symport/antiport acceptor restricted if it only uses
rules of type 1. and 2. in the skin region.

The classes of multiset and string languages accepted by arbitrary and by restricted
symport/antiport acceptors are denoted by Lm(ESAA), Lstr(ESAA), Lm(rESAA), and
Lstr(rESAA), respectively.

Restricted exponential-space symport/antiport acceptors characterize regular languages.
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Theorem 3 [5].

1. Lm(rESAA) =mREG = psREG =mCF = psCF, and

2. Lstr(rESAA) = REG.

Moreover, the unrestricted variants characterize the class of context-sensitive lan-
guages in the string case which means that considering the accepted multiset languages,
we obtain a characterization of the Parikh sets of languages generated by monotone gram-
mars.

Theorem 4 [5].

1. mMON ⊂ Lm(ESAA) = psMON, and

2. Lstr(ESAA) = MON.

Context-sensitive languages can also be characterized by an other device called P
automaton which was proposed in [3].

P automata are accepting P systems which combine characteristics of classical au-
tomata and distributed natural systems being in interaction with their environment. The
behavior of a P automaton is described by its accepted language which is obtained by a
mapping from the set of accepted sequences of multisets of objects which enter the system
from the environment.

A P automaton is a symport/antiport system with the following properties.

• in= 0, which means that the input is read from the environment,

• F defines the (not necessarily halting) final configurations, as the n-tuple F =
(F1, . . . ,Fn) where Fi ⊆ V ◦, 1≤ i≤ n, are either finite sets of multisets over V , or
Fi = V ◦

A configuration c= (v0,v1, . . . , vn) is said to be final, denoted as c ∈ F = (F1, . . . ,Fn), if
vi ∈ Fi, 1≤ i≤ n.

Let also f :V ◦→T ∗ be a mapping which maps nonempty multisets in V ◦ to nonempty
words over the alphabet T and f(u) = ε if and only if u is the empty multiset.

A language L⊆ T ∗ is accepted by the P automaton Π if it is

L(Π,f) ={f(u1) ·f(u2) · . . . ·f(ut) ∈ T ∗ | there is ct ∈ F and a sequence
ci with δ(ui+1, ci) = ci+1 for all 0≤ i≤ t−1},

where c0 is the initial configuration, δ is the transition mapping of Π.
Since the mapping f only maps the empty multiset to ε, that is, since all nonempty in-

put multisets are taken into account when the string of the accepted language is formed, P
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automata satisfy the requirement that they should not make any distinction between termi-
nal and nonterminal objects, that they should not completely discard any of the multisets
imported in any of the steps of the computation from the accepted language.

Of course, the mapping f should be in some sense simple if we would like to make
sure that the computing power of the P automaton lies in the symport/antiport system and
not in f itself. For now, let us fix the alphabet as T = V and the mapping as f1(u) = a for
u= ak, k ≥ 1, with f1(∅) = ε.

Theorem 5 [1].

1. For any context-sensitive language L, a P automaton Π can be constructed with
object alphabet V , such that L= L(Π,f1) for a mapping f1 defined as above.

2. For any P automaton Π with object alphabet V and mapping f : V ◦→ T ∗ for some
alphabet T , such that f is linear-space computable, the language L(Π,f)⊆ T ∗ is
context-sensitive.

We might also consider variations of P automata which restrict the forms of the rules. The
notion of P finite automaton was defined in [4] as a P automaton where

• the object alphabet V ∪{a} contains a distinguished symbol a,

• the setR1 corresponding to the skin region contains rules of the form (x,in;y,out)|Z
with x ∈ {a}◦, y ∈ (V ∪{a})◦, Z ∈ {z,¬z}, z ∈ V ◦, and

• if i 6= 1, the set Ri contains rules of the form (x,in;y,out)|Z with Z ∈ {z,¬z} and
x,y,z ∈ V ◦.

As we can see, P finite automata can only input multisets of the form ak, containing
several copies of the distinguished symbol a. Therefore, it is appropriate if we define the
mapping of the input multisets to the alphabet T = {a1,a2, . . .} as f2 : {a}◦→ T ∗ with
f2(ak) = ak, k ≥ 1, and f2(∅) = ε for the empty multiset.

As it is proved in [4] the rule restrictions introduced in the model of P finite automata
also characterize the class of regular languages.

Theorem 6 [4]. A language L is regular if and only if there is a P finite automaton Π

with object alphabet V ∪{a}, such that L= L(Π,f2) for a mapping f2 defined as above.

5. Unconventional Aspects of P Automata

In this section, we would like to propose a topic which is based on one of the uncon-
ventional aspects of membrane systems, that is, to use symport/antiport systems for the
description of languages over infinite alphabets. The idea comes very naturally if we
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recall that that the language accepted by these systems corresponds to the sequence of
multisets entering during a successful computation, and notice that the number of possi-
ble multisets which make up this sequence, that is, the number of possible symbols which
make up the accepted string is not fixed in advance, but it can be arbitrary high.

If we think in terms of P automata, the set of finite multisets over V , that is, the domain
of the mapping f is infinite, so its range could also easily be defined to be infinite. This
idea is explored in the case of P finite automata in [4], where the mapping producing the
terminal words is defined as f : {a}◦ → T ∗ for an infinite alphabet T = {a1,a2, . . .} as
f(ai) = ai for any i≥ 1.

Since P finite automata over finite alphabets accept exactly the class of regular lan-
guages, the resulting infinite alphabet language class can be considered as the extension
of the class of regular languages to infinite alphabets, and this class behaves in several re-
spects differently from infinite alphabet language classes defined using other ideas, such
as, for example, the machine model called finite memory automata from [6], or the infinite
alphabet regular expressions introduced in [9]. Given an infinite alphabet Σ = {a1,a2, . . .},
P finite automata are able to describe, for example, the language {a2i | i≥ 1}which can be
described by infinite alphabet regular expressions but cannot be accepted by finite mem-
ory automata, and also the language {aiai | i ≥ 1} which is accepted by finite memory
automata but cannot be captured by infinite alphabet regular expressions.
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[11] GH. PĂUN, Computing with membranes. Journal of Computer and Systems Sci-
ences 61 (2000), 108–143.

[12] GH. PĂUN, Membrane Computing. An Introduction. Springer-Verlag, 2002.



J. Dassow, B. Truthe (Eds.): Colloquium on the Occasion of the 50th Birthday of Victor Mitrana.
Otto von Guericke Universität Magdeburg, Germany, June 27, 2008. Proceedings, pages 11 – 28.

Some Operations Preserving Primitivity of Words
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Abstract: We investigate some operations where essentially, from a given word w,
the word ww′ is constructed where w′ is a modified copy of w or a modified mirror
image of w. We study whether ww′ is a primitive word provided that w is primitive.
For instance, we determine all cases with an edit distance of w and w′ at most 2 such
that the primitivity of w implies the primitivity of ww′. The operations are chosen in
such a way that in the case of a two-letter alphabet, all primitive words of length at
most 11 can be obtained from single letters.

Keywords: Primitive words, primitivity preserving operations.

1. Introduction

A word w over an alphabet V is said to be a primitive word if and only if there is no
word u ∈ Σ+ with w = un for some natural number n > 1. The set of all primitive words
over V is denoted by QV . There are a lot of papers on relations of QV to other language
families as the families of the Chomsky hierarchy (e. g. in [4] and [16], it has been shown
that QV is neither a deterministic nor an unambiguous context-free language, in [10]
relations to regular languages are given), Marcus contextual grammars (see [6]), to (poly-
)slender languages (see [5]) and some languages and language families related to codes
(see e. g. [17]). Moreover, there are papers on combinatorial properties of primitive words
and of the sets QV ; we refer to [2], [1], [8].

However, there is only a small number of results concerning the closure of QV un-
der operations. There are some papers where it was investigated whether the application

11
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of homomorphisms to primitive words leads to primitive words in all cases or leads to
primitive words with a finite number of exceptions or to non-primitive words in all cases;
we refer to [12], [13], [14], [9]. Substitutions form another operation which was investi-
gated with respect to preservation of primitivity. There were substitutions of very short
subwords in the focus, especially point mutations (deletions, insertions and substitutions
of one letter) were studied. We refer to [15] for details. A further study in this direction
concerns insertions (see [11]).

Obviously, there is a large variety of operations from which one can expect that QV
is closed under them (since the portion of primitive words is very high). In this paper
we consider some operations where essentially, from a given word w, the word ww′ is
constructed where w′ is a modified copy of w or a modified mirror image of w. The
modifications are of such a form that the edit distance of w and w′ is very small or very
large (i. e., it is very near to the length of w).

We have two reasons for this investigation. The first one is of combinatorial nature.
Obviously, ww is not primitive for all w. We are interested in conditions for changes
of the second copy w to w′ such that ww′ is primitive for all w. Especially, how many
changes or deletions or insertions of letters are necessary and how many such operations
are possible. For example, we shall determine all possible transformation where the edit
distance of w and w′ is at most two and primitivity is preserved.

The second reason comes from the theory of dynamical systems. In the paper [7] a
dynamical system based on regular languages has been proposed. The regular languages
are essentially described by primitive words. Since in dynamical systems one needs muta-
tions in order to develop the system, one is interested in devices which describe primitive
words and allow mutations. Here the use of operations which preserve primitivity is of
interest. Then a primitive word can be given as a sequence of operations; and a mutation
is the replacement of one operation by another one or a deletion or insertion of an op-
eration in the sequence. This ensures primitivity of the word obtained from the mutated
sequence of operations. Obviously, it is not necessary to generate all primitive words,
however, the set of generated primitive words should contain a good approximation of
any primitive word where the quality of approximations is determined by the dynamic
system (especially its fitness function). We have chosen the operations under which QV
is closed in such a way that, if the underlying alphabet V consists of two letters, then by
the operations we can generate all primitive words of length ≤ 11 (as can be shown by
computer calculations) and a sufficient large amount of primitive words of the length up
to twenty.

Thus this paper can also be considered as a continuation of the investigations of de-
vices generating only primitive words (see e. g. [3]).

The paper is organized as follows. In Section 2, we present and recall some notations
and some results on primitive words which are used in the sequel. In Section 3, we
introduce some operations where we first construct ww and perform then some small
modifications of the second copy yielding ww′. We prove that all operations where the
edit distance of w and w′ is 1 preserve primitivity. An analogous result is shown for the
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edit distance 2 if at least one change of a letter is used. In Section 4, we consider analogous
operations as in Section 2, but start from wwR and modify wR. In Section 5 we consider
ww′ where w′ is obtained from w or wR by a drastic change, i. e., the Hamming distance
of w′ and w or wR is almost the length of w. Moreover, we give some further operations
where the length is almost doubled and primitivity is preserved.

2. Some Notation and Facts

For a given alphabet V , we denote by V ∗ and V + the set of all and all non-empty words
over V , respectively. The empty word is designated by λ. Given a word w ∈ V ∗ and
x ∈ V , we denote its length by |w| and the number of occurrences of x in w by #x(w). For
a word w = x1x2 . . .xn ∈ V + with xi ∈ V for 1 ≤ i ≤ n, we define the mirror image wR

bywR = xnxn−1 . . .x1. Given two wordsw= x1x2 . . .xn ∈ V + andw′= y1y2 . . .yn ∈ V +

with xi,yi ∈ V for 1≤ i≤ n, the Hamming distance d(w,w′) is defined by

d(w,w′) = #({i | xi 6= yi})

and the edit distance ed(w,w′) of w and w′ is the minimal number of changes, deletions
and insertions of letters in order to transform w into w′.
Throughout the paper we assume that V has at least two elements.

A word w ∈ V + is said to be a primitive word if and only if there is no word u ∈ V +

such that w = un for some natural number n > 1. By QV we denote the set of all prim-
itive words over V . If V is understood from the context we omit the index V and write
simply Q.

Lemma 1. For any words v,v′ ∈ V ∗, vv′ ∈Q if and only if v′v ∈Q.

Proof. Let us prove one implication; the other one is analogous.
Let vv′ ∈ Q. Let us suppose v′v /∈ Q, that is, there exists u ∈ Q with |u| < |v′v| and
n > 1 such that v′v = un. Therefore v′ = ukp, v = qun−k−1 and u = pq for some words
p,q ∈ V ∗ and some k < n. That implies

vv′ = qun−k−1ukp= qun−1p= q(pq)n−1p= (qp)n /∈Q.

