Nr.: FIN-013-2008

Formal Modelling of Software Measurement Levels of
Paradigm-Based Approaches

R. Dumke, M. Kunz, A. Farooq, K. Georgieva, H. Hegewald

Arbeitsgruppe Softwaretechnik

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Nr.: FIN-013-2008

Formal Modelling of Software Measurement Levels of
Paradigm-Based Approaches

R. Dumke, M. Kunz, A. Farooq, K. Georgieva, H. Hegewald

Arbeitsgruppe Softwaretechnik

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 10 MDStV):

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Reiner Dumke

Postfach 4120

39016 Magdeburg

E-Mail: dumke@ovgu.de

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage: 101
Redaktionsschluss: 31.10.2008

Herstellung: Dezernat Allgemeine Angelegenheiten,
Sachgebiet Reproduktion

Bezug: Universitatsbibliothek/Hochschulschriften- und
Tauschstelle

Formal Modelling of Software Measurement Levels of

Paradigm-Based Approaches

Reiner Dumke, Martin Kunz, Ayaz Farooq, Konstantina Georgieva, Heike Hegewald

SML@b, University of Magdeburg, Germany, http://www.smlab.de

Contents

1 Introduction

1.1 Measurement Ingredients

1.2 Measurement Output

1.3 Measurement Results

1.4 Measurement Resources

1.5 Measurement Repercussions

1.6 General Characterization of Software Measurement Process

2 Software Measurement Process Levels

2.1 Basics of Scalability

2.2 Main Characteristics Preferences of Measurement Process Components

2.3 Sub Characteristics Preferences of Measurement Process Components

2.4 Combined Characteristics Preferences of Measurement Process Components
2.5 Simple Examples of Measurement Process Description

2.6 Measurement Process Improvements

3 Software e-Measurement Processes as Ubiquitous Measurement
3.1 Basics of e-Measurement

3.2 Description of Chosen e-Measurement Processes

3.3 Measurement Levels in e-Measurement

4 Measurement as Controlling for Agent-Based and Self-Managed Systems
4.1 Characteristics of Agent-Oriented Software Engineering (AOSE)

4.2 AOSE related Measurement Extensions

4.3 Agent Technology and Measurement Levels

5 Adaptive Measurement of Service-Oriented Systems
5.1 Characteristics of Service-Oriented Software Engineering (SOSE)
5.2 SOSE addressed Measurement Descriptions

5.3 SOSE intended Measurement Levels

6 Measurement Infrastructures as Proactive Measurement
6.1 Intentions and Examples of Measurement Infrastructures

6.2 The QuaD” Approach of Dynamic Quality Assurance

7 Conclusions and Future Work

8 References

18
18
19
24

25
25
27
36

38
38
41
45

47
47
53

59

61

1 Introduction

Formal descriptions of software measurement can be found in the following kinds of
exemplary motivations,

e Understanding the essential components, operations, methodologies and empirical
background of this special kind of measurement

o Clarification of the different scale types of metrics or measures considering the
different software process areas as product processes and resources

e Foundation as a theoretical basis for classification, structuring and formal proving of
the software measurement paradigms.

The following figure shows some kinds of formal approaches that could be found in the
literature (see [Dumke 2005c] for detailed descriptions).

Khoshgoftaar/Munson Information-theoretic
Allen Approaches)]
- Axiomatic Prather
Chapin
Approaches Zuse
Poels
McCabe
Fenton/Pfleeger Structure-Based
Whitty Approaches Rule-Based Hausen
Approaches
Zuse Jacobi/Cahill
Baudry
—
Evanco/Lacovara
Shepperd Formal Measurement Approaches
Hastings/Sajev Algebraic Approaches
Whitmire Juristo
Singpurwalla
Statistics Kitchenham
Halstead
B;ahm Dumke/Hanebutte
Jogu . Shneidewind
Albrecht Functional Approaches

Putnam
Peters/Parnas
Munson

Figure 1: Formal approaches of software measurement

Considering the measurement systems aspects we define a software measurement system in a
declarative manner as following ([Dumke 2005c], [Skyttner 2005]):

MS=Mys Rus)=({G, A, M, Q V, U, E, T, PP}, Rys) (1.1)

where (is the set of the measurement goals, A the set of measured artefacts or measurement
objects, M the set of measurement methods, objects or entities, Q the set of measurement
quantities, V" the set of measurement values (especially we could have the situation Q@ =V),
U the set of measurement units, / the set of measurement-based experience, 7" the set of
measurement CASE tools (respectively CAME tools), and P the set of the measurement
personnel. Ry defines all meaningful relations between the elements of M. Note that our
description involves the principles of goal question metric (GQM), SPICE and CMMI
measurement intentions and fulfils the basic characteristics of the ISO 15939 software
measurement standard shown in the following figure [ISO 15939].

2

Requirements for Measurement Technical and MMeasurement User Feedback A’

Managemert g
Information Meeds Process Infomnation Products
A S

Core Measurement Process

¥ Cammitment P T _ L J

Establish & Rlatiing Q.}
Sustain o e Infarmation LR e Evaluate
Measurement heasurem ent
Measurement ol Process Inforn ation Measurement
Cammitnent

« Process
\ Products &

i F Ferformance

Measures
KU

7w

MeasUrem ent Experience Base

Evaluation Results

Irnprovernent Actions

Figure 2: The ISO 15939 software measurement standard

Especially, the measurement process MP as one of the instantiations of a software
measurement system could be explained by the following sequence of relations

MP: (GxAxMpp—(QRQxE)pp—(Vx Upp—Ex A’ (1.2)

This measurement process description explains the process results as quantities including
some thresholds, values involving their units and/or extended experiences combined with
improved or controlled measurement artifacts.

Software measurement process is embedded in the general motivation and classification
characterized in the following figure.

Measureament srma‘eg:es T

TGP

A / Measurement frameworks ™~ \‘
- #f*=~ﬂm1g

/ ~ " Measurement methods - f\
A ~ \
/ /

Measurement phases

M, T
v, U

Measures, Units

Meilrics, Thresholds

QL

Figure 3: The general layer model of software measurement

Furthermore, the detailed phases of software measurement and their different kinds of
measurement methods can be described as following.

2 < confrolling >
]
&
E
improvement
| >
= experimentation
7]
5 . g . -
E estimation
E *
assessment --
| | | | | | Measurement
I I I I I L phases
refarencing moaeling measurement analysis evaluation application

aeccccccaa

Measurement supports

visualization visualization visualization

Figure 4: Software measurement phases and methods

Finally the kernel consideration what software measurement is could be characterized as
homomorphous relationship verbally described in the following figure.

artefactBased
operation

quantificationBased valueBased
operation operation

experienceBased
operation

A «

(M, A) M, Q) (M, V) (M,)

Measurement
artefactsiobjects

Praduct
(architecture,
implamantaion,

Measurement
madels

Scale

types,
statistics

Measurament
avaluation

Measurement
goals

Understanding

- Analysis
documeantation) Flow graph E LEs Leamning
Correlation Visualization
[ma:agar:ent Callgraph Improvement
life cvele ! Estimation Exploration
CAE{E} . Structure tree Management
Adjustment Prediction
Resources Code schema - Cantrolling
{personnel, - Calibration etc
software, ' elc.

hardware)

Figure 5: The homomorphous relationship of software measurement

Based on our software measurement experiences we can derive the following refinement' on
the process description above ([Braungarten 2007], [Dumke 1999], [Dumke 2005a], [Dumke
2006a], [Ebert 2007], [Rud 2006], [Schmietendorf 2002]).

! This refinement does not fulfil the principle of completeness.

4

1.1 Measurement Ingredients

The tuple of (G x A x M) describes the input and basis for any software measurement. The
detailed characteristics of these three sets are” :

G Intention: We will consider in our approach the goals as understanding, evaluation,
improving and managing. This enumeration corresponds to an increasing level of
measurement goals.

Viewpoint: On the other hand the goals depend on the special viewpoint such as internal
goals/quality, external goals/quality and goals/quality in use.

A: Domain: The considered measurement artefacts should be the general classification of
software as products (systems), processes (e. g. project) and resources (including their
different parts or aspects (e. g. product model, process phases or personal resources)).

Origin: Note that we could consider a pendant or analogical artefact of measurement that
led us to the kinds of measurement as analogical conclusion. Analogy can be defined as
tuning (where we use a pendant in the same class of software systems) and as adaptation
(where we use another pendant of artefact). This kind of description is motivated in the
following consideration below.

Kinds of Process

processes aspects

J

AN
. - |_
& o Y - 2
) 5E £
@ ig 2
O ’ AOSE % g | 5
i ‘l @z = S e
& o EBD ¢ | §
< F) g
’ - E
e e | °
’ SOSE | zz %5
’ ACP 2 T3 3
. £ 3 | -5
B DI
o
Vel ¢ 38 £
&5 £
&z £
g 3
< =
~ ~ ~ ~ ~ ~ _——
Embedded Knowledge-based
nowledge-bas
Kinds of Infarmation syslems systams

system systems Decision suppert

systems etc

I_ Usability
gg:;zg Reliability Par o Securnity |
Efficiancy
afc. J

Figure 6: The complexity of software as measurement artefacts

% Note that we will define rwo characteristics for every set as two types of classification.

5

The complexity of the measured artefact could be explained as following: Software
measurement of different systems is related to the kind of systems (information-based,
embedded, web-based, decision support, knowledge-based etc.) and to the different kinds
of software development paradigms such as object-oriented software engineering
(OOSE), aspect-oriented programming (AOP), component-based software engineering
(CBSE), feature-oriented development (FOD), service-oriented software engineering
(SOSE), event-based design (EBD) and agent-oriented software engineering (AOSE).

On the other hand, general characteristics of software systems are meaningful in different
IT environments such as performance, security and usability or context-dependent as
outsourcing and off shoring. And finally, measurement artifacts can depend upon
different kinds of systems such as embedded systems and information systems etc. Figure
6 shows the relationships between these characteristics in a simplified manner.

2 Method: The chosen measurement methods should be classified here as experiment/case
study, assessment, improvement and controlling. That means that measurement should
contain the partial phases as referencing, modelling, measurement, analysis, evaluation
and application and could cover different parts of these phases. Note that the dominant
use of experiences could lead to the kinds of measurement as estimation or simulation.

Sort: Furthermore, depending on the measured artefact(s) that is involved in the
measurement we will distinguish between no measurement (no artefact), aspect-oriented
measurement (considering some aspects of product or process or resources), capability-
oriented measurement (considering the whole product, the whole process or all resources)
and whole measurement (considering all, product and process and resources).