Thus we have a contradiction to our supposition which proves v′v ∈Q. 2

The following statement holds trivially.

Lemma 2. If w ∈Q, then also wR ∈Q. 2

Lemmas 1 and 2 can be interpreted as follows: If we apply a cyclic shift or the mirror
image to a primitive word, then we obtain a primitive word, again. Thus cyclic shifts and
reversal are operations which preserve primitivity.

For the following two lemmas, the reader is referred to [17] for the proof.
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Lemma 3. For two non-empty words u and v, uv = vu if and only if there is a word z
such that u= zn and v = zm for some natural numbers n and m. 2

Lemma 4. In a free monoid V ∗, the equation ambn = cp, where a,b,c ∈ V ∗ and
m,n,p≥ 2, has only trivial solutions, where a, b and c are powers of some word in V ∗. 2

Lemma 5. For any x ∈ V , y ∈ V and z ∈ V ∗, if xz = zy, then x= y.

Proof. If z = λ, then x = y immediately. If z = a1a2 . . .an with ai ∈ V for 1 ≤ i ≤ n,
then x= a1,a1 = a2,a2 = a3, . . .an−1 = an,an = y and consequently x= y. 2

In the sequel we shall use the following notation. Ifw=w1w2 . . .wr = z1z2 . . . zs for some
words w1, . . .wr, z1, . . . , zs ∈ V ∗ such that |w1w2 . . .wi|= |z1z2 . . . zj | for some i and j, we
write

w1w2 . . .wi|wi+1wi+2 . . .wr = z1z2 . . . zj |zj+1zj+2 . . . zs,

i. e., by the symbol | we mark a certain position in the word. Mostly, | will mark the
middle of a word of even length, or it will be put after the m-th letter if the word has odd
length 2m−1.

3. Operations with an Almost Duplication

Obviously, the word ww obtained from w by a duplication leads from any word w to a
non-primitive word. In order to obtain primitive words from a primitive word w one has
to perform some changes in the second occurrence of w, i. e., one has to consider words
of the form ww′ where w′ differs only slightly from w. In most cases the edit distance of
w and w′ will be at most 2, and thus ww′ can be considered as an almost duplication of w.
We start with the case where we only change some letters to obtain w′ from w.

Theorem 6.
(i) Let w be a primitive word of some length n and w′ an arbitrary word of length n

such that the Hamming distance d(w,w′) is a power of 2, then ww′ is primitive,
too.

(ii) If d is not a power of 2, then there are a primitive word w and a word w′ with
d(w,w′) = d such that ww′ is not a primitive word.

Proof. (i) Obviously, |ww′| is even. Let us suppose ww′ /∈ Q, that is, there exists p ∈ N
and v ∈ V + of length at least 2 such that ww′ = vp.
If p= 2, then ww′ = v2. Since |w|= |w′|, we get w=w′ = v and thus d(w,w′) = 0 which
contradicts the assumption on the Hamming distance of w and w′.
If p is even, and p > 2, we have p

2 ≥ 2 and v
p
2 = w /∈Q, which is a contradiction.
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If p is odd, i. e., p= 2m+1 for somem≥ 1, then |v| is even (since otherwise |vn|p= |ww′|
would be odd). Thus there are words v′ and v′′ of length |v|2 such that v = v′v′′. Then
we get w = vmv′ = (v′v′′)mv′ and w′ = v′′vm = v′′(v′v′′)m. The Hamming distance is
d(w,w′) = (2m+ 1)d(v′,v′′). Since 2m+ 1 is an odd number, d(w,w′) is not a power
of 2 in contrast to our supposition.

(ii) Let d be not a power of 2. Then there is an odd number q > 1 and a number p such
that d= qp. Let q = 2m+1 for some m≥ 1. We now set

v′ = 10p, v′′ = 11p, w = (v′v′′)mv′, and w′ = (v′′v′)mv′′.

Obviously, the word w is primitive, d(w,w′) = (2m+1)d(v′,v′′) = (2m+1)p= qp= d
and ww′ = (v′v′′)2m+1 /∈Q. 2

By part (ii) of the preceding theorem, if w is a primitive word and d(w,w′) is not a power
of 2, in general,ww′ is not a primitive word. However, if we require that the changes occur
in special positions it is possible to obtain preservation of primitivity. As an example we
give the following operation.

Definition 7. For any odd natural numbers n ≥ 3, any alphabet V , and any mapping
h : V → V with h(a) 6= a for all a ∈ V , we define the operation On,h : V n→ V 2n by

On,h(x1x2 . . .xn) = x1x2 . . .xnh(x1)x2 . . .xi−1h(xi)xi+1 . . .xn−1h(xn)

where i= n+1
2 .

Theorem 8. For any odd natural number n ≥ 5, any primitive word q of length n, and
any mapping h : V → V with h(a) 6= a for all a ∈ V , On,h(q) is a primitive word.

Proof. Let w = x1x2 . . .xn with xj ∈ V for 1≤ j ≤ n and i= n+1
2 . Then

On,h(x1x2 . . .xn) = x1x2 . . .xnh(x1)x2x3 . . .xi−1h(xi)xi+1xi+2 . . .xn−1h(xn)

has an even length.
Let us suppose that On,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such that

On,h = vp.
If p is even and p > 2, then v

p
2 = w and p

2 ≥ 2, which contradicts w ∈ Q. If p = 2, then
x1x2 . . .xnh(x1)x2 . . .xn−1h(xn) = v2, that is,

v = x1x2 . . .xn−1xn = h(x1)x2x3 . . .xi−1h(xi)xi+1xi+2 . . .xn−1h(xn).

Thus xi = h(xi), which is a contradiction.
Thus p is odd, say p = 2m+ 1 for some m ≥ 1. As above there are words v, v1 and v2
such that v = v1v2 and |v1|= |v2| and

x1 . . .xn−1xn|h(x1)x2 . . .xi−1h(xi)xi+1 . . .xn−1h(xn) = (v1v2)mv1|v2(v1v2)m.
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Since v1 starts with x1 (first occurrence) and ends with xn (last occurrence in the first
part), v1 = x1v

′
1xn and analogously, v2 = h(x1)v′2h(xn). Therefore we have that On,h(w)

has the form

(x1v
′
1xnh(x1)v′2h(xn))

mx1v
′
1xn|h(x1)v′2h(xn)(x1v

′
1xnh(x1)v′2h(xn))

m.

Since the letters xi and xn do not occur in the first occurrence of v, by the definition of
On,h, the last letter of the first occurrence of v1 (in the first part of the word) and last letter
of the the first occurrence of v2 in the second part coincide, i. e., xn = h(xn) which is a
contradiction. 2

We now discuss some operations where the edit distance of w to w′ is at most 2 and at
least one deletion or one insertion is performed to obtain w′; more precisely, we consider

(a) the deletion of an arbitrary letter,
(b) the deletion of an arbitrary letter and the change of an arbitrary remaining letter,
(c) the insertion of an arbitrary letter,
(d) the insertion of an arbitrary letter and the change of an arbitrary letter of w.

We now give the formal definition of these operations.

Definition 9. For any natural numbers n,i, j, i′ with 1≤ i≤ n, 0≤ i′ ≤ n, 1≤ j ≤ n and
i 6= j, letters x,y,z ∈ V with x 6= y, and a word w = x1x2 . . .xn, xi ∈ V , of length n, we
define the following operations

Dn,i, Dn,i,j,x,y : V n→ V 2n−1 and In,i′,z, In,i′,z,j,x,y : V n→ V 2n+1

by

Dn,i(x1x2 . . .xn) = x1x2 . . .xnx1x2 . . .xi−1xi+1xi+2 . . .xn,

Dn,i,j,x,y(x1 . . .xn) =


x1 . . .xnx1 . . .xi−1xi+1 . . .xj−1yxj+1 . . .xn, xj = x,i < j,

x1 . . .xnx1 . . .xj−1yxj+1 . . .xi−1xi+1 . . .xn, xj = x,i > j,

undefined, otherwise,

In,i′,z(x1x2 . . .xn) = x1x2 . . .xnx1x2 . . .xi′zxi+1xi+2 . . .xn,

In,i′,z,j,x,y(x1 . . .xn) =


x1 . . .xnx1 . . .xi′zxi′+1 . . .xj−1yxj+1 . . .xn, xj = x,i′ < j,

x1 . . .xnx1 . . .xj−1yxj+1 . . .xi′zxi′+1 . . .xn, xj = x,i′ > j,

undefined, otherwise.

Theorem 10. If n≥ 2, 1≤ i≤ n, and q is a primitive word of length n, then Dn,i(q) ∈Q
also holds.

Proof. Let us assume i= 1. Let q = xw ∈Q, where x ∈ V and w ∈ V +.
Then Dn,i(q) = xww. Obviously, |xww| is odd.
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Let us suppose xww /∈Q, that is, there exists an odd number p ∈ N, i. e., p= 2m−1
for some m ≥ 2, and v ∈ V + such that xww = vp (without loss of generality, we can
assume that v ∈Q).

As in the preceding proof, there are words v′ ∈ V ∗ and v′′ ∈ V + such that v = xv′v′′

xw|w = (xv′v′′)m−1xv′|v′′(xv′v′′)m−1.

Then w = (v′v′′x)m−1v′ = (v′′xv′)m−1v′′. Since |(v′v′′x)m−1|= |(v′′xv′)m−1|, we have
v′ = v′′ = z.
Moreover, xw|w = (xzz)m−1xz|z(xzz)m−1. Thus w = (zzx)m−1z = (zxz)m−1z which
first implies (zxz)m−1 = (xzz)m−1, then zxz = xzz and finally xz = zx. By Lemma 3,
z is a power of x. Therefore q = xw = (xzz)m−1xz is a power of x which contradicts
q ∈Q. This contradiction proves xww ∈Q.

Let us consider i ≥ 2. Let q = wxw′ ∈ Q with |w| = i− 1. By Lemma 1, we have
xw′w ∈ Q. Hence, by the first part of this proof Dn,1(xw′w) = xw′ww′w ∈ Q, which
implies Dn,i(q) = wxw′ww′ ∈Q by Lemma 1. 2

Theorem 11. If w ∈ V + such that Dn,i,j,x,y(w) is defined, then Dn,i,j,x,y(w) ∈Q holds.

Proof. We first discuss Dn,n,j,x,y. Let w = x1x2 . . .xn. Then

Dn,n,j,x,y(w) = x1x2 . . .xj−1xxj+1xj+2 . . .xnx1x2 . . .xj−1yxj+1xj+2 . . .xn−1.

Let us assume that Dn,n,j,x,y(w) /∈Q. Then there is a word v ∈ V + such that

Dn,n,j,x,y(w) = vp

for some p≥ 2. SinceDn,n,j,x,y(w) has odd length, p and the length of v are odd numbers.
Let p = 2m+ 1 for some m ≥ 1. Thus there are words v1 ∈ V + and v2 ∈ V + such that
v = x1v1v2, k−1 = |v1|= |v2| and

x1x2 . . .xj−1xxj+1xj+2 . . .xn|x1x2 . . .xj−1yxj+1xj+2 . . .xn−1 = vmx1v1|v2v
m.

Then |v|= 2k−1. We set s= 2k−1. We distinguish some cases.

Case 1. Let 1≤ j ≤ k−1. Then by definition of Dn,n,j,x,y,

x1v1 = x1x2 . . .xj−1xxj+1 . . .xk−1xk = z1xz2xk

and

v2 = x1x2 . . .xj−1yxj+1 . . .xk−1 = z1yz2.

Thus, we get,

v = z1xz2xkz1yz2.
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If m≥ 2, the first part of the word is

z1xz2xkz1yz2z1xz2xkz1yz2v
m−2z1xz2xk (1)

and that of the second part is

z1yz2z1xz2xkz1yz2z1xz2xkz1yz2v
m−2 (2)

and these two words differ in the (|z1xz2xkz1yz2z1|+ 1)-st letter, which contradicts the
definition of Dn,n,j,x,y. If m= 1, we get a contradiction by the same arguments.

Case 2. Let j = k. Then the k-th letter in the second part is y. On the other hand, it is x1
since there starts the word v. Thus x1 = y. This gives

x1v1 = x1x2 . . .xk−1xk = yzx, v2 = x1x2 . . .xk−1 = yz and v = yzxyz

with z = x2x3 . . .xk−1. Then the first and second part are

yzxyzyzxyzvm−2yzx and yzyzxyzyzxyzvm−2,

respectively. We obtain zx = yz by looking on the words starting in the position |z|+ 3.
Thus by Lemma 5, x= y in contrast to the definition of Dn,n,j,x,y.

Case 3. Let k+1≤ j≤ 2k−1. Then v= x1v1v
′
2xv
′′
2 . Moreover, |v′2|= j−k−1. Further-

more, y stands in the j-th position of v′2xv
′′
2x1v1, i. e., x1v1 = x1v

′
1yv
′′
1 with

|v′1| = j − k− 1. Therefore v = x1v
′
1yv
′′
1v
′
2xv
′′
1 and |v′1| = |v′2| and |v′′1 | = |v′′2 |. Then

we get for the second part

x1v
′
1yv
′′
1v
′
2yv
′′
2x1v

′
1yv
′′
1v
′
2xv
′′
2x2s−1x2s . . .xn

by the definition of Dn,n,j,x,y and from the form

v′2xv
′′
2x1v

′
1yv
′′
1v
′
2xv
′′
2v

m−1

given by our assumption. Considering the words starting in the position (|x1v
′
1yv
′′
1 |+ 1)

and in the position (|x1v
′
1yv
′′
1v
′
2y|+1), we see that v′1 = v′2 = z and v′′1 = v′′2 = z′. Looking

on the subwords starting in the first position and in the position |v′1|+2, we get x1z = zx
and yz′ = xx1. By Lemma 5, x1 = x and y = x1, which contradicts x 6= y.

Case 4. Let j = hs+ q for some h ≥ 1 and 1 ≤ q ≤ k−1. Then xj = x is the q-th letter
of v. Thus v = v′1xv

′′
1v2 with |v′1|= q−1.

We now compute the position of y in v. Since the second part starts with v2 of length k−1
and hs+q = k−1+(h−1)s+s+q− (k−1) = k1 +(h−1)s+k+q, y is the (k+q)-th
letter of v. Therefore v = v′1xv

′′
1v
′
2yv
′′
2 with |v′1| = |v′2|. Moreover, |v′′1 | = |v′′2 |+ 1. Now

we get easily the same situation as in Case 1; thus we get (1) and (2) and a difference in
the (|z1|+1)-st position.
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Case 5. Let j = hs+ k for some h ≥ 1. Then x is the k-th letter of v. We compute the
position of y in v. Since the second part starts with v2 of length k−1 and

hs+k = k−1+hs+k− (k−1),

y is the first letter of v. Therefore we get v = yzxyz as in Case 2, which leads to a
contradiction.

Case 6. Let j = hs+ q for some h ≥ 1 and k+ 1 ≤ q ≤ 2k− 1. Then xj = x is the q-th
letter of v. Thus v= x1v1v

′
2xv
′′
2 with |x1v1v

′
2|= q−1≥ k. Furthermore, |v′′2 |= 2k−1−q.

We now compute the position of y in v. Since the second part starts with v2 of length k−1
and hs+ q = k−1+hs+ q− (k−1), y is the (q−k+1)-st letter of v. Therefore

v = x1v
′
1yv
′′
1v
′
2xv
′′
2 with |x1v

′
1|= q−k.

Therefore |v′′1 | = k− (q− k+ 1) = 2k− 1− q. Hence |v′′1 | = |v′′2 | and consequently also
|v′1| = |v′2|. Therefore we have exactly the situation of Case 3, which leads to contradic-
tion.

Let us now consider i= 1, i. e., the operation Dn,1,j,x,y. By the first part of this proof

Dn,n,n−j+1,x,y(wR) = xnxn−1 . . .x1xnxn−1 . . .xj+1yxj−1xj−2 . . .x2 ∈Q,

by Lemma 2,

x2x3 . . .xj−1yxj+1xj+2 . . .xnx1x2 . . .xn ∈Q,

and by Lemma 1

x1x2 . . .xnx2x3 . . .xj−1yxj+1xj+2 . . .xn =Dn,1,j,x,y(w) ∈Q.

We now consider the case j < i. We set

w = xi+1xi+2 . . .xnx1x2 . . .xi.

Moreover, let xj = x. By the first part of this proof we get

Dn,n,n−i+j,x,y(w) = xi+1 . . .xnx1 . . .xixi+1 . . .xnx1 . . .xj−1yxj+1 . . .xi−1 ∈Q.

Hence, by Lemma 1

x1 . . .xixi+1 . . .xnx1 . . .xj−1yxj+1 . . .xi−1xi+1 . . .xn =Dn,i,j,x,y(w) ∈Q.

If i < j we can prove that Dn,i,j,x,y(w) ∈Q analogously to the case j < i using Dn,1,j,x,y
instead of Dn,n,j,x,y. 2

Theorem 12. If q is a primitive word of length n, 0≤ i≤ n and z ∈ V , then In,i,z(q)∈Q.
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Proof. Let w be a primitive word of length n and a ∈ V . Then In,n,a(w) = wwa. Let us
assume that In,n,a(w) /∈Q. By Lemma 1, aww /∈Q. Now we conclude as in the proof of
Theorem 10 (Case i= 1) that w= (zza)m−1az and z is a power of a, which yields that w
is a power of a in contrast to the primitivity of w.
In order to prove the closure of In,i,z for 1≤ i≤ n−1 we use Lemma 1, again. 2

Theorem 13. If q ∈Q and In,i,z,j,x,y(q) is defined, then In,i,z,j,x,y(q) ∈Q.

Proof. Let w = x1x2 . . .xj−1xxj+1xj+2 . . .xn. Then

In,n,a,j,x,y = x1x2 . . .xnx1x2 . . .xj−1yxj+1xj+2 . . .xna.

If we assume that In,n,a,j,x,y is not in Q, then

x1 . . .xj−1yxj+1 . . .xnax1 . . .xn =Dn+1,n+1,j,y,x(x1 . . .xj−1yxj+1 . . .xna) /∈Q,

which is a contradiction to Theorem 11. The general case can be obtained using Lemmas 1
and 2. 2

Let a word ww′ be given with ed(w,w′) = 1. Then w′ is obtained by a change (i. e.,
d(w,w′) = 1 = 20), either by a deletion or by an insertion. By the Theorems 6, 10 and 12,
ww′ is inQ provided that w ∈Q. If ed(w,w′) = 2 we have again ww′ ∈Q if two changes,
or a deletion and a change, or a change and an insertion are performed (by Theorems 6,
11 and 13). In the remaining cases, in general, primitivity is not preserved. Performing
two deletions we can get a non-primitive word, as can be seen from w = 110p1 which
results in 110p1110p1 and gives 110p110p = (110p)2 /∈Q if we delete the first and last
letters of the second copy (note that the statement holds for any length n ≥ 4 since it
holds for any p ≥ 1). The same holds for two insertions; e. g. the duplication 10p10p of
w= 10p ∈Q yields 10p110p1 = (10p1)2 by inserting a 1 before and after the second copy
of 10p. Furthermore, if we cancel the first letter and insert a 1 before the last 0 in the
duplication 110110 of 110 ∈Q, we get 110110 = (110)2 /∈Q, again.
Therefore we have a complete picture for the case that the edit distance is at most 2.

4. Concatenation of an Almost Mirror Image

In this section, again, we consider words of the form ww′. However, instead of an almost
copy w′ of w we choose w′ in such a way that the Hamming/edit distance of w′ and the
mirror image wR is small.

We start with the remark that, in general, for a primitive word w, the word wwR is not
a primitive word. For example, if we concatenate 100110 and its mirror image, we obtain
100110011001 = (1001)3 /∈Q. Moreover, if we delete one letter in wR, the obtained
operation is not primitivity preserving as can be seen from the following counterexample.
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Let w = 01001. Since wR = 10010, wwR = 0100110010. If we delete the first letter of
wR, then we obtain 010010010 = (010)3 /∈Q.

We define formally three operations which are analogous to some with a small Ham-
ming distance d(w,w′) considered in the preceding section.

Definition 14. For any natural numbers n,i, j with 1 ≤ i ≤ n and 2 ≤ j ≤ n, all letters
x,y ∈ V with x 6= y, and a word w = x1x2 . . .xn, xi ∈ V , of length n, we define the
following operations

Mn,i,x,y : V n→ V 2n, and M ′n,j,x,y : V n→ V 2n−1

by

Mn,i,x,y(x1x2 . . .xn) =

{
x1x2 . . .xnxnxn−1 . . .xi+1yxi−1xj−2 . . .x1, xi = x,

undefined, otherwise,

M ′n,j,x,y(x1x2 . . .xn) =

{
x1x2 . . .xnxnxn−1 . . .xj+1yxj−1xj−2 . . .x2, xj = x,

undefined, otherwise.

For all odd natural numbers n, all mappings h : V → V with h(a) 6= a for all a ∈ V , and
all words w = x1x2 . . .xn, xi ∈ V , of length n, we define the operation O′n,h : V n→ V 2n

by

O′n,h(x1x2 . . .xn) = x1x2 . . .xnh(xn)xn−1 . . .xi+1h(xi)xi−1xi−2 . . .x2h(x1)

where i= n+1
2 .

Theorem 15. If w ∈Q such that Mn,i,x,y(w) is defined, then Mn,i,x,y(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn. Then

w′ =Mn,i,x,y(w) = x1x2 . . .xi−1xxi+1xi+2xnxnxn−1 . . .xi+1yxi−1xi−2 . . .x1.

Let u1 = x1 . . .xi−1 and u2 = xi+1 . . .xn. Then

w = u1xu2 and w′ = u1xu2u
R
2 yu

R
1 .

Let us assume that w′ /∈Q. Then w′ = vp for some p≥ 2 and some word v ∈ V +.
If p is even and p > 2, then v

p
2 =w and p

2 ≥ 2, which contradicts w ∈Q. If p= 2, then

v = u1xu2 = uR2 yu
R
1 . (3)

We now count the number of occurrences of x and get

#x(u1xu2) = #x(u1)+1+#x(u2)



22 Jürgen Dassow, Gema M. Martı́n, Francisco J. Vico

and

#x(uR2 yu
R
1 ) = #x(uR2 )+#x(uR1 ) = #x(u2)+#x(u1).

Thus

#x(u1xu2) 6= #x(uR2 yu
R
1 )

which contradicts (3).

If p is odd, say p= 2m+1 for some m≥ 1, then w′ = vmv1v2v
m where v = v1v2 and

|v1| = |v2|. If i > |v|, then by the construction of w′ we get w′ = vzvR with
z = vm−1v1v2v

m−1 and by our assumption (w′ = v2m+1) we have w′ = vzv. Therefore
v = vR.

Now let i≤ |v|. Then v1 and v2 and v satisfy the following conditions:

• v2 = vR1 (by construction),

• vR2 = ((v1)R)R = v1,

• vR = (v1v2)R = vR2 v
R
1 = v1v2 = v.

Hence in both cases we have v = vR.

Now assume that x occurs in the j-th factor v where 1 ≤ j ≤ m (or equivalently,
(j−1)|v|< i≤ j|v|), i. e., for this factor v we have v = v3xv4. Then

w′ = vj−1v3xv4v
m−jv1v2v

m−jvR4 yv
R
3 v

j−1

by definition of Mn,i,x,y, and

w′ = vj−1v3xv4v
m−jv1v2v

m−jv3xv4v
j−1

by assumption. Therefore

v3xv4 = vR4 yv
R
3

Now we can construct a contradiction as above by counting the number of occurrences
of x. Let x occur in v1, i. e., v1 = v5xv6. Then v2 = vR6 yv

R
5 . Thus

v = v1v2 = v5xv6v
R
6 yv

R
5

Then

vR = v5yv6v
R
6 xv

R
5 6= v

in contradiction to v = vR. 2
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Theorem 16. If w ∈Q such that M ′n,j,x,y(w) is defined, then M ′n,i,x,y(w)∈Q also holds.

Proof. Let w = x1x2 . . .xn. Then

M ′n,j,x,y(w) = x1x2 . . .xnxnxn−1 . . .xj+1yxj−1xj−2 . . .x2.