1.2 Measurement Qutput

The immediate output of software measurement consists of numbers that would be interpreted
by using any experience described by the pair as (@ x K). The typical properties of these sets

Q: Value: This set of metrics values/numbers characterises a qualitative measurement and

are given in a nominal scale or ordinal scale.

Structure: Measured values could be structured in different kinds of presentations and
transformations such as tuple, table, aggregation and normalization.

Cwrrent Project: Datacom

B Pogni Dtgnse
Bi J Pnchnem L g Vimsn:

Brb] P g e e o

Bl Pt i Dot b e ey T

| Erb S Chamte wte et Corrpie

N

8
i"-l iy Foogmn 1 Ciaas e s Fomamur|
b oy Vi o Progenn, |
[1
¢

Ty i Bk P et

| Project Hems | Broject implementation | Project Milestonss |
| Matric intsrval | Measurements | Reports | Change Project | Logout |

Figure 7: UML based metrics data base example

FK': Form: The appropriate experiences for Q are given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesises and rules
of thumb.

Contents: The contents or kinds of experience could be thresholds, lower and upper
limits, gradients, calculus and proofs.

Typical kinds of measurement repositories are metrics databases. The example of such a data
base was the one used in T-Systems for UML based product measurement [Ebert 2007] as
given in figure 7.

Chidamber & Kemerer Metrics Graphical Analysis

Lavax paererz
(Home) (Bask] e | Selected Systems Packages
1 ——— l | Ji8r1.5.01pun.avy, J23L1.5.0:)avax.sving
FEAX [T |
Java Technologes 1 1
AV a3 j
- avax gond |
. U 4 — .
AEACTE ¥ ow || Reset Range v WAC
{ L J
CK Metrics Comparison
©
»
T ®
=
EE
C»
* oy
L
]
[- £
SRR S Cven et AR S Dhees wmay
Metrics Vakosy
Bos Barwo Binw 930 1)

S Local v et

Figure 8: The java measurement service OOM]J

An excellent variety of measurement quantities is stored in the Java measurement repository
as OOMJ implemented by Farooq [Farooq 2005] as shown in the figure 8.

1.3 Measurement Results

As a higher level of measurement output we want to achieve real measures including their
units. Characteristics of the sets in the tuple (V' x U) are:

V: Measure: This set of metrics values characterises a quantitative measurement and is
given an interval scale or ratio scale.

Aggregation: The values could be built as different structures and aggregations such as
measurement repositories, simple visualizations (e. g. diagrams scatter plots), dashboards
and cockpits.

U: Type: The measurement unit could be CFP (COSMIC FFP functional size), program
length of Halstead, kilo delivered lines of code (KDSI), cyclomatic complexity of McCabe
etc.

Standard: Otherwise the mostly used units could be classified as physical, economical,
sociological, software and hardware units.

The ISBSG (International Software Benchmarking Standards Group) is an international
community that summarizes the project management data from IT companies worldwide. The

following figure shows an example evaluation of some of these measurement values [ISBSG
2003].

Project Size (Function Points) 540 :::]
Select Project Development Characteristics:
Plattorm Language | 1 Type
oAl Al Al
@ Main Frame | * 3GL &+ New Development
" Mid-Range " 4GL " Re-development
" PC " ApG " Enhancement
Confidence Interval 90% j

T
3000
Size (Function Paints)

8000

Regression: Dependent Variable = C % (Function Points) E Graph Statistics
Dependent Variable N | C | E “ Lower |Estimate| Upper Log/Cur
Project Work Effort PWE (hows) [196 68,32 0726 2130 (6565 20240 | [@&
Elapsed Time (Months) 165 1,220 0328 3993 9579 2298 8 e
Project Delivery Rate (hows/FP) | 196 6832 0274 3945 1216 3748 £
Speed of Delivery FPs/Month) [165 0,820 0672 2350 5637 1352 f it

Figure 9: The ISBSG project measurement repository

1.4 Measurement Resources

Every phase of the software measurement process is supported by tools used by personnel.
The detailed characteristics of these sets are:

T’: Level: The kind of tool and the tool support should be classified as manual (without any
tools), semi-automatic and automatic.

Support: On the other hand the tool could be applied in the IT area (as internal
measurement) or by vendors (as external measurement).

Kind: The measurement personnel involve the different kinds of measurement and
intentions and could be distinguished as measurement researchers, practitioners and
managers.

Area: Furthermore the measurement personnel could be divided in origin measurement
staff (measurement analyst, certifier, librarian, metrics creator, user and validator) and in
IT staff who use the software measurement indirectly (administrator, analyst, auditor,
designer, developer, programmer, reviewer, tester, maintainer, customer and user).

An example of measurement tool using the tomograph methodology that differs the phase of
measurement and evaluation is shown in the following figure for Web measurement [Dumke
2003].

WebTomix@swlah2 Wandering Agent@swlah2

WebTomix {coordinator) | InfOut | | Start | | Stop |
Wandering Agent (spider) = = | —
URL Inspector {url parser} : u [_] stay on host session: | Add from File
HTTP Receiver (receiver) : |hitpuiwebeng.ce.uni-magdeburg.de Add
HTML Parser {resource parser)
Flash Parser (resource parser)
Tablgps:

KML Table Saver@swlab2

url worker resources resource worker
|waiting for urls | | |waiting for resources

| In/Out || Start || Stop |

URL response | embedding | type SUrEness SErvEr
hitp:fiwebeng.cs.uni-... 200 OK a-tag textrhtml . Apachel . 3.27 (Uni¥) (Red-Hat/..
applicationf-... 1.
hitp:fiwebeng.cs.uni-... 200 QK a-tagy textrhtml . Apachel.3.27 (Uni¥) (Red-Hat/...
applicationss ..

hitp:fipswp argl 0 Connection time... |a-tag
hitp:fhweheng.cs.uni-.. | 200 QK a-tag textthtrl . Apachel 3.27 (Unix) (Red-Hat/..
applicationfi- ..
hitp:fhweheng.cs.uni-..|404 kot Found img-tag imagefgif

hitp fhanen gearm.um... |0 llegal character i |a-tag
httpfhanen geam.um... | 200 Ok a-tag text’html . Apachel 326 (Unix

hitp S geom.um... | 200 Ok a-tag textihtrml| . Apachei 3,26 (Unix

hitp fhweeeics.ucied... | 200 Ok a-tag textihtrml| . Apachei! 3,27 (Unix PHPM.3.2
hitp fhwer nesa.uiuc... | 200 Ok a-tag textihtrml| . Apacheit . 3,31 (Unix mod_gzip...
hitp S geom.um... | 200 Ok a-tag textihtrml| . Apacheit 3,26 (Unix

hitp fhwsatw. geom.urm... | 200 Ok a-tag textihtrml| . Apachei! . 3.26 (Unix

hitpitasasee. geOm.um... | 200 0K a-tag textihtml . Apachei.2.26 (Unix
hitpitasase. s s, edul.. | 200 0K a-tag textihtml . VM2 24

rmndelirnl

activated

Figure 10: The Web tomograph tool layout for Web measurement

Furthermore, supporting the agile software development, a helpful solution consists in the
metrics-based evaluation of the stepwise implemented results shown in the following figure.

] Type Dependences 3

$la Q=0

Figure 11: The tool-based metrics evaluation of agile software development

1.5 Measurement Repercussions

Finally, the software measurement could/should lead to extensions of the experience and to

improvements of the measures artefacts explained in the tuple (/< A). Typical properties
are:

FE’: Form: The obtained experiences are also given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesises and rules
of thumb.

Extension: Especially the marked set of experiences explains the extended knowledge
based on the measurement, evaluation and exploration and can produce formula
correction, principle refinement, criteria approximation and axiom extension.

A’ Domain: The kinds of measurement that include the change or improvement of the
measured artefacts leads to such a marked set A.

Changing: Depending on the measurement process goals and methods, the artefact could
be understood, evaluated, improved, managed or controlled.

In the IT practice the summarizing of measurement results as cockpits or dashboards is
helpful in order to achieve a holistic view.

eASEE-PriM
Dashboard: Small Projects
Propet Controtisr 1527 VK status O
[Profec t Me nager John Dos Conbnt
st 20084101 sehetuls O
End 2004531 Cost
|supsrusion T-11_Sesring Bosrd O
[o vcsits i oo T Cug Pk Ouwglmp Ouwy Irow Ackos [~ 1]
1.
2
EN
4
5
|Open issuss
1
3
+
5

Figure 12: Example of a software measurement dashboard [Ebert 2007]

10

1.6 General Characterization of Software Measurement Process

The measurement process AMDP itself should be characterized by the level of
covered/measured artifacts (as approach) and by the kind of IT relationship (as solution).
Hence, we could define the essential measurement process characteristics in the following
formal manner [Dumke 2007]:

approach .
MP solution -~ (13)
intention domain method : value form .

. : e kind kind
(Gwewpomt X Aorlgm x M sort) i éf,‘;,eplort P e (Qstructure x K contents) T ﬁi}e]ﬁort P reg
measure type level kind orm domain

- (aggregation x U standard) T sez,lvpeport P area ') extension A changing

The classification of the measurement process M P itself is based on the measured artefact.
The measurement of aspects (aspects product or processes or resources) leads us to the
aspect-oriented measurement. The measurement of all aspects of a product or all aspects of
the process or all aspects of the resources would be called as capability-oriented
measurement. If we involve all software artefacts (product and process and resources) we will
call this as a whole measurement. These characteristics build the “approach” attribute of
measurement process.

Otherwise, the “solution” characteristic of the measurement process can be explained
depending on their kind of performing such as in-house or outsourced or based on
methodology of global production.

Finally, further information about examples of software measurement methods and processes
can be found in the Software Measurement Laboratory at the University of Magdeburg
(SML@b) at http://www.smlab.de.

Software Measurement {
Laboratory SML@b

PUBLICATIONS

 Conferences/Workshops
— & Messurement Associstions — "Experience-Based Software
Messurement and Evalustion
Considering Paradigm

Evalution” (Metrikon paper} October 2008:

Japane=s Scientists at the SMLED

% PUBLICATIONS

Software - R
* Bibliographies Measurement owerds & Service-Orien

= = Measurement
* SMLab’s Publications -
i Infrastructure” (SMEF peper)

“Challenges in Editing Books on
Software

Messurement” (IWSM /Mensura
2007 Keynote)

& Tool Dverviews
* Web-based Messurement

* Maotivation
* Experiments

GI Fachgruppe
Metriken (2.1.10)

Otto-von-Guericke-University I _ e msc S X

Figure 13: The SML@b portal

11

2

Software Measurement Process Levels

2.1 Basics of Scalability

In this section we give a first graduation of the software measurement characteristics
introduced in the section 1. The idea of classification of measurement aspects and processes is
not new. Examples are

1. Zelkowitz defines a ranking of validation of research papers as a 14-scale taxonomy in
decreasing manner as: project monitoring, case study, field study, literature search, legacy
data, lessons learned, static analysis, replicated experiment, synthetic, dynamic analysis,
simulation, theoretical, assertion, no experimentation [Zelkowitz 2007].