Obviously, |Mn,j,x,y(w)|= 2n+1, i. e., the length of Mn,j,x,y(w) is odd.
If M ′n,j,x,y(w) is not a primitive word, then Mn,j,x,y(w) = vp for some primitive word v
of odd length and some odd number p with p≥ 3, say p= 2m+1 with m≥ 1. As in the
preceding proofs we get v = v1xnv2 with

M ′n,j,x,y(w) = vmv1xn|v2v
m = (v1xnv2)mv1xn|v2(v1xnv2)m

and |v1|= |v2|. Let |v1|= q, i. e., |v|= 2q+1.
Let 2 ≤ j ≤ 2q+ 1. Then considering the (m+ 1)-st factor v of M ′n,j,x,y(w), we

obtain v = v1xn|v2 = x1x2 . . .xqxn|xnxq . . .x2. Let z = x2x3 . . .xqxn. Then v = x1zz
R.

On the other hand, for 2≤ j≤ 2q+1, by definition ofM ′n,j,x,y(w) =M ′n,j,x,y(x1zz
Rv2m),

M ′n,j,x,y(w) does not end with (zzR)R = zzR. Thus we have a contradiction to the fact
that Mn,j,x,y(w) ends with v and therefore with zzR.

Let j = 2q+ 2. Then the (2q+ 2)-nd letter of w is x. Moreover, the (2q+ 2)-nd
letter of w is the first letter of the second factor v of M ′n,j,x,y(w) which is x1. Hence
x = x1. On the other hand, by the definition of M ′n,j,x,y(w), counting from the end,
y is the (2q+ 1)-st letter of M ′n,j,x,y(w), which means that y is the first letter of the last
factor v ofMn,j,x,y(w). Thus y= x1. Hence we get x= y in contradiction to the definition
of M ′n,j,x,y.

Let 2q+ 3 ≤ j ≤ n. Then we can derive a contradiction by analogous argument (in
the case that m(2q+1)< j ≤ n, we get v = v1xnv2 = x1zz

R by considering the first
factor v1 and the last factor v2 in M ′n,j,x,y(w)). 2

Finally in this section, we give a result which is the counterpart of Theorem 8. We omit
the proof which can be given in analogy to the proof of Theorem 8.

Theorem 17. For any odd natural number n ≥ 5, any primitive word q of length n, and
any mapping h : V → V with h(a) 6= a for all a ∈ V , O′n,h(q) is a primitive word. 2

5. Further Operations with an Almost Duplication
of Length

First in this section, we discuss the situation where w′ in ww′ is obtained from w or wR

by large changes.
If we change all letters in the second part, primitivity is not preserved in general. For

instance, if we take the primitive word w = 100110, then by changing all letters of w we
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obtain 100110011001 = (1001)3 /∈Q; and starting with the primitive wordw= 10010110
and changing all letters of wR we get 1001011010010110 = w2 /∈Q.

Theorem 18. Let w and w′ be two words of length n such that n− d(w,w′) is a power
of 2, then ww′ is a primitive word.

Proof. The proof can be given in a way analogous to the proof of Theorem 6. 2

The following definition and result are analogies to Dn,n and Theorem 10.

Definition 19. For any natural numbers n, any natural number i with 1≤ i≤ n, and any
mapping h : V → V with h(a) 6= a and h(h(a)) = a for all a ∈ V , we define the operation
Dn,h : V n→ V 2n−1 by

Dn,h(x1x2 . . .xn) = x1x2 . . .xnh(x1x2 . . . . . .xn−1).

Theorem 20. For any natural numbers n, any natural number i with 1 ≤ i ≤ n, any
mapping h : V → V with h(a) 6= a and h(h(a)) = a for all a ∈ V , and any w ∈ Q,
Dn,h(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn with xj ∈ V for 1≤ j ≤ n. Then

Dn,h(x1x2 . . .xn) = x1x2 . . .xnh(x1 . . .xn−1)

has an odd length.
Let us suppose that Dn,h(w) /∈ Q, that is, there exist a p ≥ 2 and v ∈ Q such that

Dn,n,h = vp.
Thus p is odd, say p = 2m+ 1 for some m ≥ 1. As above there are words v, v1 and v2
such that v = v1xnv2 and

x1x2 . . .xn|h(x1 . . .xn−1) = (v1xnv2)mv1xn|v2(v1xnv2)m.

Since |(v1xnv2)mv1|= |v2(v1xnv2)m|, |v1|= |v2|.
Furthermore v2 = h(v1) by definition of Dn,h. Therefore we get

x1x2 . . .xn|h(x1 . . .xn−1) = (v1xnh(v1))mv1xn|h(v1)(v1xnh(v1))m.

Thus (h(v1)h(xn)v1)mh(v1) = h(v1)(v1xnh(v1))m, that is,

(h(v1)h(xn)v1)mh(v1) = (h(v1)v1xn)mh(v1).

Hence h(xn)v1 = v1xn. Therefore, by Lemma 5, h(xn) = xn in contrast to the supposition
concerning h. 2

By Theorem 18, from a word w ∈ Q we obtain a primitive word ww′ where w′ is con-
structed from w by changing all letters except one letter. This result does not hold for
the mirror image, i. e., if one concatenates w with its mirror image and changes all letters
of the mirror image besides one letter, in general, one does not obtain a primitive word.
For example, if w = 11100 ∈Q and i= 3, then we obtain 1110011100 = (11100)2 /∈Q.
However, if we restrict to special positions, then the corresponding statement is true, as
shown by the following two theorems.
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Definition 21. For any natural numbers n and iwith 1≤ i≤n and any mapping h : V → V
with h(a) 6= a for all a ∈ V , we define the operations

Mn,1,h, Mn,n,h : V n→ V 2n

by

Mn,1,h(x1x2 . . .xn) = x1x2 . . .xnxnh(xn−1xn−2 . . .x1),
Mn,n,h(x1x2 . . .xn) = x1x2 . . .xnh(xnxn−1 . . .x2)x1.

Theorem 22. For any n ≥ 2, any mapping h : V → V with h(a) 6= a for all a ∈ V and
any w ∈Q, Mn,1,h(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn, where xi ∈ V . Then

Mn,1,h(w) = x1x2 . . .xn−1xnxnh(xn−1xn−2 . . .x1)

has an even length.
Let us suppose that Mn,1,h(w) /∈ Q, that is, there exists a p ∈ N and v ∈ Q such that

x1x2 . . .xn−1xnxnh(xn−1xn−2 . . .x1) = vp.

If p is even and p > 2, then v
p
2 = w and p

2 ≥ 2, which contradicts w ∈ Q. If p = 2,
then x1x2 . . .xn−1xnxnh(xn−1xn−2 . . .x1) = v2, that is,

v = x1x2 . . .xn−1xn = xnh(xn−1xn−2 . . .x1).

Then xn = x1 and xn = h(x1), which is a contradiction.
If p is odd, then p= 2m+1 for somem≥ 1 and v= x1v

′xnv
′′ with v′,v′′ ∈ V ∗, which

can be shown as in the proof of Theorem 11. Since

x1 . . .xn−1xn|xnh(xn−1xn−2 . . .x1) = vmx1v
′|xnv′′vm, |v′|= |v′′|.

We distinguish the cases v′ 6= λ 6= v′′ and v′ = λ= v′′.
Supposing v′ 6= λ 6= v′′ and v′ = y1 . . .yr and v′′ = z1 . . . zr. Then

x1 . . .xn−1xn|xnh(xn−1xn−2 . . .x1)
= (x1y1 . . .yrxnz1 . . . zr)mx1y1 . . .yr|xnz1 . . . zr(x1y1 . . .yrxnz1 . . . zr)m

and yr = xn. Since h(x1y1y2 . . .yr) = zrzr−1 . . . z1xn by construction, h(yr) = xn, which
contradicts yr = xn

Supposing v′ = λ= v′′, we get

x1 . . .xn−1xn|xnh(xn−1xn−2 . . .x1) = (x1xn)mx1|xn(x1xn)m,

which implies xn = x1 and xn = h(x1), so it is a contradiction.
Therefore Qn,1,h(w) ∈Q. 2
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Theorem 23. For any n ≥ 2, any mapping h : V → V with h(a) 6= a for all a ∈ V and
any w ∈Q, Mn,n,h(w) ∈Q also holds.

Proof. Let w = x1x2 . . .xn. Let us assume that Mn,n,h(w) /∈ Q. Then there is a word
v ∈ V +and a natural number p≥ 2 such that Mn,n,h(w) = vp.

If p= 2, then v = x1x2 . . .xn = h(xnxn−1 . . .x2)x1. Hence x1 = h(xn) and xn = x1,
which is a contradiction. If p> 2 and even, thenw= v

n
2 ∈Q in contrast to our supposition.

If p is odd, i. e., p = 2m+ 1 for some m ≥ 1, then there are words v1 and v2 with
v = v1v2, |v1|= |v2| and

x1x2 . . .xn|h(xnxn−1 . . .h(x2)x1 = vmv1|v2v
m.

Let k = |v1|. Then

v1 = x1x2 . . .xk and v2 = h(xkxk−1 . . .x2)x1

by definition of Mn,n,h. Thus x2k+1 = x1 and h(x2k+1) = x1 in contrast to the required
property of h that h(a) 6= a for all a ∈ V . 2

We now define an operation where we duplicate the word, but the copy is shifted some
positions to the left. Hence, on one hand, no change is done in the copy, but on the
other hand, the position of the letters are changed essentially. An analogous operation is
performed where we shift an almost completely changed version of the word.

Definition 24. For any natural numbers n and i with 1 ≤ i ≤ n− 1 and any mapping
h : V → V with h(a) 6= a for all a ∈ V , we define the operation Sn,i : V n→ V 2n by

Sn,i(x1x2 . . .xn) = x1x2 . . .xix1x2 . . .xnxi+1xi+2 . . .xn.

Theorem 25. For any natural numbers n ≥ 2 and i with 1 ≤ i ≤ n− 1 and any word
q ∈Q of length n, Sn,i(q) ∈Q also holds.

Proof. Let q =ww′ ∈Q with w = x1x2 . . .xi−1 and w′ = xixi+1 . . .xn, where xj ∈ V for
1≤ j ≤ n. Then Sn,i(q) = www′w′.

Assumewww′w′ /∈Q, that is, there exist a number p∈N, p> 2 and a word v ∈Q such
aswww′w′= vp, that is,w2(w′)2 = vp. It is known, by Lemma 4,w=uk,w′=ul,v=um.
Since ww′ ∈Q and ww′ = uk+l, we have a contradiction.

Therefore www′w′ ∈Q. 2

We mention that an analogous statement does not hold, if one uses the mirror image
instead of a copy. The following example shows that then primitivity is not preserved.
Let w= 01 and i= 1; using the mirror image and shifting it by one position to the left we
get 0101 /∈Q.

Finally in the following theorem we present some operations which, together with
the above operations, allow the generation of all primitive words of length ≤ 11 (as can
be shown by computer calculations) and of a considerable amount of primitive words of
length up to twenty.
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Theorem 26. Let w ∈ Q be a primitive word of length n ≥ 2 and x ∈ V and y ∈ V two
different letters of V .

(i) Then wxn and wxn−1 and wxyn−2 are in Q, too.

(ii) If n is even, then w(xy)(n−2)/2x and w(xy)(n−2)/2y are primitive words, too.

Proof. We omit the easy proofs for (i).

(ii) We only prove the statement for w(xy)(n−2)/2x; the other proof can be given
analogously.

Assume that w(xy)(n−2)/2x /∈Q. Then there is a word v ∈ V + such that

w(xy)(n−2)/2x= vp

for some p ≥ 2. Since w(xy)(n−2)/2x has odd length, p and the length of v are odd
numbers. Let p= 2m+1 for some m≥ 1. Thus there are v1,v2 ∈ V + such that

v = v1v2, |v1|= |v2|+1 and w|(xy)(n−2)/2x= vmv1|v2v
m.

By w(xy)(n−2)/2x = v2m+1, we have v = (xy)kx for some k ≥ 1, and then v1 = (xy)r,
v2 = (xy)r−1x and

w|(xy)(n−2)/2x= ((xy)kx)m(xy)r|(xy)r−1x(xy)kx)m.

Since the (n+2(r−1)+2)-nd letters in both representations differ, we have a contradic-
tion. 2
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Abstract: It is shown that any context-sensitive language can be generated by a
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1. Introduction

Regulated rewriting is a common means to increase the generative power of context-free
grammars. A context-free core grammar is combined with a mechanism which controls
the derivation process. For a thorough introduction to regulated rewriting, see [3, 2].
In tree controlled grammars, introduced by Čulik and Maurer [1], the structure of the
derivation trees is restricted as all words belonging to a level of the derivation tree have
to be in a given regular language. It was shown by Păun [5] that tree controlled grammars
with λ-free context-free core grammars are equivalent to context-sensitive grammars.

Recently, Dassow and Truthe [4] have investigated the generative power of tree con-
trolled grammars when restricting the control language to subfamilies of the regular lan-
guages. In particular, they discussed the generative power with respect to the state com-
plexity of the control language. The problem whether the hierarchy defined by the state
complexity collapses was left open. We will settle this problem by showing that a state
complexity of 5 for the control language is sufficient to obtain the full generative power
of tree controlled grammars.

2. Definitions and Basic Notations

We assume that the reader is familiar with the basic concepts of formal language theory.
The families of regular, context-free, context-sensitive, recursively enumerable languages
are denoted by REG, CF, CS, RE, respectively.
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For a derivation tree T of height k for a derivation in a context-free grammar and a
number 0 ≤ j ≤ k, the word of level j is given by the nodes of depth j read from left to
right.

Definition 1. A tree controlled grammar is a tuple

G= (N,T,P,S,R),

where G′ = (N,T,P,S) is a context-free grammar and R ⊆ (N ∪T )∗ is a regular lan-
guage.

The language L(G) consists of all words w ∈ T ∗ generated by G′ with a derivation
tree whose words of all levels (except the last one) are in R.

LetL be a subfamily of REG. By T Cλ(L) (T C(L), respectively) we denote the family
of languages generated by tree controlled grammars with control languages from L and
arbitrary context-free core grammars (λ-free context-free core grammars, respectively).
It is known that T Cλ(REG) = RE and T C(REG) = CS [5].

For n ≥ 1, let REGn be the family of languages that are accepted by deterministic
finite automata with at most n states. Dassow and Truthe studied the families T C(REGn)
and obtained the following results, where E0L and ET0L denote the families generated by
E0L and ET0L systems.

Theorem 2 [4].

1. T C(REG1)⊆ T C(REG2)⊆ T C(REG3)⊆ ·· · ⊆ T C(REG) = CS.

2. E0L = T C(REG1)⊂ T C(REG2).

3. ET0L⊂ T C(REG4).

The principal proof technique for our result will be the simulation of queue automata
by tree controlled grammars. Intuitively, a queue automaton consists of a finite control
with a queue as storage. In a step of the automaton, the first symbol of the queue is
removed and a sequence of symbols is appended to the end of the queue.

Definition 3. A queue automaton is a tupleA= (Z,Σ,Γ, δ,z0,F ), where Z is the finite set
of states, Σ is the input alphabet, Γ is the tape alphabet with Σ⊆ Γ, δ ⊂ Z×Γ×Z×Γ+

is the finite transition relation, z0 ∈ Z is the initial state, F ⊆ Z is the set of accepting
states.

The automatonA is called a linearly bounded queue automaton if δ ⊆ Z×Γ×Z×Γ.
A configuration of A is given by a pair (z,w), where z ∈ Z, w ∈ Γ+. The successor

relation ` on the set of configurations is defined as (z,aw) ` (z′,wx) iff (z,a,z′,x) ∈ δ.
The language accepted by A, L(A), is defined as

L(A) = {w ∈ Σ
+ : (z0,w) `∗ (zf ,y), for some zf ∈ F,y ∈ Γ

∗}.
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It is well-known that the language family accepted by queue automata is equal to the
family of recursively enumerable languages. The proof is usually performed by construct-
ing an equivalent queue automaton from a given Turing machine, and vice versa. These
constructions preserve linear boundedness. Hence, the language family accepted by lin-
early bounded queue automata equals the family of context-sensitive languages. More-
over, the following technical result on queue automata can be easily shown analogously
to similar results for Turing machines (we leave the proof to the reader).

Lemma 4. Any recursively enumerable (context-sensitive) language can be accepted by
a (linearly bounded) queue automaton A= (Z,Σ,Γ, δ,z0,{q}), such that

• all reachable accepting configurations of A have the form (zf ,2n),n ≥ 1, for a
special symbol 2 ∈ Γ\Σ (called the blank symbol);

• δ∩{q}×Γ×Z×Γ+ = ∅ (the accepting state q has no successor);

• δ∩Z×Γ×{z0}×Γ+ = ∅ (the initial state z0 has no predecessor).

3. The Result

The idea of the construction is to rewind the accepting computation of a linearly bounded
queue automaton by means of a tree controlled grammar. We will first give a simple
construction where the size of the deterministic finite automaton for the control language
depends on the size of the tape alphabet of the queue automaton. Later, this construction
will be refined to limit the number of states by 5.

For a Cartesian productX1×X2×·· ·×Xn, let pri :X1×X2×·· ·×Xn→Xi denote
the projection on the i-th component, i. e., the mapping

pri : X1×X2×Xn→Xi

with

pri(x1,x2, . . . ,xn) = xi.

Lemma 5. For any linearly bounded queue automatonA, there is a tree controlled gram-
mar G such that L(G) = L(A).

Proof. Let A = (Z,Σ,Γ, δ,z0,{q}) be in the normal form as in Lemma 4 with the blank
symbol 2.
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The tree controlled grammar G is obtained as G= (N,Σ,P,S,R), where

N = N1∪N2,

N1 = Γ×Γ,

N2 = Γ×Γ×Z,
P = {p1}∪P2∪P3∪P4,

p1 = (2,2, q)→ (2,2, q)(2,2),
P2 = {(a,x)→ (y,a) : a,x,y ∈ Γ},
P3 = {(b,x,z′)→ (y,a,z) : x,y ∈ Γ,(z,a,z′, b) ∈ δ},
P4 = {(a,b)→ b,(a,b,z0)→ b : a,b ∈ Σ},

S = (2,2, q),
R = {A1A2 · · ·An : n≥ 1,A1 ∈N2,Ai ∈N1 for 2≤ i≤ n,

pr1(A1) = pr2(An),pr1(Ai) = pr2(Ai−1) for 2≤ i≤ n}.

A word in R can be seen as the encoding of a configuration of A. More specifically, a
configuration (z,a1a2a3 · · ·an−1an) is encoded by

(an,a1, z)(a1,a2)(a2,a3) . . .(an−1,an) ∈R.

We now consider the tree of a successful derivation in G in detail. As noted above, all
level words (except the last one) are encodings of configurations of A. On the root level
we find the word (2,2, q), i. e., the encoding of the accepting configuration of length 1.
Now suppose that some level contains a word (2,2, q)(2,2)j−1, encoding the accepting
configuration of length j. If the first symbol is replaced using rule p1, the next level must
have the form (2,2, q)(2,2)(x1,2) · · ·(xj−1,2), as the remaining symbols are replaced
using rules from P2. The control language requires that xi = 2, 1≤ i≤ j−1, and thus the
next level word is (2,2, q)(2,2)j , encoding the accepting configuration of length j+1.

Next, consider a level encoding a non-initial configuration (z′,a1a2 · · ·an) where
z′ 6= z0, i. e., with the word (an,a1, z

′)(a1,a2)(a2,a3) · · ·(an−1,an). The first symbol has
to be rewritten using a rule from P3, the remaining symbols are rewritten using P2, giving
a word of the form (xn,a0, z)(x1,a1)(x2,a2) · · ·(xn−1,an−1), where (z,a0, z

′,an) ∈ δ. In
view of the control languageR, xi = ai−1 has to hold, for 1≤ i≤ n. Hence, the next level
word describes a configuration (z,a0a1a2 · · ·an−1) with (z,a0, z

′,an) ∈ δ, i. e., a prede-
cessor configuration. On the other hand, for any predecessor configuration, the encoding
word can be obtained at the next level by choosing for the replacement of the first symbol
that rule from P3 which corresponds to the appropriate transition and for the replacement
of the other symbols the appropriate rules from P2.

Finally, consider a level encoding a configuration (z0,a1a2 · · ·an), i. e., with the word
(an,a1, z0)(a1,a2)(a2,a3) · · ·(an−1,an). The only possibility to rewrite the first symbol
is to use the rule (an,a1, z0)→ a1 if an,a1 ∈ Σ. Hence the next level of the derivation
tree is the final. The remaining symbols have to be rewritten using rules of P4, implying
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that a1,a2, . . . ,an ∈ Σ and giving the word a1a2 · · ·an as the next level and as the yield of
the derivation.

Consequently, a terminal word is generated by G iff it is accepted by A. 2

A deterministic finite automaton accepting the control language R in the above proof
requires |Γ|2 + 2 states, as it must store the second component of the current symbol for
comparison with the next symbol and the first component of the first symbol for compar-
ison with the last symbol; moreover two separate initial and failure states are needed. To
construct a tree controlled grammar with a control language with a fixed number of states,
we modify the grammar as follows. The symbols of the queue automaton are encoded by
a bit vector of length k = dlog2 |Γ|e. A reverse computation step of A is simulated in k
derivation levels of the tree controlled grammar. In each sub-step, one bit is passed from
a symbol to its right neighbour. The details of the construction will be given in the proof
of the following theorem.

Theorem 6. T C(REG5) = CS.

Proof. LetA= (Z,Σ,Γ, δ,z0,{q}) be a linearly bounded queue automaton as in the proof
of Lemma 5 with the blank symbol 2 ∈ Γ. Let k = dlog2 |Γ|e and let ϕ : Γ→ {0,1}k be
an encoding of Γ with ϕ(2) = (0,0, . . . ,0).

The tree controlled grammar G is obtained as G= (N,Σ,P,S,R), where

N = N1∪N2,

N1 = {0,1}k+1,

N2 = {0,1}k+1×Z×{1,2 . . . ,k},
P = {p1}∪P2∪P3∪P4∪P5,

p1 = (0k+1, q,1)→ (0k+1, q,1)0k+1,

P2 = {(a1, . . . ,ak,ak+1)→ (y,a1, . . . ,ak) : a1, . . . ,ak+1,y ∈ {0,1}},
P3 = {(a1, . . . ,ak,ak+1, z, i)→ (y,a1, . . . ,ak, z, i+1) :

a1, . . . ,ak+1,y ∈ {0,1}, z ∈ Z,1≤ i < k},
P4 = {(ϕ(b),x,z′,k)→ (y,ϕ(a), z,1) : x,y ∈ {0,1},(z,a,z′, b) ∈ δ},
P5 = {(y,ϕ(b))→ b,(y,ϕ(b), z0,1)→ b : b ∈ Σ,y ∈ {0,1}},

S = (0k+1, q,1),
R = {A1A2 · · ·An : n≥ 1,A1 ∈N2,Ai ∈N1 for 2≤ i≤ n,

pr1(A1) = prk+1(An),pr1(Ai) = prk+1(Ai−1) for 2≤ i≤ n}.

We set N2,i = {0,1}k+1×Z ×{i}, for 1 ≤ i ≤ k. A word from R encodes a con-
figuration of the queue automaton as follows. A configuration (z,a1a2a3 · · ·an−1an) is
encoded by

(prk(ϕ(an)),ϕ(a1), z,1)(prk(ϕ(a1)),ϕ(a2))(prk(ϕ(a2)),ϕ(a3)) . . .(prk(ϕ(an−1)),ϕ(an)).
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Similar to the proof of Lemma 5, we will now discuss the successful derivation trees
in G. On the root level, we find the word S = (0k+1, q,1), which encodes the accepting
configuration of length 1. If the word of some level encodes the accepting configuration
of length j and rule p1 is applied to the first symbol, then the next level encodes the
accepting configuration of length j+1.

Now consider a level word α1 = A1A2 · · ·An encoding a configuration. The symbols
have the forms

A1 = (an,k,a1,1,a1,2 . . . ,a1,k, z
′,1),

Ai = (ai−1,k,ai,1,ai,2, . . . ,ai,k), for 2≤ i≤ n.