2. A consideration of the experiment levels by Kitchenham leads to (also decreasing):
industrial case studies, quasi experiment, and formal experiment [Kitchenham 2007].

3. Sneed identifies a ranking of (function point based) productivity related to the kinds of
developed systems as (decreasing): industry, trading, governance, assurance and banking
[Sneed 2005].

We will use these experiences and some of the results from our industrial projects at Alcatel,
Siemens, Bosch and German Telekom ([Braungarten 2005], [Dumke 2007], [Ebert 2007],
[Richter 2005], [Schmietendorf 2007] and [Wille 2005]) in order to achieve a holistic
approach. The different aspects of the measurement process component are defined as a first
assumption in an ordinal manner/scale (considering also [Bourque 2007], [Braungarten
2007], [Farooq 2005], [Laird 2006], [Pandian 2004], [Schmietendorf 2007] and [Sneed
2005]). Our first ordinal classifications of the measurement process components in an
increasing manner are the following

G:

M:

intention € {undexstanding, evaluation, improving, managing} (2.1)
viewpoint € {intetnal_goals, extetnal_goals, goals_in_use}

domain € {(product_aspects v process_aspects \/ resoutces_aspects), (2.2)
(product\ process\ xesoutces), (product N process N resources)}

origin € { othex_pendant, pendant_in_same_domain, oxiginal }

method € {expetimen/case study, assessment, improvement, controlling} (2.3)

sort € {analogical_conclusion, estimation, simulation, measurement;

level € {manual, semi-automatic, automatic} (2.4)

support € {one_measutement_phase, some_measutement_phases, whole_measutement;

kind € {manager, xesearcher, practitioner} (2.5)

area € {measutement_expert_staff, measurement_application_staff}

value & {identifiex/nomination, oxdinal scale} (2.6)

structure € {single_value, (notmalization \/ transformation), aggregation |

Jorm € {(intuition \/ law \/ trend \/ principle), analogy, (cxiteria \/ wules_of thumb),
(axiom \/ lemma Vv formula)} 2.7)
contents € {(limits v threshold), (gradient \/ caleulus), proof}

12

V: measure € {intewval_scale, xatio_scale} (2.8)

aggregation € {values, (data_basis \ xepository), (dashboard \/ cockpit)}

U: type € { sociological_unit, economical_unit, physical_unit, hatdware_unit,

software_unit} (2.9)

standard € {non_standatd, quasi_standard, standardized}

FE’: form: see above (2.10)
extension & {corxection, (xefinement \ approximation \/ adaptation), extension}

A’: domain: see above (2.11)
changing € { undexstood, improved, managed, controlled }

Including the different levels of performing the measurement in the IT area leads us to the
following classification

MP: approach € {aspect-oriented_measurement, (2.12)

capability-oxiented_measurement, whole_measurement}

solution € { outsoutced, global_production, inhouse}

Note that the exponents address the main characteristics and the indexes show the sub
characteristics. This assumption explains some first relationships.

2.2 Main Characteristics Preferences of Measurement Process Components

In the following we will present some examples of this kind of measurement aspects scaling.

Related to the measurement artefacts we can establish (note that the sign “<” characterizes
the so-called evidence level (see [Kitchenham 2007])

Lrrot AA A
A aA/.Je?ts < A /)'zf)d‘uctv ,otocess\/ zesou’zces < A ,a'r. . A Pr A% zces
origin origin origin -

(2.13)

Considering the measurement and including the application leads to

2 Icaae_btucg 2) [Ssetsment o 3 Iim/ztovement 2 Ajcont'colling . (2.14)

sort sort sort sort

Addressing the tool aspects gives

manual semi_automatic utomatic
T support < Tsupporl < I?upport : (2-15)

Achieving the personnel background we obtain

13

P manager > g5 zesearcher 2P practitioner . (2.16)

area area area

And finally addressing the used experiences leads to

E/;'zinciple 2 Ean.alog# 2K xules_of thumb 2B formula (2.17)

contents contents contents contents *

2.3 Sub Characteristics Preferences of Measurement Process Components

Considering the sub characteristics we will present chosen relationships also. Relating to sub
characteristics of the artefacts we can establish

domain domain domain
Aot/zet _/Jen.dan.t < Adom.ain. _'oen.dan.t < Ao‘zlginal . (218)

Describing the measurement and application aspects gives

M method 2M method 2 A[method 2 M method (2.19)

analogical_conclusion estimation simulation measutement *
Relating the tool aspects leads to

rplevel < rplevel < rplevel . (2.20)

one_meas._phase some_meas._phases whole_measutement
Achieving the personnel background as

measurement_expett ap/;lication_btaﬂ °

Furthermore, considering the experiences we obtain

Jorm Jorm form
K threshold <K gtar:lient <K ,D'Coof . (222)

2.4 Combined Characteristics Preferences of Measurement Process Components

Finally, using both kinds of characteristics leads to the following example relationships.

aA/)ectA A aA,aectA < /)'cotluct \4 prrocess V Zesou’zce’

(2.23)

domain, _pen.dan.t o‘u‘glnal other, _fen.tlan.t

2 Iotor.{uct V process\/ xesoutces 2 A ptoduct A process A xesoutces
domain _pen.dant othex, _'oendant

or
s caAe_Atud# M improvement 2 M contzolling 2 M experiment (2 D) 4)

analogical_conclusion estimation estimation simulation

case_study 2) atsesment oy controlling

measutement measutement measutement *

< J‘/[assessment < J‘/[

simulation

and

14

Y/ Y/ Y/ analo analo analo
) tz':eﬂlwld S K c‘:;culud S K ;t“c;of <K ["mlt,&y <K gtadfnt < K ,o‘zoo# (225)

xules_of thumb
caleulus

2 B G gy 2 B e 2 T

critetia
S K threshold <K gtadien.t proof

2.5 Simple Examples of Measurement Process Description

At first we will use our formal descriptions in order to describe some typical software
measurement situations and implementations. Therefore we can establish some different
levels of measurement evidence such as

e Using only the next lower levels of previous paradigm measurement experiences leads us
to the measurement approximation

e Using one or more of the second and/or third lower substitution levels can be considered as
measurement qualification

e Using only the lowest level of previous paradigm measurement experiences leads us to the
measurement initialization

In the following we will describe some examples using our scaled measurement process
description. Usually, in the software development and application we can describe some of
the following tasks and activities based on our formal background [Dumke 2007].

First general metrics application:

Our first example shows a simple (first) application of metrics based on a simple
measurement process.

aspect_oriented
MP : (2.26)
evaluation product_aspects xpetiment semi_automatic practitioner
(Gln.tetn.al _goala x A oﬁg",m[X M::eaautement some_meas._ph P t_expert

N ordinal_scale formulas
(Qnotmalization x Et/l.'ceA/l.old)

Product quality assurance:

Then next example describes a more practical situation considering the (full) product
measurement in an IT area.

ca/mbillt# —orxiented

MDA : 2.27)
m.an.agmg P woduct Sessment semi_automatic practitioner
(Gextetnal _goalﬂ X o'a;gin.al X lzeasu‘tement) T us + phas P ¢_expert

atio_scale software
VZOC&,D“ x U standardized

Process improvement:

This example characterizes some of the process improvements using process improvement
standards.

ca,oabiliy —oxiented)

A[Pin/touée (2.28)
im*)'zon’ng prrocess Aimprovement semi automatic practitioner
(G goals_in_use x A o'zigin.al x M meaéutement) T peas t_ph P t_appl._staff

15

. (oxdinal_scale X Titeria) TAelm‘_automatic P practitioner

threshold

agg’cegatz‘on. t_p) ’ t_expert
: zocess
. Ec‘zlte'm? . < A /’
approximation un,otoved

Project controlling:
Another example of process measurement and evaluation is given in the following.

capabilit# —oxiented

MP global _/)‘zoduction. (2'29)
managing prrocess A rcon.tzalling automatic practictionet
(Gextetnal _Joals X Aotigln.al x measutement)Tw/mlc_meluwcem.gnt P meas._appl._staff
R (Vtatio_scale x U Aoﬂwate_“’“:t) automatic practictioners
cock,oit standardized Tw/l.ole_m.etuu‘tement P meas._appl._staff
criteria process
- ada,ptation A controlled

Resources adaptation:

The last example is addressed to the resource measurement as an improvement of the IT
infrastructure.

M, Pca/mbillt# —oxiented

outsourced (2'30)
improving resoutces impcovement semi automati g
! r
(G goals_in_use x A pendant X AI‘ measutement)T s t ph s P eas ¢ expert
identiﬁcaﬁon intuition semi_automatic zactitionet
- (Qbinle_value EthteA/zold) T preas t_phases o1 o s t_expert

Eamlogieé zesources
- . X N d
adaptation improve

These examples demonstrate some of the possible constellations of measurement processes.
One example involves an aspect-oriented approach and the other ones are capability-oriented.
In order to perform a general comparison and classification we must consider all the MP
characteristics (at first the GG'level then the A level etc.). Hence we obtain

(2.26) 2 (2.28) < (2.30) < (2.27) < (2.29)
or

AIPt}(aditional 2 A[Ptraditional 2 AIPtmditional 2 (2.31)

irst_metrics_appl. process_improvement resource_adaptation

A IPtraditional 2]VIPtmditional

product_quality assurance. project_controlling

This is only one of the results. On the other hand we can identify the point of view in order to
achieve any improvement in the measurement process level.

2.6 Measurement Process Improvements

In the sections above we have characterized an ordinal scaled multi-dimensional “space” of
software measurement aspects that consists of the lowest measurement level as
) aAInect_o'cien.ted .
M outsourced : (2'32)
undexstanding A product
(intexnal. _goab X pendant_in_same_domain

16

eziment
X]‘/Iexpal . l l .)quanual 1 mm&e‘t
an ogzca [_conclusion one_meas. _,o/n.a:eA ’>T meas. _expert_. Ataf}‘
ir.{entification mtu,.ﬂon
(Q yinte value H ihreshold)

some immediate levels or measurement situations such as

aspect_oxiented
MPE : (2.33)
evaluation Io‘todact_ad/aecta fassessment \ semi_automat A
(pwemal4°ab o'u;ginal x . estimation) some_meas._phases P meas._appl._staff
n.omln.atlon. alo
no'zmalization. E::lculug
— ln.te‘zval scale x [hardware_unit
data basis quasi_standard

(can be improved by “aspect-oriented’ — “‘capability-oriented’, ‘“‘evaluation” —

9% ¢ 29 ¢

“improving”, “external_goals” — “goals_in_use”, “product _aspect” — “product” etc.)

and the highest software measurement level

whole memutement
MPholer (2.34)
(managing « product A process A zesoutces Icont'ccllmg astomatie practitionet
goals_in._tue Oﬁgilld[measutement w/mle_m.eaAuum.en.t P mw._a/)/:l._naﬁ‘
atio_. scale T Aoﬁwate—“’“:t automatic practitionet
_’(Vz ckflt U standardized) Tw/wle_metuutement P meas._appl._staff
rrod A A
B formulas AP A pr A zces
extension controlled

Furthermore, we will differentiate the following graduation of measurement improvements
as a first kind of improvement classification:

o Weak measurement improvement. This kind of improvement consists of an
improvement of a measurement sub characteristic to the next level (as one step).

e Moderate measurement improvement: The improvement of the measurement process
based on more than one step of a/some sub characteristic(s) building this kind of
measurement process improvement.

o Essential measurement improvement:. This kind of improvement consists of an
improvement of a measurement main characteristic to the next level (as one step).

o Remarkable measurement improvement: The improvement of the measurement
process based on more than one step of a/some main characteristic(s) building this
kind of measurement process improvement.

Therefore, based on the formal described measurement process methods of measurement
improvement are identified easily.

17

3 Software e-Measurement Processes as Ubiquitous Measurement
3.1 Basics of e-Measurement

In following we will give some examples of formal modelling of measurement processes
embedded, oriented, involved and implemented in the World Wide Web. This kind of
software measurement was called e-Measurement and was defined by Lother [Lother 2007]
(see also [Abran 2006], [Ebert 2007], [Dumke 2004] and [Farooq 2008]) as:

“Software e-Measurement is the process of the quantification of object’s or
component’s attributes according to selected measurement goals by using the
capabilities of ICN (Information, Communication, Net) technologies.”

Let us establish the basic components of the traditional software assurance characterized in
the following figure by Lother [Lother 2007].

P

- - - - T -
P - - - P - f f ~
|)})
™ Project Leader Developer _~ b -\.SE%PE"SD””H T Mﬂnagemerﬁ S
':g = . VN - -
Product Cluality
Process Qualily Reports
Reports SQA Reporls
\ I Measurement
|'m&@ Varsion Measurement Measurement Manuals
Tools Experiences
3 & e 7 -
&? & i %
< 5 & %
5 § = 2
[t & I'_— %
Measurement Process Maturity Measurement Measurement Measurement
Tool Vendor Appraiser Trainer Community Method Developer

Figure 14: The traditional software assurance approach

Then the software e-Measurement could be described in the following manner (also adapted
from [Lother 2007]) shown in the figure 15.

This e-Measurement can be divided in different kinds of measurement such as e-Measurement
services, e-Measurement repositories etc. Note that especially the Web 2.0 hype can provide
any new kinds of services, roles and infrastructures in the world-wide software quality
assurance community and marketplaces.

18

e-Measurement Servica e-Consulting

FT.'!IFE\B _.,.'-"‘_ _____ _‘-_‘-‘1_“‘ _._,.-'"._ _____ --‘1_._“
-~ -
i i‘ i‘ e S04 Pl f f "‘3
,) | Repars | A ' ’

e e e m

Figure 15: The software e-Measurement based quality assurance

In the following we will characterize some of these external (Web based) components in
software quality assurance (based on measurement) and their achieved measurement levels.
3.2 Description of Chosen e-Measurement Processes

Note that the formal indexes in the following formal descriptions characterize the main kinds
of Web technology.

The e-Measurement Service as a Web service usable for everyone can be described as

e—Measurement
MP,_Seryice 3 (3.1)
x A x > — X >
(G]‘4) T Web_technology 1 (Q E) T Web_technology 4
~(VxU)p p— %A

Web_technology ~

with a simple explanation as e-Service € {global production, outsourced} and
Web technology € {document-based, dynamic, semantic, service, mobile, agent,
operational}.

Note that we have shown such a service in figure 8 including both as measurement results and
the measurement of Java applications.

19

The e-Measurement Community as a virtual environment for the measurement community
including features for knowledge transfer, communication, cooperation and coordination
activities is characterized by

e—Measurement
e—Community

- X
(Q E) T Web_technology P

—(VxU)r

MP (GxAxDM) r (3.2)

Web_technology P system _operationality

system _operationality

—-FxA’

Web_technology system _operationality

with the same kind of description as e-Community € {P2P, research team, cooperating team,
organization, competence network}, Web technology € {document-based, dynamic,
semantic, service, mobile, agent, operational} and system_operationality € {coordination,
conferencing, cooperation, collaboration}.

An example for the FSM community was implemented prototypically by Lother shown in the
following figure [Lother 2004].

A The Functional Size eMeasurement Portal - Microsoft Internet Explorer

Datei Bearbeiten Ansicht Faworiten Extras ¢

ezuru:k A > | \ﬂ @ h /.:\‘ Suchen \ly_‘::(Favoriten @Medien ﬁ‘} [7'\% :;_ J ﬁ
Adresse |@ http:fibslabpeé, cs, uni-magdeburg, de: 8080} jetspeed/portalimedia-typefhtmlfuser freviewer/page/def ault psmlfjs_par V| Wechselnzu Links *

Google - | v| @ websuche - g3 | Ehzesblackiert [optionen & -

~

Functional Size
eMeasurement Portal

-+ User Details

Project PPL Team SWE FP PET Defects
Test1 C++ 25 143 7 12
asd Jawa 2 174 B0) 1
Test2 Eiffel 40 60 15 1 2
-+ Aquire Project Data Back to Visualizer Index
. IEPUS,
Effort Time-to-Market
= 75
70 "
60 ']
o5 . 50

40
30
20

-

25

75 100 125 oo 12

hours

150 175 25 50 78

months

Delivered Defects
N \

20 30 40 S0 G0 70 8O Java

FP WC++ Mjava WEffel

Programming Language

Eiffel

=

defects

n

4

I£3

& Internet

Figure 16: The Functional Size Measurement community portal

20

Essential backgrounds as e-Repository and/or e-Experience can be described in a simplified
yet formal manner as

e—Measurement
MPe_Experience - (Gx AxM) P (3.3)

Web_technology ’* system _operationality

)T P

— x K
(Q Web_technology Web_technology

—>(V

Web_technology °* system _operationality

)T

x U
Web_technology Web_technology Web_technology p system _operationality

s s

Web_technology

—

whereas e-Experience € {information basis, repository, knowledge data basis, experience
factory}, Web_technology € {document-based, dynamic, semantic, service, mobile, agent,
operational} and system_operationality € {coordination, conferencing, cooperation,
collaboration}.

An example of Web-based services of experiences is shown in the following figure including
descriptions of software engineering methods and practices (http://www.software-
kompetenz.de).

ns | Sitemap | Login

Kempetenzzentrum
.] Das Virtuelle Softwere-Engineering-Kompetenzzentrum WSEK bistel
UML Kurs snlins GRS Unternehmen einen einfachen Zugrift auf Knowshow und Erkenmrisse in
Einfihrung in UML und = %:: " der Sofiware-Entwicklung, Mutzen Sie unsere Erfahrungen und den
Deme ines interakiiven) Kartakt zu Experten,

Online Kurses

VIiSEK Newsletter
Lassen Sie sich automatisch
iber sktuelle Geschehnisss
in der Gommun ity

informiaren!

Akademie
ISEK bietet Unternehmen ein Angehot
ausgendhiter Veranstaltungen und Termine

WISEK Mitglieder. Hier erhatten Sie einen

I Uberblick

Unger Forum hietet Ihnen dustausch mit Gleichgesinrten,
Beteiligen Sie sich an Diskussionsforen mit Fragen und
Antworten zu ginem Thema [hrer Wahl oder lassen Sie sich
durch den Newsletter auf dem Laufenden halten

Figure 17: The German software engineering experience portal
The e-Quality Service are helpful Web-based activities and are described as

e— Measurement

e—Quality
—>(Vv

MP (GxAxM

)T P (3:4)

Web_technology Web_technology ’~ system _operationality

)T

x I
Web_technology Web_technology Web_technology ’ P system _operationality

)T

x U
Web_technology Web_technology Web_technology P system _operationality

s s

Web_technology

—

21

with an explanation as e-Quality € {information, certification, consulting, estimation},
Web technology € {document-based, dynamic, semantic, service, mobile, agent, operational}
and system_operationality € {coordination, conferencing, cooperation, collaboration}.

The SML@b Web application could be considered as example quality services by using
existing (estimation) methods.

Otto-von-Guericke-University of Magdeburg

Software Measuremen

t
Laboratory SML@b

COMMUNITY 233

+ Conferences/Workshops
—— . Measurement Associations — Web-based Measurement

PUBLICATIONS

..) Software Process Evaluation
« Bibliographies

« SMLab's Publications
« Standards « 150: ISO 9000 Self Assessment

+ CMM: Capability Maturity Model

METRICS TOOLS

« CMMI: Capability Maturity Model Integration

« Tool Overviews + S°M : Maintenance Maturity Model
« Web-based Measurement

+ SLIM: Demonstration of the Software Equation

% EXPERIENCE « SDC: Software Development Complexity

+ CAME-PE: CAME measurement process evaluation
+ Motivation

« Experiments . .
Software Cost Estimation

» COCOMO: COnstructive COst MOdel

« COCOTS: COnstructive COTs

+ FP: Function Point Execution Example

| %’ GI Fachgruppe
Metriken (2.1,100 Software Size Measurement

Figure 18: The quality method application in the SML@b

Especially, the e-Control summarizes a lot of Web technologies and methodologies in order
to perform this operational kind of Web systems, described as

e—Measuremernt
MP,_Control) (3.5)

(Gx A)7

X
Web_technology type _of _measurement Web_technology ° P system _operationality

-(Q)T

x K
Web_technology Web_technology Web_technology ’ P system _operationality

)T

x U , P
Web_technology Web_technology Web_technology system _operationality

— 1 Web_technology x A
with the details as e-Control € {evaluation, improvement, managing, controlling},
Web technology € {document-based, dynamic, semantic, service, mobile, agent,
operational}, system operationality € {coordination, conferencing, cooperation,
collaboration} and type of measurement € {modelling, measurement, evaluation,
application}.

A simple example of process controlling is given in the following figure that extends any
office solutions in order to measure the different files using profiles (see [Abran 2006]).

22

6 cullwer®cs.uni-magdeburg.de Activity Sensor Data
HackySecnt
22-Feb-2006

OTTO-VON-GUERICKE-UNIVERSITY MAGDEBURG admin | analyses | preferences | alerts | extros | hele | home

List Sensor Data: Lists your sensor data of the given type for the given day (more...)