As α1 encodes a configuration of the queue automaton, (ai,1,ai,2, . . . ,ai,k) = ϕ(xi) has
to hold for appropriate xi ∈ Γ, 1 ≤ i ≤ n. The symbol A1 has to be rewritten using a
rule from P3 (with the exception of z′ = z0, discussed below), which implies that the
remaining symbols are replaced using rules of P2. In view of R, the next level has to be
labelled α2 = A2

1A
2
2 · · ·A2

n with

A2
1 = (an,k−1,an,k,a1,1,a1,2 . . . ,a1,k−1, z

′,2),

A2
i = (ai−1,k−1,ai−1,k,ai,1,ai,2, . . . ,ai,k−1), for 2≤ i≤ n.

By analogous arguments for words in N2,jN
∗
1 , 2≤ j < k, we obtain after k−1 levels the

word αk = Ak1A
k
2 · · ·Akn ∈R with

Ak1 = (an,1,an,2, . . . ,an,k,a1,1, z
′,k),

Aki = (ai−1,1,ai−1,2, . . . ,ai−1,k,ai,1), for 2≤ i≤ n.

On the next level, Ak1 is replaced using a rule from P4 and the remaining symbols using a
rule from P2. One obtains a word αk+1 = Ak+1

1 Ak+1
2 · · ·Ak+1

n ∈R with

Ak+1
1 = (an−1,k, b1,1, . . . , b1,k, z,1),

Ak+1
2 = (b1,k,a1,1, . . . ,a1,k),

Ak+1
i = (ai−2,k,ai−1,1,ai−1,2, . . . ,ai−1,k) = Ai−1, for 3≤ i≤ n,

where (b1,1, . . . , b1,k) = ϕ(x0), (z,x0, z
′,xn) ∈ δ. Hence, the configuration encoded by

αk+1 is a predecessor of that encoded by α1. On the other hand, the encoding of any
predecessor configuration can be reached by choosing the appropriate rules.

Finally, if and only if a level word describes an initial configuration of A, the input
word can be reached as terminal word on the next level by using the rules of P5.

The control language R can be accepted by a deterministic finite automaton with
six states. However, note that the rules of G imply that any derivable sentential form
over N is a word from N2N

∗
1 . Instead of R, we can use any regular language R′ such
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that R′∩N2N
∗
1 =R. Such a language is the one accepted by the deterministic finite

automaton

M= ({z00, z01, z10, z11, fail},N ∪Σ,f,z00,{z00, z11})

with the transition function f defined as

f(zab,(b,a1, . . . ,ak)) = zaak
, for a,b,a1, . . . ,ak ∈ {0,1};

f(zab,(a0,a1, . . . ,ak, z, i)) = za0ak
, for a,b,a0,a1, . . . ,ak ∈ {0,1}, z ∈ Z,i ∈ {1, . . . ,k};

f(z,A) = fail, in all other cases.

Obviously,M accepts only words over N . When receiving an input from N2N
∗
1 ,M

works as follows. A state of the form zab is meant to store two bits: the first bit of the
symbol from N2 is a, while the last bit of the currently read symbol is b. If the first bit of
the next symbol is unequal to the stored one, the input is rejected. Finally,M accepts iff
it reaches a state zaa, thus if additionally the last bit of the last symbol is equal to the first
of the first one. 2

Corollary 7. T Cλ(REG5) = RE.

Proof. Note that any recursively enumerable language L′ can be expressed as h(L) for
appropriate homomorphism h and context-sensitive language L. In the construction of
the tree controlled grammar for L as in the proof of Theorem 6, one has just to change
the rules in P5 by replacing on the right-hand sides the letters from Σ by their images
under h. 2
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Abstract: We show that every context-sensitive language can be accepted by an
accepting network of non-increasing evolutionary processors with one substitution
processor and one output node whose communication is controlled by regular lan-
guages. Every recursively enumerable language can be accepted by a network with
three evolutionary processors: one substitution processor, one insertion processor
and one output node. Also with insertion and deletion processors only (without sub-
stitution nodes), all recursively enumerable languages can be accepted. Then one
insertion node, one deletion node and one output node are sufficient.

Keywords: Accepting networks of evolutionary processors, regular filters, size com-
plexity.

1. Introduction

Motivated by some models of massively parallel computer architectures (see [10, 9]) net-
works of language processors have been introduced in [6] by ERZSÉBET CSUHAJ-VARJÚ

and ARTO SALOMAA. Such a network can be considered as a graph where the nodes are
sets of productions and at any moment of time a language is associated with a node.

Inspired by biological processes, JUAN CASTELLANOS, CARLOS MARTÍN-VIDE,
VICTOR MITRANA and JOSÉ M. SEMPERE introduced in [4] a special type of networks
of language processors which are called networks with evolutionary processors because
the allowed productions model the point mutation known from biology. The sets of pro-
ductions have to be substitutions of one letter by another letter or insertions of letters or
deletion of letters; the nodes are then called substitution node or insertion node or deletion
node, respectively. Results on networks of evolutionary processors can be found e. g. in
[4, 5, 3, 2].

Accepting networks of evolutionary processors with regular filters were first investi-
gated by JÜRGEN DASSOW and VICTOR MITRANA in [7]. Especially, they have shown
that every network of non-increasing processors accepts a context-sensitive language.
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In [8] and [1], we investigated the generative capacity of networks with evolutionary
processors where only two types of nodes are allowed. Especially, we proved two results:

• Networks with substitution nodes and insertion nodes (but without deletion nodes)
generate all context-sensitive languages and one substitution node and one insertion
node are sufficient.

• Networks with insertion nodes and deletion nodes (but without substitution nodes)
generate all recursively enumerable languages and one insertion node and one dele-
tion node are sufficient.

In the present paper, we show the dual case:

• Every context-sensitive language can be accepted by an accepting network of evo-
lutionary processors with regular filters and with one substitution node, one deletion
node and one output node.

• Every recursively enumerable language can be accepted by an accepting network
of evolutionary processors with regular filters and with one insertion node, one
deletion node and one output node.

Further, we show that every recursively enumerable language can be accepted by a
network with one substitution processor, one insertion processor and one output node.

Whereas networks consisting of substitution processors only cannot generate other
languages than finite ones, accepting pure substitution networks can accept infinite lan-
guages. The reason is that generating networks start with a finite set (and substitution
nodes cannot increase the length of the words) while accepting networks can get infinitely
many input words. We show that all context-sensitive languages can be accepted by net-
works of substitution processors and that one substitution processor is sufficient (apart
from an output node).

2. Definitions

We assume that the reader is familiar with the basic concepts of formal language theory
(see e. g. [13]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words (strings) over V (including the empty word λ).
The length of a word w is denoted by |w|.

In the proofs we shall often add new letters of an alphabet U to a given alphabet V . In
all these situations, we assume that V ∩U = ∅.

A phrase structure grammar is specified as a quadruple G = (N,T,P,S) where N is
a set of non-terminals, T is a set of terminals, P is a finite set of productions which are
written as α→ β with α ∈ (N ∪T )∗ \T ∗ and β ∈ (N ∪T )∗, and S ∈ N is the axiom.
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The grammar G is called monotone, if |α| ≤ |β| holds for every rule α→ β of P where
the exception S → λ is permitted if S does not occur on a right hand side of a rule.
A monotone grammar is in Kuroda normal form if all its productions have one of the
following forms:

AB→ CD, A→ CD, A→ x, where A,B,C,D ∈N, x ∈N ∪T ;

again, S→ λ is permitted if S does not occur on a right hand side of a rule.

We call a production α→ β a

– substitution if |α|= |β|= 1,

– deletion if |α|= 1 and β = λ.

We regard insertion as a counterpart of deletion. We write λ→ a, where a is a letter. The
application of an insertion λ→ a derives from a word w any word w1aw2 with w=w1w2
for some (possibly empty) words w1 and w2.

We now introduce the basic concept of this paper, the accepting networks of evolu-
tionary processors.

Definition 1.
(i) An accepting network of evolutionary processors of size n is a tuple

N (n) = (U,V,N1,N2, . . . ,Nn,E,j,O)

where

• U and V are finite alphabets (the input and network alphabet, resp.), U ⊆ V ,

• for 1≤ i≤ n, Ni = (Mi, Ii,Oi) where

– Mi is a set of evolution rules of a certain type, Mi ⊆ {a→ b | a,b ∈ V }
or Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },

– Ii and Oi are regular sets over V ,

• E is a subset of {1,2, . . . ,n}×{1,2, . . . ,n},
• j is a natural number such that 1≤ j ≤ n, and

• O is a subset of {1,2, . . . ,n}.

(ii) A configuration C of N (n) is an n-tuple C = (C(1),C(2), . . . ,C(n)) if C(i) is a
subset of V ∗ for 1≤ i≤ n.

(iii) Let C = (C(1),C(2), . . . ,C(n)) and C ′ = (C ′(1),C ′(2), . . . ,C ′(n)) be two config-
urations of N (n). We say that C derives C ′ in one

– evolution step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n, C ′(i) consists of all
words w ∈ C(i) to which no rule of Mi is applicable and of all words w for
which there are a word v ∈C(i) and a rule p ∈Mi such that v =⇒p w holds,
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– communication step (written as C ` C ′) if, for 1≤ i≤ n,

C ′(i) = (C(i)\Oi)∪
⋃

(k,i)∈E
C(k)∩Ok ∩ Ii.

The computation of a network N (n) on an input word w ∈ U∗ is a sequence of
configurations Cwt = (Cwt (1),Cwt (2), . . . ,Cwt (n)), t≥ 0, such that

– Cw0 = (Cw0 (1),Cw0 (2), . . . ,Cw0 (n)) where Cw0 (j) = {w} and Cw0 (i) = ∅
for 1≤ i 6= j ≤ n,

– for any t≥ 0, Cw2t derives Cw2t+1 in one evolution step: Cw2t =⇒ Cw2t+1,

– for any t≥ 0,Cw2t+1 derivesCw2t+2 in one communication step: Cw2t+1 `Cw2t+2.

(iv) The languages Lw(N ) weakly accepted by N and Ls(N ) strongly accepted by N
are defined as

Lw(N ) = {w ∈ U∗ | ∃t≥ 0∃o ∈O : Cwt (o) 6= ∅} ,
Ls(N ) = {w ∈ U∗ | ∃t≥ 0∀o ∈O : Cwt (o) 6= ∅} ,

where Cwt = (Cwt (1),Cwt (2), . . . ,Cwt (n)), t≥ 0 is the computation of N on w.

Intuitively a network with evolutionary processors is a graph consisting of some, say
n, nodes N1,N2, . . . ,Nn (called processors) and the set of edges given by E such that
there is a directed edge from Nk to Ni if and only if (k, i) ∈ E. The node Nj is called
the input node; every node No with o ∈ O is called an output node. Any processor Ni
consists of a set of evolution rules Mi, an input filter Ii and an output filter Oi. We say
that Ni is a substitution node or a deletion node or an insertion node if Mi ⊆ {a→ b |
a,b ∈ V } or Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V }, respectively. The input
filter Ii and the output filter Oi control the words which are allowed to enter and to leave
the node, respectively. With any node Ni and any time moment t ≥ 0 we associate a
set Ct(i) of words (the words contained in the node at time t). Initially, the input node Nj
contains an input word w; all other nodes do not contain words. In an evolution step,
we derive from Ct(i) all words applying rules from the set Mi. In a communication
step, any processor Ni sends out all words Ct(i)∩Oi (which pass the output filter) to all
processors to which a directed edge exists (only the words from Ct(i)\Oi remain in the
set associated withNi) and, moreover, it receives from any processorNk such that there is
an edge from Nk to Ni all words sent by Nk and passing the input filter Ii of Ni, i. e., the
processor Ni gets in addition all words of (Ct(k)∩Ok)∩ Ii. We start with an evolution
step and then communication steps and evolution steps are alternately performed. The
language accepted consists of all words w such that if w is given as an input word in
the node Nj then, at some moment t, t ≥ 0, one output node contains a word (weak
acceptance) or all output nodes contain a word (strong acceptance).
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3. Networks of Non-Increasing Nodes

Deletion and substitution nodes do not increase the length of the words. Such nodes are
also called non-increasing. In a network with only non-increasing nodes, the length of
every word in every node at any step in the computation is bounded by the length of the
input word.

In this section, we show that every context-sensitive language can be accepted by an
accepting network of evolutionary processors with deletion and substitution nodes but no
insertion nodes. Especially, one substitution node (which is the input node), one deletion
node and one output node are sufficient.