Analyze
Type: Activity -
Day: 22 | = || Februar w | 2006 -
type data tool tstamp pMap
Tool Startup OpeanOffico 02/22/2006-15:16:350 {}
Open File Mmomefarthur/areaSiftest.odt OpanOffice (1]} -15:16:55 {)
Save Filo Mome/farthur/area%1test.odt OpeonOffico 02 $-1%5:17:10 {}
Close File /Momefarthur fareas 1 /test.odt OpanOfice 0z 2006-15:17:12 {}
Tool Shutdown OpenOffice 02/22/2006-15:17:12 {}

Figure 19: The HackyStat extension for process controlling

Finally, the Measurement e-Learning as one of the measurement training aspects can be
formalized as

e— Measurement
e—Learning

MP
(G

(3.6)

)T

X X
Web_technology Web_technology WebMeasurement _operation Web_technology ’ P system _operationality

- (Q)T

x K
Web_technology Web_technology Web_technology P system _operationality

-V)T

x U , P
Web_technology Web_technology Web_technology system _operationality

i i
—

X
Web_technology Web_technology

whereas it holds that e-Learning € {learning, repetition, consultation, practice,
examination}, Web technology € {document-based, dynamic, semantic, service, mobile,
agent, operational}, system_operationailty € {coordination, conferencing, cooperation,
collaboration, consulting} and measurement operation € {artefactBasedOp,
quantificationBasedOp, valueBasedOp, experienceBasedOp}. The following example of
CMMI application in the Web demonstrates the measurement e-Learning in principle.

Implementation of the CMMI*"
Evaluation Model as E-Learning Component

{This wab application IS for sducational use only)

INTRODUCTION

CMMI stands for Capabiliny Maturity Modal Integration. The puipose of
GMMI s o provide guidance fof improying i orgamzulon’y processes and i3
sbility 16 managa the i and of products of
sarvices.

This CWMI project was fosmad 1o 2ort oul tha problam of using multipls CMMe
1 ig an initistive for changing the genaral intertien of an sssessmant view
ased of 1he “classcal™ CMM or 10 9000 to an smprovemond vies mlograting.

ke System Enginsaring CHM (SE-CMM)

the Software Acquistien Capability Maturdy Madel [SA-CMM)
the Integrated Product Development Team Model (| DF-CMM)
fhe System Engneening Capabidy Assossment Model (SECAM)
that Syatems Enginasnng Capability Madel (SECM)

basic ideat of the new versions of the |50 9001 and 15504,
MODELS

Your organization can use & GMMI model to hedp set process imp

sbjclm s and prishbis, improve processes, and provide gusdance [0 ensuting
stable, capable, and malure processes. A celected MM moded can sanve as

& guide for of G

Cwmendly there ane four bodies of knowledge av ailable 1o when salecting &
GMMI medel |8 systems engmesning, soitware engmeenng, imegrated product | @-Incomplate

wid procis divelopmint and supghior sourcing

TEST YOUR ENTERPRISE * There are six capability levels (but five maturity
{dut o oty e i e

Figure 20: The CMMI explanation and application in the SML@b

23

Note that this kind of formalization motivates further ideas and possibilities of Web-based
software measurement supports and innovations (examples are given in [Abran 2006],
[Dumke 2003a], [Dumke 2004], [Ebert 2007], [Lother 2004] and [Lother 2007]).

3.3 Measurement Levels in e-Measurement

The main benefit of e-Measurement leads to the availability of such e-Services and e-
Supports. Therefore, the measurement level could be characterized as immediate level mainly.
Otherwise, using e-Measurement the case of outsourced measurement is the typical one. A
usual measurement level description of measurement e-Services as external process
evaluation could be given as following.

aspect_oriented evaluation process
M outsourced : (Gln.temal [_goals X oiginal (37)

x M AeAAmen.t) semi_automat. practiti
estimation Tone_m.etu. _/:/mAeA’P meas._expert_staff

N (orxdinal_scale % alogy)
sinle_value threshold

Another example of measurement e-Learning based on the “Web-based Measurement” at the
SML@b, http://www.smlab.de) as Java measurement service has the following measurement
characteristics (as immediate measurement level also).

yo2ipect_otiented
ijPoutAoutced : (3 : 8)
evaluation product_aspects rassessment semi_automati A
(intemal_goab X o'a;gin.al X A[’a’:eaultement)T.‘som.e_m.uu. -P/“uu P m.eaA._exlae'zt_stuﬂ'

ozdinal scale intuition

- (Qdin.gle_valae x K theeshold)

The best case of measurement level in e-Measurement could be a remote service of e-Control
(as server management) including the following measurement characteristics.

capability_otiented
]‘IPoutAoutced : (3 : 9)
”m"-ag"lg Zesou’tces y °'lt"°”"'lg automatic /nactitionet
(G 3oa14_in._¢ue ouyind X j‘/jfne‘u“tement)Tw/mlc_meuutemgnt P meas._appl._staff
atio_scale A°ﬂw are_unit automatic practitioner
_»(V:ock/u't x U standardized) Twﬁole_mmutment P meas._appl._staff
fb'cm.ula zesources
—

extension controlled

Otherwise, simple relationships could be built comparing the traditional kinds of
measurement described in the section before. It is simple to see that holds

M traditional = A[Pg:%erzfcuerement 2 A[Ptraditional (3.10)

first_metrics_app product_quality _assurance.
and
_ M .y
]V[Pg i Oel/?li'%?emen 4 2 A[Ptradltlonal (3.11)

project_controlling

where the non obvious improvements of e-Measurement is reasoned in their better kind of
availability and more (world-wide) involved experiences as described above.

24

4 Measurement as Controlling for Agent-Based and Self-Managed
Systems

4.1 Characteristics of Agent-Oriented Software Engineering (AOSE)

Software agents can be applied to solve new types of problems such as dynamic open systems:
the structure of the system itself is capable of changing dynamically and its components are
not known in advance, can change over time, and may be highly heterogeneous. Usually, the
AOSE would be divided in the three areas of software agent, multi-agent systems (MAS) and
MAS development (see [Bauer 2004], [Ciancarini 2001], [Gerber 2001], [Huhns 2004],
[Jennings 1998], [Knapik 1998], [Liu 2001], [Panait 2006] and [Wooldridge 2002]).

Software agents: The essential components of a software agent form a measurement point of
view in the following scheme [Wille 2005].

signals from the

.. _emvironment .- Thell LT
empirical-based
agent intentions

fnegsurement-based

agent operation
evaluated tasks N

agent knowledge anm

ampitical experience

task input
result output

environment *

Figure 21: Components of a general software agent (original and measured)

The next aspects of software agents are related to their communication and/or co-operation.
The following figure explains these aspects in general.

agents negotiation

agents
N communication

L
= ==

"= agents cooperation
P— Pt

coordination

Figure 22: Communications between software agents

25

Multi-agent systems: The viewpoints of agent-based systems — especially multi-agent systems
(MAS) - are generally defined in architecture models. We will also start with a general
description of the MAS aspects as shown in the following figure.

ahject 1

coardination

ohject 2

. apant remole nperalion
Clty a User

Interface

coop@ax

ohject 3
sysfam managemeant

agent action

systen

object MAS application

MAS

Figure 23: General components of multi-agent systems (MAS)

The following figure suggests a all measurement intentions for our agent-based systems.

abject 1

estimation-based
coordination

measurement-based operation

User
Interface

-

ermpitical-based

ohject 3
mahagement

controlizd action

[]

— 1 usabilit-otented agen

system
okject

MAS

Figure 24: Measurement-based MAS architecture

26

MAS development: The specification, design and implementation of agent-based system
and/or MAS differs from the OO development by starting with subjects (roles) and
introducing a training phase after the system implementation. The following figure shows this

AOSE development phase involving measurement and evaluation characteristics [Mencke
2007].

MAS Conception with Estimations &
Measurment Invalvement

Measured Agent Development
. & Agent Measurment Extentions

Estimated Agent
Community Development &
Measurement Intentions

-~ .~ Controlled MAS Development
T 5 — Wwith Measurement
-1 P Instrumentation

Education with Off-line
Measurement

/
4
I;_Ll E MAS Training &

Figure 25: Measurement-based MAS development

4.2 AOSE related Measurement Extensions

First, we describe the measurement of software agents considering the new kind of controlling
by the agents themselves.

AOSE

managing agents ontrolling automatic
(Gagent_intention X Aotigin.al X M:neasurement)7 Aome”_llaneasutement

_)(V'catio_scale x U A°]qwa'te—‘”u't) automatic
xepository quasi_standard) 1" some_measutement

. oent_knowledge _basis improved_agent
E:xtemion x A controlled

27

Especially, the measurement methods g4,g..; can be summarized as

size structure complexity functionality
measurement € { Uagent » Kagent H agent » Hagent ’ (4.2)
description(development) description(application) description(publication)
agent » Fagent » Fagent ’
communicaton interaction learning adaptation negotiation
agent » Magent M agent H agent s M agent ’
collaboration coordination cooperation reproduction
agent s Magent s :uagem‘ 4 :uagent ’
performance specialization }
Hagent » Magent

The metrics for the agent design level are: Software agent size yf,’éfﬁ,,,: The size considers
both aspects of an agent: the functional size and the physical size of a software agent.
Software agent component structure yf,gg,f,t”r ¢ The structure depends on the kind of the agent

(intelligent, reactive, deliberative etc.), and the agent interface is related to the kind of agent

complexity The

coupling (as fixed, variable or evolutionary). Software agent complexity u agent :

complexity is divided into the computational and psychological complexity and should be

functionality

measured using both concrete aspects. Software agent functionality u agent

: This aspect

considers the appropriateness of the agent with respect to the requirements.

The metrics for the agent description level are: Software agent development description level

description(development)

agent : It considers the completeness of the development documentation

(including tests and change supports). Software agent application description level

description(application)

agent : The metric includes the quality (readability, completeness, on-line

support etc.) of the user documentation. Software agent publication description level

description(publication)

agent : This metric considers the public relations for using the software agent

and involves the system description.

The metrics for the agent working level are: Software agent communication level

Gaont 4" - Considers of the size of communication and the level of the conversation
required to sustain the activities. Software agent interaction level prygen " : This metric is

related to the agent context and environment and their different kinds of actions (as

transformation, reflecting, executing, modification, commands, perception, deliberation).

Software agent learning level yﬁfg"g,;’}”g : This metric evaluates the skills, intentions, and

actions of extending the agent facilities itself. Software agent adaptation level ygggﬁfation'

The adaptation metric considers facilities of an agent changing in order to react to new

negotiation The

conditions in the environment. Software agent negotiation level pggen

measurement is based on the evaluation of facilities like the agent intentions, conflict
resolution, and realized commitments for successful negotiation. Software agent collaboration

28

collaboration .

level pggens : This metric is oriented towards the agent’s facility to work together with
other agents. Software agent coordination level pf,g‘é,rginaﬁon : The agent’s facility of

managing any one agent task is considered. Sofiware agent cooperation level /szgéﬁfmnon'

This metric considers the volume and efficiency of an agent relating to a common task.
reproduction ,

Software agent self-reproduction level ph yqeps : The number of destroyed agents related
to repaired agents is counted. Software agent performance level ygggﬁr mMance . This metric

considers the task related performance of an agent. Software agent specialization level

specialization

agent : The metric considers the degree of specialization and the degree of redundancy

of an agent.

Note that the metrics-based analysis of the agent behavior is one of the new and extended
areas in software measurement of agent-based systems. An example of agent measurement is
shown in the following figure (left the green, right the red evaluation based on continued
measurement [Wille 2005]).

& atp:sisp... [=|B)K] & atp:iisp... [= @)X

Figure 26: Examples of agent measurement (as aglet performance)

We describe the measurement of multi-agent systems (MAS) considering the new kind of
system controlling in the same manner as.

AOSE

MPLGE (4.3)
managing on.t'coll automatic
(Guser lntennon Aougmal x M, easurement)Tmme,:,aneuuumeat
tio_scale Aoftwate_unit automatic
—(zepository x U quasi_standard) T yome_measutement
— pagent _ knowledge _basis % A improved _ MAS
extension controlled

Especially, the measurement methods 45 can be summarized as

measurement € | /‘%[ZES , ﬂ%gture , #%nglexlty U %gﬂonahty , (4.4)

description(development) description(application) description(publication)
» B mas » B mus ’
ﬁ%yunication interaction knowledge lifeness conflict community

s HMAS » Biys MAS » Hymas 0 Hyuas ,

29

management application stability performance organization !
MAS » Bpas s Byus 0 Buds » B pas

The metrics for the MAS design level: Agent system size y%sz The measured system size
includes the potential number of (active) agents and their contents; further, the size is related
to the environment. Agent system component structure py s : This metric includes agent

the type of organizational structure (hierarchies or egalitarian), the degree of parallelism, the
kinds of organizational functions (representational, organizational, conative, interactional,

productive, or preservative). Agent system complexity ﬂ%ﬁlex”y: One of these measured
aspects leads to the degree of the organizational dimensions (social, relational, physical,
environmental, and personal). Agent system functionality y%’?’ommy : This metric considers

the realization of all of the functional system requirements.

The metrics for the MAS description level: Agent system development description level
y%@”pﬁon(dgvel"p men’) . This metric considers the integration of the agent concepts and
dynamics and their sufficient documentation. Agent system application description level
yﬁlﬁ?lpﬁon (application) . This considers the user documentation of all aspects of the system

applications related to the different user categories. Agent system publication description level
%Zf&”p tion(publication) . pyplication metrics evaluate the user acceptance and marketing

aspects of the agent-based system application.

The metrics for the MAS working level: Agent system communication level ,ucommumca”on

The number of ACLs between the different kinds of software agents and their different roles

mteractlon

and actions. Agent system interaction level 'y : This metric deals with the average

types of interactions relating to the agents and thelr roles in the environment of the agent-

knowledge

based system. Agent system knowledge level), : This metric measures the results of

agent learning for agent-based system (based on the different kinds of agents, either tropistic

llfeness

or hysteretic). Agent system lifeness level uy, This metric is based on the agent

adaptation which reflects the adaptation level of the whole agent-based system. Agent system

conﬂzct

conflict management level p /¢~ : The system success is based on agent negotiation and

considers the relations between the different kinds of a fair play in the realization of the

commumty

system tasks. Agent system community level p;,, : This metric considers the level of

different agent communities based on the agent collaboration. Agent system management level

y%’?gemem This system metric is based on the agent coordination level with respect to the

appllcanon

whole agent system structure. Agent system application level uj/; : This metric is

related to the application area and the different agent roles in cooperation. Agent system

stablllly

stability level p),, : The stability measure is based on the agent self-reproduction. Agent

performance

system performance level p' i The handling with object to realize special tasks

30

through the different agents is considered. Agent system organization level u%@” ization . The

different agent roles (archivist, customer, mediator, planner, decision-maker, observer, and
communicator) are considered.

File Info
Time Settings- Logfile
duration {min): 10 | intervall (seo: |© | filename: Eenchlog 10 og

(PR e

["Introduction | Logfile | Graphics |

100%

S0
80
Vi L
60 _
12
40 |
30 0
20
10

0 n | I

| | | | | | |
0.0 22.0 46.0 £9.0 92.0 115.0 128.0 161.0 184.0 207.0 2200

w-axis is use in percent; ¥x-axis istime in sec

[vi CPU [Memory [Swap

Figure 27: Example of MAS measurement (as benchmarking [Gerber 2001])
Finally, we describe the measurement of MAS development including their resources in the
same manner. Note that the MAS development consists of two pairs as the development of the

agent(s) and the development/building of the MAS itself.

AOSE

MP g _development - (4.5)
(G"lanaging % A dgent _system _ development
customer_intention concept
zovement
Semi_auti i
x M measurement)T,,,me_ s P ¢_application_staff
- o'cdin.al_écale criteia semi automatic practitioner
(Q'ce,ooaitot# x K t/zte.s/zold) T yome_meas + s ¢_application_staff

N Emethodology % A implemented _agent _system
extension to _be trained

Especially, the measurement methods tieveiopment(agenyy N4 Mdevelopmeniimas) €an be summarized
as

phases milestones workflow

development(Agent) * H development(Agent) + K development(Agent) * (4.6)

methodology paradigm CASE management(project)
development(Agent) ’ H development(Agent) ’ H development(Agent) »+ K development(Agent) ~’

measurement € { u

31

management(configuation) management(quality) phases milestones
H development(Agent) s H development(Agent) H development(MAS) * H development(MAS) »

workflow methodology paradigm CASE
H development(MAS) * H development(MAS) * H development(MAS) ’ H development(MAS) »

management(project) management(configuration) management(quality) skill(developer)
H development(MAS) ~’ H development(MAS) s H development(MAS) H development(Agent) *

communication(developer) productivity(developer) paradigm(software)
development(Agent) s H development(Agent) ’ H development(Agent) ’

performance(software) replacement (software) reliability(hardware) performance(hardware)
H development(Agent) ’ H development(Agent) ~ H development(Agent) * * development(Agent)

availability(hardware) skill(developer) comunication(developer) productivity(developer)
H development(Agent) ~ H development(MAS) * H development(MAS) ? I development(MAS) ’

paradigm(sofiware) performance(software) replacement (software) reliability(hardware)
H development(MAS) ~ H development(MAS) s H development(MAS) ~’ H development(MAS) ~

performance(hardware) availability(hardware) !
H development(MAS) s H development(MAS)

b4

The metrics for the agent development life cycle: Software agent phases level

gehva:lf;m ent(Agent) " The characteristics (size, structure, complexity) in the different

development phases are considered. Sofiware agent milestones level ﬂ&”e’éeesfoi,’;ﬁim(Agenr) - This

metric evaluates agent development with respect to a milestone. Agent requirements workflow

workflow
level u development(Agent) This metric considers the implemented requirements during the

development phases.

Presentation
Agent

/VI\/I;:\

Application Request | Measurement

Agent g Agent \
-

Create

= L=

Control

Monitor

_—mm—=a

-~ ——
e — ~— -

Distributed Application

Figure 28: MAS development measurement as JAVALite extension [Wijata 2000]

32

The metrics for the agent development method level: Software agent methodology level

?eevtfl(:g%(;%(geny* The level of the development method used is quantified. Software agent

paradigm : This metric evaluates the appropriateness of the chosen

paradigm level u development(Agent) *

development paradigm. Software agent CASE level y%ﬁﬁwmem(Agent) This metric

quantifies the tool support for the agent implementation.

Auctioneer Auction Participants
il inform (start auction) /\L
\
-
cfp (initial price) /_._ n
U €
T (d:10) (d:10)
L {m>0} not understood
<
m
I propose (price) n <$> T
< Kk L
reject proposal (price) g
(d(current time, start) > delay) L
|
accept proposal (price) 1
{n>=2} cfp (price + 10) T
H
@
inform (end auction)
N q
I {price >= reserved price} request (price)
| |
| |
Notation:

—— —0 —e

XOR Broadcast Sending message until
delivery

Figure 29: Example of Agent UML (AUML) application [Huhns 2004]

The metrics for the agent development management level. Agent project management level

management(project)
development(Agent) This set of metrics considers the management level of the development

management(configuation) This

risks and methods. Agent configuration management level p 4, . opment(Agent) :

considers the successful of the version control with respect to an agent. Agent quality

management(quality)

management level u development(Agent)

: This set of metrics considers the quality assurance

techniques related to an agent.

33

Now, we consider the development process of the MAS and define the following appropriate
software metrics for the measurement and evaluation of these aspects {tdeveiopment(mas)} -

The metrics for the MAS development life cycle: Agent system phases level

phases
H development(MAS) - This evaluation considers the system metrics of size, structure and

complexity during system development. Agent system milestones level u&”eléees,fz,’;ﬁim(MAS) -

The metric evaluates MAS development with respect to a milestone. System requirements

workflow level #Zveovrffz%em(a4s): The requirements implementation during the development

phases in the whole system is considered.

The metrics for the MAS development method: Software agent methodology level

y;"gé’looi‘;ﬁ%(m 5): The level of the development method used is quantified. Software agent

. aradigm
paradigm level ,ugev ol Opgm ent(MAS) - This metric evaluates the appropriateness of the chosen

development paradigm. Sofiware agent CASE level ygﬁ,iipmem(Mmas) - This metric quantifies

the tool support for the agent implementation.

The metrics for the MAS development management level. System project management level

y?e‘i’;‘;fpei’zsztt((%ge)m: The management level of the development risks and methods of the

system is considered. System configuration management level y?{iﬁ?f}f%%&%%gw ation) . This

metrics includes the evaluation of the dynamic aspects of the system configuration. System

quality management level y?gﬁ‘l’gy’zsﬁg%g?). The quality assurance techniques related to

the whole agent-based system is considered.

The agent and MAS development process require different resources such as personnel
(developer, tester, administrator etc.), software resources (MAS COTS and CASE tools), and
platform resources, including the hardware components. Therefore, we need measurement
values with respect to the characteristics (especially the quality) of these resources. Hence, we
define the following metrics which are also necessary to evaluate the MAS development
process.

skill(developer)

The metrics for the agent developer level: Agent developer skill level u ;. clopment(Agent)

This metric is related to the skills to develop and implement an software agent. Agent

communication(developer) .

developer communication level u ;. clopment(Agent) : The ability of the developer to

improve his work by collaboration and cooperation is considered. Agent developer

productivity(developer) ,

productivity level pl;, lopment(Agent) - This metric evaluates the quantity of work.