This is the inverse situation to that one considered in [8], where we have shown that
networks with insertion nodes and substitution nodes (but without deletion nodes) gener-
ate all context-sensitive languages and one insertion node and one substitution node are
sufficient.

Theorem 2. For any context-sensitive language L, there is an accepting network N of
evolutionary processors with exactly one substitution node, one deletion node and one
output node without rules that weakly and strongly accepts the language L:

L= Lw(N ) = Ls(N ).

Proof. Let L be a context-sensitive language and G = (N,T,P,S) be a grammar in
Kuroda normal form with L(G) = L. Let R1,R2, . . . ,R7 be the following sets:

R1 = {x→ xp,0, xp,0→ A | A→ x ∈ P, A ∈N, x ∈N ∪T } ,
R2 = {C→ Cp,1 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N } ,
R3 = {D→Dp,2 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N } ,
R4 = {Cp,1→ Cp,3 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N } ,
R5 = {Dp,2→Dp,4 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N } ,
R6 = {Cp,3→ A | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N } ,
R7 = {Dp,4→B | p= AB→ CD ∈ P, A,B,C,D ∈N } .

We construct a network of evolutionary processors

N = (T,V,(M1,V
∗,O1),(M2, I2,V

∗),(∅, I3,∅),{(1,2),(2,1),(1,3),(2,3)} ,1,{3})

with

V =N ∪T ∪
⋃

p=A→x
{xp,0 }∪

⋃
p=A→CD

p=AB→CD

{Cp,1,Dp,2,Cp,3,Dp,4 } ,

M1 =R1∪R2∪R3∪R4∪R5∪R6∪R7,

O1 = {S,λ}∪V ∗ \ ((N ∪T )∗Ō(N ∪T )∗),
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where

Ō ={xp,0 | p= A→ x ∈ P, A ∈N, x ∈N ∪T }
∪{Cp,1 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N }
∪{Cp,1Dp,2 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N }
∪{Cp,3Dp,2 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N }
∪{Cp,3Dp,4 | p= A→ CD ∈ P or p= AB→ CD ∈ P, A,B,C,D ∈N }
∪{ADp,4 | p= AB→ CD ∈ P, A,B,C,D ∈N }
∪{λ} ,

and

M2 = {Dp,4→ λ | p= A→ CD ∈ P, A,B,C,D ∈N } ,
I2 = (N ∪T )∗ {ADp,4 | p= A→ CD ∈ P, A,B,C,D ∈N }(N ∪T )∗,

I3 =

{
{S,λ} if λ ∈ L,
{S} otherwise.

The networkN has only one output node. Therefore, there is no difference between weak
and strong acceptance, and we write L(N ) for the language accepted by the network N .

First, we prove that every word w ∈ L(G) is accepted by the network N .
If λ ∈ L(G) then ({λ},∅,∅) =⇒ ({λ},∅,∅) ` (∅,∅,{λ}) and λ is accepted by the

network N .
Any derivation w =⇒∗ v with v 6= λ of the grammar G can be simulated by the net-

workN in reverse direction (by a reduction v =⇒∗ w). We show that the application of a
rule of the grammar G can be simulated by the network N in reverse direction. A direct
reduction v =⇒ w always starts in the first node, the first step is an evolution step, and
ends in the first node after a communication step (so the next step would be an evolution
step again). Then v ∈ C2t(1) and w ∈ C2(t+k)(1) for two numbers t ≥ 0 and k > 0. In
the sequel, A, B, C, D are non-terminals, x is a non-terminal or terminal symbol and
w1w2 ∈ (N ∪T )∗.

Case 1. Application of a rule p= A→ x ∈ P to a word w1Aw2.
This application leads in the grammarG to the word w1xw2. We assume that the word
w1xw2 is in the first node at some moment before an evolution step (w1xw2 ∈C2t(1)).
We apply the rule x→ xp,0 ∈R1 and obtain the word w1xp,0w2 which cannot pass the
output filter, so it remains in the first node. Then we apply the rule xp,0 → A ∈ R1
and obtain w1Aw2 ∈ (N ∪T )∗. This word also does not pass the output filter, so it
remains in the first component: w1Aw2 ∈ C2(t+2)(1). Hence, the application of a rule
p = A→ x ∈ P to a word w1Aw2 can be simulated reversely in two evolution steps
(the two corresponding communication steps have no effect).

Case 2. Application of a rule p= AB→ CD ∈ P to a word w1ABw2.
We assume w1CDw2 ∈C2t(1). This word is changed to w1Cp,1Dw2 (by an appropri-
ate rule of R2) which cannot pass the output filter, so it remains in the first node. It
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is then changed to w1Cp,1Dp,2w2 (by R3), and further, without leaving the first node,
changed to w1Cp,3Dp,2w2 (by R4), to w1Cp,3Dp,4w2 (by R5), to w1ADp,4w2 (by R6)
and finally to w1ABw2 (byR7). This word is not communicated in the next step, since
it cannot pass the output filter and we have w1ABw2 ∈ C2(t+6)(1). Hence, the appli-
cation of a rule p=AB→ CD ∈ P to a word w1ABw2 can be simulated reversely in
six evolution steps (the six corresponding communication steps have no effect).

Case 3. Application of a rule p= A→ CD ∈ P to a word w1Aw2.
We assumew1CDw2 ∈C2t(1). As in the case before, this word is changed to the word
w1Cp,1Dw2 and further, without leaving the first node, changed to w1Cp,1Dp,2w2 (by
a rule of R3), to w1Cp,3Dp,2w2 (by R4), to w1Cp,3Dp,4w2 (by R5), and to w1ADp,4w2
(by R6). This word passes the output filter of the node and the input put filter of the
second node. So we have w1ADp,4w2 ∈ C2(t+5)(2). The second node changes the
word to w1Aw2. In the next communication step, this word moves to the first node
and we obtain w1Aw2 ∈C2(t+6)(1). Hence the application of a rule p=A→CD ∈ P
to a word w1Aw2 can be simulated reversely in six evolution steps and two effective
communication steps (the other four have no effect).

For any derivation S =⇒∗ w in the grammar G to a terminal word w ∈ T+, there is a
computation C0,C1, . . . ,C2t+1 with C0 = ({w},∅,∅) and C2t+1 = (C2t+1(1),C2t+1(2),∅)
with S ∈ C2t+1(1)∪C2t+1(2) (the final reduction to S is achieved by some rule x→ S
in the first node or – if the first direct derivation is S =⇒p AB – by the rule Bp,4→ λ in
the second node). From both nodes, S reaches the third node in the next communication
step. Hence, S ∈ C2(t+1)(3).

Thus, we have the inclusion L(G)⊆ L(N ). We now show L(N )⊆ L(G).
Let us first consider the case that the computation starts with λ in the first node. No

rule can be applied. The word leaves the node (because it passes the output filter O1). It
enters the third node if λ belongs to L(G), otherwise the word is lost and there is no word
in the network any more. Hence, if λ is not in L(G) the third node never obtains a word.
Thus, λ ∈ L(N ) if and only if λ ∈ L(G).

We now show that if a word w ∈ T+ is accepted by the network then, at some time, the
symbol S enters the third node and then a derivation S =⇒∗ w in G has been simulated
reversely by reducing w to S in the network.

The computation starts in the first node with a word w ∈ T+. The word can only be
accepted if it can be reduced to S or λ (only these can enter the third node). No word can
be reduced to λ, because if a word enters the deletion node, then it contains at least two
letters A and Dp,4 for a rule p= A→ CD and only Dp,4 can be deleted before the word
moves back to the first node. Hence, if a word is accepted then it can be reduced to S
(after the last reduction step, it moves from the first or second node to the output node).

In the sequel, A, B, C, D denote non-terminals, x denotes a non-terminal or terminal
symbol and w1w2 ∈ (N ∪T )∗.

We now consider a word w = w1xw2 in the first node after an even number of com-
putation steps (the next step is an evolution step). If we can apply a rule x→ xp,0 ∈ R1
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to w then we obtain the word w1xp,0w2 which does not leave the node (because it does not
pass the output filter). If now another rule than xp,0→ A is applied, then the word passes
the output filter and leaves the network. If xp,0→ A is applied, then we obtain the word
w1Aw2 which does not leave the node and the derivation w1Aw2 =⇒ w1xw2 is possible
in G (due to the construction of the set R1).

Let us now consider a word w = w1CDw2 in the first node after an even number of
computation steps (the next step is an evolution step). If a rule of R1 is applied then we
have the situation described for the word w = w1xw2. If we can apply another rule, then
we have one of the following cases:

Case 1. Application of a rule D→Dp,2 ∈R3.
This leads to the word w1CDp,2w2 in the first node, which is then sent out. Since the
other nodes do not accept it, the word is lost.

Case 2. Application of a rule C→ Cp,1 ∈R2.
This leads to the word w1Cp,1Dw2 in the first node which is kept in the node. If the
next evolution step does not yield the word w1Cp,1Dp,2w2, then the word disappears
in the next communication step. (Here is the reason why the rules in R1 make the ‘de-
tour’ via intermediate symbols. If there would be direct rules x→ A, we could apply
them here and had more cases to discuss.) Let us assume, we obtain w1Cp,1Dp,2w2,
then this word is kept in the first node. The next evolution step yields w1Cp,3Dp,2w2
or the word is lost. Also this word remains in the node. The fourth evolution step
leads to w1Cp,3Dp,4w2 or the word is lost. This word remains in the node, too. The
fifth evolution step leads to w1ADp,4w2 or the word is lost. There are two possibilities
for the rule p that belongs to Dp,4.
Case 2.1. p= A→ CD. In this case, the word w1ADp,4w2 is sent out and caught by

the second node. The second node deletes the symbol Dp,4. In the next commu-
nication step, the word w1Aw2 is sent back to the first node. The described six
evolution steps (together with the corresponding communication steps) represent
the inverse of the derivation w1Aw2 =⇒ w1CDw2 in G.

Case 2.2. p = AB → CD. In this case, the word w1ADp,4w2 remains in the first
node. The next evolution step yields w1ABw2 or a word that is lost, because
applying any rule of R1∪R2∪R3 (rules of R5, R6, R7 and other rules of R4 are
not applicable) leads to a word which passes the output filter but no input filter.
The word w1ABw2 remains in the first node. The described six evolution steps
(the communication steps have no effect) represent the inverse of the derivation
w1ABw2 =⇒ w1CDw2 in G.

Hence, in this case, the derivation w1Aw2 =⇒ w1CDw2 or w1ABw2 =⇒ w1CDw2
(which in G is obtained by the initially chosen rule p) is simulated reversely.

Other rules are not applicable to the word w.

By the case distinction above, we have shown that, for every reduction w =⇒ v in the
networkN , the derivation v =⇒ w is possible in the grammar G. Hence, if a word w can
be reduced to S, then the derivation S =⇒∗ w exists in G. Together, we obtain that if a
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word w is accepted by the network N then it is generated by the grammar G.
With the first part of the proof, we obtain L(G) = Lw(N ) = Ls(N ) = L. 2

In generating networks, only substitution nodes yield not more than finite languages.
But accepting networks can accept infinitely many input words. Surprisingly, even every
context-sensitive language can be accepted by a network with only one substitution node
(and one output node without rules). The trick is that the substitution processor can sim-
ulate the deletion by marking symbols as deleted. The filters then ‘ignore’ the deletion
markers.

Theorem 3. For any context-sensitive language L, there is an accepting network S of
evolutionary processors with exactly one substitution node and one output node without
rules that weakly and strongly accepts the language L:

L= Lw(S) = Ls(S).

Proof. Let L be a context-sensitive language and G = (N,T,P,S) be a grammar in
Kuroda normal form with L(G) = L. The network S is constructed similarly to the net-
work N in the proof of Theorem 2.

Let R1,R2, . . . ,R7 be the sets used for N and let R8 be the additional set

R8 = {Dp,4→ | p= A→ CD ∈ P, A,B,C,D ∈N } .