The metrics for the agent software resources level: Agent software paradigm level

paradigm(software) |

development(Agent) This metric evaluates the appropriateness of the chosen software basis

34

and used software components for the implementation of an software agent. Agent software

performance level ygee‘fé cl)g;n’ziea;te((iogj;h’:gr ©): This metric addresses the software components and

their effectiveness. Agent software replacement level p’/? lgg;%ee'gt((fgf;)m) This metric

considers the effort of adaptation when using different versions of the basic software.

)

-

$

Jass Agant
facads Agant
datarminar Agant
Good
Excallant

AURA Agant
ALURAgant

=
o
o™
4
=

Figure 30: Example of MAS resources measurement (Agent Academy, [Wille 2005])

F Agant

The metrics for the agent hardware resources level: Agent hardware reliability level

reliability(hardware)y .
development(Agent) * This metrics considers the reliability of the types of hardware required

. erformance(hardware
for running the software agent. Agent hardware performance level ”5ev£l opm em((Agent)),

This set of metrics considers the platforms used for an agent. Agent hardware availability

level yf,:ffggf)%gft}(’jrg‘gg ¢). The average availability of the different platforms used from a

(mobile) agent is considered.

The metrics for the MAS developer level: System developer skill level y‘;];’éi(g;;fel%(e& 5

This metric is based on the agent developer skills and is extended by the (dynamic) system
characteristics. System developer communication level yéﬁ@?%‘ﬁ%’%%‘g‘)p). This set of

metrics considers the ability of the developer(s) to improve his work by collaboration and

35

cooperation. System developer productivity level y%ﬁjﬁ?ﬁé%&%ﬁ?p °r). The quantity of work

1s considered.

The metrics for the MAS software resources level. System software paradigm level
paradigm(software)
development(MAS) *

for the implementation of the agent-based system is evaluated. System software performance

level ygjvrfef‘;gzzz;f((jg%am): This metric considers the evaluation of the efficiency of the

The appropriateness of the chosen software basis and COTS system used

involved software base and the external components. System software replacement level

Zee"’)i‘;g;’:’nee'r’ft((%”gr ©). The adaptation to the different versions of the basic software is

considered.

A metrics-based analysis of different Java-based agent technologies shows the following two
tables from Kernchen [Kernchen 2006] (see also [Ebert 2007]).

Table 1: Size measurements for measured AOSE technologies

System # Classes # Methods LOC/Class Methods/Class

Aglets 180 1863 67.61 10.35
JADE 487 4652 99.18 9.55
MadKiit 683 5929 109.0 8.68

Considering the C&K metrics has highlighted the following characteristics between the
different agent technologies as software Aglets, JADE development platform and the MadKit
system.

Table 2: Chidamber and Kemerer measurements for OOSE and AOSE technologies

Aglets JADE MadKit Mean of Std. dev. Mean of Std.
AOSE of AOSE OOSE dev. of

OOSE
DIT 0.239 0.745 0.685 0.556 0.276 0.59 0.82
NOC 0.222 0.353 0.387 0.321 0.087 0.15 0.45
WMC 10.35 9.552 8.69 9.531 0.830 8.69 7.90
CBO 5.022 6.951 5.331 5.768 1.036 3.00 4.22
RFC 25.05 15.871 21.931 20.951 4.667 14.78 16.35
LCOM 80.011 55.585 50.144 61.913 15907 37.51 82.82

The values of the OOSE evaluation are based on the Java 1.5 measurement using the C&K
metrics (see for more details [Kernchen 2006]).

The metrics for the MAS hardware resources level: System hardware reliability level

reliability(hardware)

H development(MAS) * The reliability of the kinds of hardware for running the agent-based

system is considered. System hardware performance level ygjvrfef‘;ggzz;fgﬂgyam) : This set of

metrics considers the platforms used for an agent-based system. System hardware availability

36

availability(hardware)
level p development(MAS) -

agent-based system is considered.

The average availability of the different platforms used with the

4.3 Agent Technology and Measurement Levels

Usually, agent measurement means controlling considering some of the product
characteristics during the run time. This situation can also be established for the multi-agent
system itself. Furthermore, agent controlling does not include any personal resources
explicitly. Hence, we can characterize the high level of software measurement for agent
technology as following.

Moty oriented 4.7)
(G paaB8 e Al < M asaartiont) 125
—(Vistiioatt U o) TR
— Bt < Al

Otherwise, the process of agent and MAS development could be classified as an immediate
measurement level. The following description demonstrates this case of software
measurement ingredients.

aspect_oriented
MPEe- : (4.8)
managin ocess
(GRS P
extetnal_goals oxiginal
imptovement
, semi_automati
x meaau'cement)T:;e_ s P t_application_staff
o'cdin.al_écale critetia semi automati zactitionet
—(xepository v t/zte.o/zold) T,::::_w N ¢_application_staff
zules_of thumb Zocess
- K exten;ic{:: x AID
improved

The agent-based measurement level comparing to the other paradigms described above leads
to the following relationships:

A p'raditional 2 jy[pg:%f}f%rfmem < jVIngOe‘,gg (4.9)

product_quality _assurance.

based on the internal (in-house) measurement and improvement and considering the training
phase in MAS development as

traditional e— Measurement AOSE (4.10)

MP project_controlling < MP e—Quality < MP 45 _ development

that could be characterized as a moderate measurement process improvement.

37

5 Adaptive Measurement for Service-Oriented Systems

5.1 Characteristics of Service-Oriented Software Engineering (SOSE)

The concepts of software architecture shall be clarified by a rather classic definition cited here
from [Bass 2003]:

"The software architecture of a program or computing system is the structure or structures
of the system, which comprises software components, the externally visible properties of
those components, and the relationships among them.”

In general, service-oriented architectures (SOA) can be characterized by the fact that they
separate the implementation of the service from its interface. Withal, a “find, bind, and
execute” paradigm enables a service’s customer to query a third-party registry for an adequate
service implementation. In case that the registry contains a matching service, it provides the
customer with a contract and an endpoint address. Following the notes of [McGovern 2003],
SOA configures its six entities, namely service consumers, service providers, registries,
contracts, proxies, and service leases after all, to support the above mentioned paradigm.

The general idea of SOSE could be characterized in the model-based description of the
OASIS standardization committee shown in the following figure [MacKenzie 2006].

SOA - Strategy

- Visibility -
Execution Service-

Context description

Real world effect
Contract & Policy

| SOA - Architecture model |

| SOA — Organisation model |

| SOA — Evaluation model |

Figure 31: SOA reference model by OASIS

The general involved technology in Web services is given in the figure 32 below starting at
the SOAP level. Web services are network-based applications that use the WSDL protocol
(Web Service Description Language) to describe the functions they offer on the Internet,
XML documents (eXtensible Markup Language) to exchange information, and the SOAP
protocol (Simple Object Access Protocol) for calling remote methods and transferring data.
The data and function calls that are packaged into XML documents are typically transferred
using the http protocol which means communication can also take place across firewalls. It is
this property in particular that opens up the possibility of developing genuine Business to
Business (B2B) applications. UDDI directory services (Universal Description, Discovery, and
Integration) are used to localize the Web services provided on the Internet.

38

BPEL4WS (Business Process Automation)

Messaging

Web Service
Security

Webservice Service
Level Agreement (SLA)

Weab Service
Transaction

Web Service
Coordination

Web Service Registry (UDDI)

Web Service Description Language (WSDL)

Information Hiding (SOAP)

XML, XML Schema, Encoding

Transport (TCP/AP, HTTF)

Figure 32: Example of SOA architectural basics

[Hanson 2006] describes different levels of granularity. He points out that the level of
granularity generally depends upon the purpose of the software entity. The different levels are
shown in figure 32. The level of granularity for composite services should be coarser than the
level of granularity for basic services, objects or components. Figure 33 shows furthermore
the kinds of development support. Objects and components support more than the
development of single applications (application centric). Basic services and composite
services support the development of IT-architectures (architecture centric) for the entire
enterprise. That means with the application of services, development of individual

applications does not stand in the foreground any more.

Less Business Value
b=,

More Business Value
=

Objects

Component

Basic

Services
(e.g. Wrapper)

Composite

Services
(business process
onented)

Architecture centric
Application centric

Fine Grained

Coarse Grained

Figure 33: Degrees of service granularities by [Hanson 2006]

39

A typical SOA in an industrial environment is given in the following figure existing in the
telecommunication area (eLoC means effective lines of code).

T 4193 eLoC 5491 eLoC
| | /" 32 Java classes /,_f" 30 Java classet
| :-(—h Wrapper A »
l 8
s 1]

I 2 | 7789 eLoC s £
| 2 | /" 29Javaclasses | 2 |2

w c —
| ‘3 :4—> Wrapper B |« » O E Iﬁt(:rr‘;!ac:e
| © & @
1 21 2733 eLoC s |5
=1 /15 Javaclasses | ¢ g
I le—> Wrapper C |« 1S /" 68 operations
I | | P
|

s | Basis functionalities

Figure 34: Architecture of an industrial SOA service by [Schmietendorf 2007b]

The service development must consider the existing SOA-infrastructure from the customer
side. That means that the service should be usable within the established runtime-
environment.

The right granularity of corresponding service offers is crucial for the successful
implementation of a SOA. Object-oriented, component-based and service-oriented software
engineering paradigms have many resembling features — modularity, encapsulation of
functionality and data, separation of interface and implementation, and so on. Therefore, it
could be possible to derive experiences from this field. [Griffel 1998] proposes the following
set of metrics to measure the granularity indirectly:

e Size of the service interface (operations, parameter, ...)
e Share of the service of the complete application (like supported business processes)
e Size of the effective source code (lines of code, number of classes, ...)

A first approach for an evaluation model follows the well known GQM (goal question metric)
paradigm and leads to the granularity identification by the use of metrics. Therefore an
assessment for the granularity behavior of a service offering should provide answers to the
following questions:

How much should be the size of the service interface?

(Number of provided operations, Number of contained data types for each operation,
Kinds of used data types)

How much business functionality is considered by the service?

(Information about the successful application, Number of encapsulated legacy
systems, Difference between basic and composite services)

Is a “white box” or/and “black box” view supported?