We construct a network of evolutionary processors

S = (T,V S ,(MS1 ,∅,OS1 ),(∅, IS2 ,∅),{(1,2)} ,1,{2})

with

V S =N ∪T ∪{ }∪
⋃

p=A→x
{xp,0 }∪

⋃
p=A→CD

p=AB→CD

{Cp,1,Dp,2,Cp,3,Dp,4 } ,

MS1 =R1∪R2∪R3∪R4∪R5∪R6∪R7∪R8,

OS1 = { }∗{S}{ }∗∪{λ}∪V ∗ \ ((N ∪T ∪{ })∗Ō′(N ∪T ∪{ })∗),

where

ŌS ={xp,0 | p= A→ x ∈ P, A ∈N, x ∈N ∪T }
∪{Cp,1 | p= A→ CD ∈ P or p= AB→ CD ∈ P }
∪{Cp,1εDp,2 | p= A→ CD ∈ P or p= AB→ CD ∈ P, ε ∈ { }∗ }
∪{Cp,3εDp,2 | p= A→ CD ∈ P or p= AB→ CD ∈ P, ε ∈ { }∗ }
∪{Cp,3εDp,4 | p= A→ CD ∈ P or p= AB→ CD ∈ P, ε ∈ { }∗ }
∪{AεDp,4 | p= A→ CD ∈ P or p= AB→ CD ∈ P, ε ∈ { }∗ }
∪{λ} ,
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and

IS2 =

{
{ }∗{S}{ }∗∪{λ} if λ ∈ L,
{ }∗{S}{ }∗ otherwise.

The network S has only one output node. Therefore, there is no difference between
weak and strong acceptance, and we write L(S) for the language accepted by the net-
work S.

The network S behaves almost in the same way as the network N in the proof of
Theorem 2 does. The main difference is that symbols are not deleted but marked by the
special symbol . This can be done by the single substitution processor as well (using
rules of R8). When simulating a derivation w =⇒ v in G, we have to take into account
that the corresponding word in the substitution node may contain gaps in form of several
occurrences of the special symbol . This is realized by the new formulation of the set ŌS

of such subwords that are forbidden to leave the node.

An input word w ∈ T+ can be reduced to a word s ∈ { }∗{S}{ }∗ if and only if w
is generated by the grammar G. Then and only then, s moves to the output node. If the
input word is λ, then it is not modified in the first node but sent out. The second node
receives the word if λ ∈ L. If λ /∈ L then the output node does not receive anything.

Hence, we have proved L(G) = Lw(S) = Ls(S) = L. 2

This number of processors is optimal since the input node and output node have to be
different (otherwise every input word would be accepted).

4. Networks of Non-Deleting Nodes

The main difference between context-sensitive and non-context-sensitive grammars is
that, in arbitrary phrase structure grammars, erasing rules (λ-rules) are allowed. In or-
der to simulate a λ-rule in reverse direction, we introduce an insertion node.

Theorem 4. For any recursively enumerable languageL, there is an accepting networkN
of evolutionary processors with exactly one substitution node, one insertion node and one
output node without rules that weakly and strongly accepts the language L:

L= Lw(N ) = Ls(N ).

Proof. Let L be a recursively enumerable language and G = (N,T,P,S) be a grammar
in Kuroda normal form with L(G) = L.

The idea of the proof is to extend the network S constructed in the proof of Theorem 3
by an inserting processor who is responsible for the reverse simulation of λ-rules, see
Figure 1.
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Figure 1: A network for simulating a grammar in Kuroda normal form

For a formal definition, we have to implement that the insertion node gets the oppor-
tunity to do something (the substitution processor must indicate that a word can pass to
the insertion node).

We construct a network of evolutionary processors

N = (T,V N ,(MN1 , IN1 ,ON1 ),(∅, IN2 ,∅),(MN3 , IN3 ,ON3 ),{(1,2),(1,3),(3,1)} ,1,{2})

with

V N = V S ∪
{
x′ | x ∈N ∪T

}
,

MN1 =MS1 ∪
{
x→ x′ | x ∈N ∪T

}
∪
{
x′→ x | x ∈N ∪T

}
,

IN1 = IN3 =ON3 = (N ∪T ∪{ })∗
{
x′ | x ∈N ∪T

}
(N ∪T ∪{ })∗,

ON1 =OS1 ,

IN2 = IS2 ,

MN3 = {λ→ A | A→ λ ∈ P } ,

where V S , MS1 , OS1 , and IS2 are defined as in the proof of Theorem 3.
Between two simulation phases, the substitution node can mark a symbol such that

the word can leave the node and enter the insertion node. This processor inserts a non-
terminal that belongs to a λ-rule of the grammarG and returns the word to the substitution
node. This processor then has to unmark the primed symbol. If marking or unmarking
is not performed in the correct moment, the word will be lost. Due to the definition of
the filters, we can connect all nodes with each other (to obtain a complete graph) without
changing the behaviour of the network. 2

5. Networks without Substitution Processors

In [1], we have shown that every recursively enumerable language can be generated by
a network of one inserting processor and one deleting processor. Similar to the proof of
this statement, we can prove the following result.
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Theorem 5. For any recursively enumerable languageL, there is an accepting networkN
of evolutionary processors with exactly one insertion node, one deletion node and one
output node without rules that weakly and strongly accepts the language L:

L= Lw(N ) = Ls(N ).

Proof. Let L be a recursively enumerable language and G = (N,T,P,S) be a grammar
in Kuroda normal form with L(G) = L.

We define the sets of partial prefixes and partial suffixes of a word u by

PPref (u) = {x | u= xy, |y| ≥ 1},
PSuf (u) = {y | u= xy, |x| ≥ 1},

respectively.
Let V = N ∪ T and V = V ∪ { }. We define a homomorphism h : V ∗ → V ∗ by

h(a) = a for a ∈ T and h(A) = A for A ∈N and set

W = {h(w) | w ∈ V ∗ } .

We construct the following network

N = (T,X,(M1, I1,O1),(M2, I2,O2),(∅,{S },∅),E,1,{3})

of evolutionary processors with

X = V ∪
⋃
p∈P
{p1,p2,p3,p4},

M1 = {λ→ }∪{λ→ pi | p ∈ P,1≤ i≤ 4}∪{λ→ A | A ∈N } ,
I1 =W \{S } ,
O1 =X∗ \ (WR1,1W ),
M2 = {pi→ λ | p ∈ P,1≤ i≤ 4}∪{x→ λ | x ∈ V } ,
I2 =WR1,2W,

O2 =X∗ \ (WR2,2W ),
E = {(1,2),(2,1),(2,3)}

where

R1,1 =
⋃

p=u→v∈P
({p1h(v),p1h(v)p2,p1p3h(v)p2,p1p3h(v)p2p4}

∪{p1p3}PSuf (h(u)){h(v)p2p4})
R1,2 = {p1p3h(uv)p2p4 | p= u→ v ∈ P } ,
R2,2 =

⋃
p=u→v∈P

({p1p3h(u)}PPref (h(v)){p2p4}∪{p3h(u)p2p4,p3h(u)p4,h(u)p4}).
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The reverse simulation of the application of a rule p= a1 . . .as→ b1 . . . bt to a senten-
tial form αa1 · · ·asβ with x= h(α) and y = h(β) has the following form.

In the insertion node, we have

xh(b1) . . .h(bt)y =⇒ xp1h(b1) . . .h(bt)y
=⇒ xp1h(b1) . . .h(bt)p2y

=⇒ xp1p3h(b1) . . .h(bt)p2y

=⇒ xp1p3h(b1) . . .h(bt)p2p4y

=⇒ xp1p3 h(b1) . . .h(bt)p2p4y

=⇒ xp1p3as h(b1) . . .h(bt)p2p4y

=⇒∗ xp1p3a2 . . .as (b1) . . .h(bt)p2p4y

=⇒ xp1p3 a2 . . .as h(b1) . . .h(bt)p2p4y

=⇒ xp1p3a1 . . .as h(b1) . . .h(bt)p2p4y.

This word leaves the insertion node and enters the deletion node. There, the evolution
continues to

xp1p3a1 . . .as h(b1) . . .h(bt)p2p4y =⇒|h(bt)| xp1p3a1 . . .as h(b1) . . .h(bt−1)p2p4y

=⇒∗ xp1p3a1 . . .as h(b1)p2p4y

=⇒|h(b1)| xp1p3a1 . . .as p2p4y

=⇒ xp3a1 . . .as p2p4y

=⇒ xp3a1 . . .as p4y

=⇒ xa1 . . .as p4y

=⇒ xa1 . . .as y.

This word leaves the node and enters the output node if it is S (corresponding to
the axiom of the grammar G) or it enters the insertion node for the next simulation phase.
Only those words remain in the network that are obtained in the sequence described above;
all other words get lost. 2

Every regular language R is accepted by a network of two nodes where none of the
nodes contains any rules. The input node keeps all words not belonging to R; all words
belonging to R move to the output node which accepts all arriving words. Hence, the
network accepts exactly the language R. Such networks are optimal with respect to the
number of processors, because input node and output node have to be different. Otherwise
the network would accept every input word.

Corollary 6. Every regular language can be accepted by a pure deleting or pure inserting
network with two nodes. This number of processors is optimal.

Pure deleting networks can accept non-context-free languages.
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Lemma 7. There is a network of deletion nodes only that accepts the language

L= {anbncn | n≥ 1} .

Proof. Let T = {a,b,c} and O = {a}+{b}+{c}+. We construct the following network

N = (T,T,Nin,Na,Nb,Nc,Nout,E,1,{5})

of deletion processors with the nodes Nin = (∅,∅,O), Nx = ({x→ λ} ,T ∗,O) for x ∈ T
and Nout = (∅,{abc} ,∅), and the set E {(1,5),(1,2),(2,3),(3,4),(4,2),(4,5)} of edges.
The network is illustrated in Figure 2.
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O = {a}+{b}+{c}+

Figure 2: A deleting network for accepting the language {anbncn | n≥ 1}

Every word which has not the form apbqcr with p ≥ 1, q ≥ 1, r ≥ 1, remains in the
first node for ever. The word abc will be sent directly to the output node and is accepted.
A word apbqcr with p ≥ 1, q ≥ 1, r ≥ 1, and pqr > 1 is sent into the ‘cycle’ where one
letter of a, b and c is deleted. The word moves on to the next node only if there is one
letter of each kind left. If the word is stuck in a node, then it was abc when it entered
the node which deletes a or p, q and r were not equal. If the word leaves the node which
deletes c, then it has the form ap−1bq−1cr−1. If this word is abc it goes to the output node
and the input word is accepted. Otherwise it starts same cycle. Hence, a word is accepted
if and only if it belongs to the language L. 2

In this manner, networks can be constructed for similarly structured languages. They
are accepted after a cyclic deletion process.

Also pure inserting networks can accept non-context-free languages.

Lemma 8. There is a network of insertion nodes only that accepts the language

L= {anbncn | n≥ 1} .

Proof. Let T = {a,b,c}, V = T ∪{a′, b′, c′ }, and

O = {aa′}∗{a}+{bb′}∗{b}+{cc′}∗{c}+.



On Small Accepting Networks of Evolutionary Processors with Regular Filters 51

We construct the following network

N = (V,T,Nin,Na,Nb,Nc,Nout,E,1,{5})

of insertion processors with the nodesNin = (∅,∅,O), Nx = ({λ→ x′ } ,V ∗,O) for x∈ T
and Nout = (∅,{aa′}+{bb′}+{cc′}+∪{abc} ,∅), and the set

E {(1,5),(1,2),(2,3),(3,4),(4,2),(4,5)}

of edges. The network is illustrated in Figure 3.
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Figure 3: An inserting network for accepting the language {anbncn | n≥ 1}

Every word which has not the form apbqcr with p≥ 1, q≥ 1, r≥ 1, remains in the first
node for ever. The word abc will be sent directly to the output node and is accepted. A
word apbqcr with p≥ 1, q ≥ 1, r ≥ 1, and pqr > 1 is sent into the ‘cycle’ where one letter
of a, b and c is marked (by inserting a primed version after the first non-marked letter).
The word moves on to the next node only if there is one unmarked letter of each kind left.
If the word is stuck in a node, then a primed letter was inserted at a wrong position. If
the word leaves the node which marks c, then it has the form aa′ap−1bb′bq−1cc′cr−1. This
word runs in the cycle until it stucks or it is transformed into the word (aa′)p(bb′)q(cc′)r.
In the latter case, we have p = q = r, the word moves to the output node and, hence,
the input word is accepted. Hence, a word is accepted if and only if it belongs to the
language L. 2

It remains as a task to characterize the family of languages that are accepted by pure
deleting networks (which have only deleting processors) and pure inserting networks.
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