(Information about the used implementation technology, Structure metrics for the
service implementation, Overview of the chosen implementation architecture)

40

5.2 SOSE addressed Measurement Descriptions
Typical measurements in the context of a SOA scorecard could refer to the following areas
[Schmietendorf 2007a]:

e SOA - Business Measurements: Market penetration, time to market, customer
satisfaction, turnover increase etc.

e SOA — Process Measurements: Process terms, process mistakes, number of process-
referential events etc.

e SOA - Financial measurements: Return of Investment, cost savings, project costs etc.

e SOA — Usage measurements: Number of used service offerings, number of service
customers etc.

e SOA - Performance measurements: Performance of basic and orchestrated Services
and availability etc.

e SOA - IT efficiency measurements: Productivity, development time, quality behavior
etc.

e SOA - Optimization measurements: Number of services in conception, development
and production etc.

¢ SOA - Governance measurements: Standard conformity, potential exceptions etc.

A general characterization of service measurement could be explained in the following
manner considering the autonomous behaviour of services themselves.

SOSE
MPgeoryices : (5.1)
managin, woduct on.t'coll automatic
(G g ¢ xA op‘tlgtnal j‘/Ic measur ement) Ao;u_:lnt:aauumeat

(atto scale Uéoﬂwate_unit) patomatie
data_basis quasi_ standard’ T some_measuxement

service level product
- Eexten._uon. Acont‘tol[ed

Especially, the measurement methods feice can be summarized as (based on [Rud 2006a]
and [Rud 2006c¢]; see also [Cardoso 2006], [Hiekel 2007], [Kalepu 2003], [Perepletchikov
2008], [Thielen 2004] and [Yu 2007])

measurement € { ,ucomp fexity , ﬂf\%%lexw ﬂg?r;plexw , (5.2)

criticality criticality criticality criticality criticality
CSES » H4ADS » PP ALS » P ACS » FRC ’

granularity granularity granularity granularity }

HDpys » Bpccs » KCDOS » KDGos

The evaluation of a service as product is based on the different metrics of complexity,
criticality and granularity. The product/service metrics of complexity are: Cohesion of the

complexity

oy lexity | number of services involved in the compound service g NSTP and

system 4~

service independence in the system " lexity

41

The product/service metrics of criticality are: Count of semantic equivalents of the service
criticality criticality

HKcsps - » absolute importance of the service u') ;g , absolute dependence of the service
,uf;gg?alily absolute criticality of the service ﬂzrggcahw and overall reliability of the compound

service ﬂ%"glcallly

The product/service metrics of granularity are: Domains affected by the service y%ﬁ’g”lﬂrw

b

domains completely covered by the service u¥) g’ggarm’ , context-dependence of operations of

the service y‘%g’glgarw and data-oriented granularity of operations of the service u) g’g’é‘” ity

The following example of Web service measurement is based on the architecture shown in
figure 34 [Schmietendorf 2007b]. Under the consideration of the messages within the SOAP-
header, the number for the transmitted parameters increases. The sum of all transmitted
parameters per operation (request and response) is shown in figure 35. All request operations
contain the same kind of license information.

‘D Sum Request m Sum Response ‘

14 -
12

Number of parameters

Oper. 1 Oper. 2 Oper. 3 Oper. 4 Oper. 5 Oper. 6 Oper. 7

Figure 35: Characteristics of an industrial SOA service by [Schmietendorf 2007b]

A general characterization of measurement of the service development could be explained in
the following manner.

SOSE
MP service _development - (5.3)
managing process sessment emi_automatic practitionex
(G erral _goals * Aotlgin.al x M yroasirement)T:ome_ X ¢ P neas ¢_application_staff
oxdinal_scale critetia tomati tit
—(Q‘tepositotg) threshold) e some_ Y ¢_application_staff

R Emethodology | Proce

extension m.an.aged

Especially, the measurement methods gz, service) can be summarized as (based on [Rud 2007a]
and [Rud 2007b])

measurement € { ,umtegmy g%%ﬂy } (5.4)

42

The evaluation of a service development as process is based on the different metrics of
integrity and process maturity. The process metrics of integrity is: Integrated process quality

of SOA adoption yzf;egmy .

The process metrics of maturity are: Quality of the maturity model ygiﬂyw where QMM

could be based on SOA-MMyiumicum, SOA-MMsopic, SOA-MMigpr, SOA-MMoyacte, SOA-MMpgy,
SOA-MMgps ete. (see [Rud 2007b] for more details and model ranking).

Finally, a general characterization of measurement service in use could be explained in the
following manner.

SOSE
mpP service _application * (5.5)
managing preoduct A resoutces eontrolling automatic
(G4 A owiginal XM yreasurement)T some_measuvement

atio_scale conomical_unit
— — X l re - automatic
(data_basis guaAi_Atan.datd) TAome_measutemen.t

service level preoduct
- Eextemion x A controlled

Especially, the measurement methods g4, service) can be summarized as (based on [Rud
2007a])

versioning versioning versioning versioning versioning
measurement & { fheys " s Hycsyy o Barrys o Harrsvy - Huces o (3:6)
versioning reliability reliability reliability reliability
Hycry ~ » Bspacs ™ » HsLavps - Brro -~ - BFRY 7 -

performance performance }

Hangpy + HBPCY
The evaluation of a service application is based on the different metrics of versioning,
reliability and performance. Note that the service application is a non trivial process of

orchestration, optimization and autonomous application. The service application metrics of

.. : : : versionin,
versioning are: Count of simultaneous versions of the service gy € average count of

. . . versionin
services’ versions in the system u ') ~opy €, average life time of versions of the service

s e, average life time of services® versions in the system "7 7oy , metadata change

frequency of the service gy e ¢ and overall metadata change frequency in the system
versioning
MCFY :

The service application metrics of reliability are: SLA compliance of the service ygilgaggity ,

SLA violation danger of the service ygilgagggy , fault rate of the operation y;eléigbﬂity and

overall fault rate in the system ﬂ%eléi;biliw .

The service application metrics of performance are: Average number of business processes

in the system ﬂﬁ%{;o;’;“m and business process capacity of the system u Il;f,’fg;mance

A simple example of the analysis of service-based resources for chosen Web services shows
the following situation of the used SOA technologies [Schmietendorf 2002].

43

160 149

Number of use
o]
o

Figure 36: Contribution of technologies for existing Web services

Another example analyses Web services considering their availability, performance and
quality of description was implemented as a service itself (available since 2006, [Rud 2006a]).

— H H Lagged in as; rmad
Wesement — the Web Services Measurement Service

i s

Logout

Statistics for web service entity "ws1”™ on 2004-08-13

Service, port and operation (cument values)
XigniteQuotes :: XigniteQuotesSoap :: getQuotes()

Count of measurement poinis 12
Count of measurement failures: i
Absolute count of measurement results of high quality: 10
Relative count of measurement results of high guality: 8333 %
Count of changes of the WSOL document during this day: 0

Ping and Imvocation Times
1072
] 204
o
2
E
E 536
E
E 68

P P = = ~ vy @ o
-] 2 a8 S g g @ a = = g

- = s - - b

= o b= = = pct 2 = a = 2 a

= - ; b = b @ - = éa

=] =1 o o g - - - -— 2 1 Lol

momenis of measurement

W Drvocation te 0 Ping time B Dvocation tims lnit (ping+500)

2-- Previous day Mt —=

Figure 37: The Wesement service of continued Web service evaluation

The BPEL engine of Rud could be considered as a kernel approach of service measurement
described in [Rud 2006b] as BPELmeter.

44

| Statistical models & Executed
axpected vales values
g A Business
- Statistic - Process
Statistics DB Analyzer o Designer
Performance
Statistics

-

o+

|

|

|
| |
[|
[|
| |
| |
| |
[d |

Parformance Expectad o _
| - 1. Propass descriptions |
| Siatistics values & 2 s |
I ; I
I . . Performance - |
| Web Service Provider m Statistics e |
| 1 I
| |
| |
| WS invocations Ezg:iis:n |
| [
i ws2 E Rl i 7 Engine :
| W53 |
| |
| |
| | |
[|
Lo o o oo o o o e e e e e e e e e e e e e e S e T - e S S e e S e S S e S S S S S S —— — -
Legend: — New connections D Changed componant

ECCEEEE: Existing connections
D New developed component

Figure 38: Infrastructure of the BPELmeter

Finally, a measurement service based on the shown architecture in figure 39 was implemented
[Ebert 2007]. It has the possibility to measure the availability, the performance, the
functionality and the complexity of a specific Web service from the users (or better
integrators) point of view.

\ \ \
WS (Web
el el T e
access access access access

access
} Measurement probes }—
Configuration . User - Measurement
of the Web Load driver configuration Prediction storage
. component component
service access and access and export

WSDL-based Access Layer (Measurement Service)

Web based GUI

Figure 39: Architecture of a measurement service

It provides a simple graphical control interface. Provides the configuration of the
measurements time interval and measurement goals and generates simple graphical reports
too.

5.3 SOSE intended Measurement Levels

The measurement levels in SOSE will be characterized as the three areas above. The first
described level is addressed to the service measurement and could be explained in the
following manner considering the autonomous behaviour of services themselves (like agents).

45

MP tu,oect_o'dented : (57)

inhouse
(Gmaaaging A ID" oduct X ont‘to”mg) automatic
intetnal _goalb o'u;ginal measurement) T yome measurement

N (V‘:atio_éca[e x [T"oftwate—“nit)Tautomatic

data_baAiA 7 guasi_étandatd Some_measutement

_ fb‘zmula Im:oduct
) x A controlled

extension
Note that the service measurement includes its application from the beginning and leads to a

short cycle of development and application.

The second area of SOSE considers the measurement of the service development and could be
explained in the measurement level as following.

aspect_otxiented
MpP Y : (5.8)
inhouse
managing prrocess rassessment semi_automatic practitionet
(extexnal_goals x A oxiginal va[:easutement T yome_meas t? P meas t_application_staff
ordinal_scale cxiteria semi automati titi
—(zepositoty x K t/ztes/zold) T yome_ o Pl ¢t_application_staff
'f.u.leé_of_ thumb preocess
nd .

extension managed

Finally, the third area is addressed to the measured service application and achieves the
following measurement level usually.

MP ca/)abilltg_oziented .

(Gmanagin.g A product N zesoutrces <\ Iconttolling automatic

goalA_in._uAe o‘ugin.al measutement) Taome_meaéutemen.t

(5.9)

outsourced

atio_scale conomical_unit automatic
— |/ c - X —
(data_basis (];uui_atandatd) TAome_meaAutemen.t

B fo’tm.ula

extension

/;‘todu.ct
controlled

x A

The difference of the in-house and outsourced characteristic between service measurement
and service application measurement is reasoned in the external view of the choreographic
and orchestration aspects.

The SOSE based measurement level comparing to the other paradigms described above leads
to the following relationships:

rptraditional SOSE AOSE
MP ;;cfloclhi(c)?_aqualm/_assurance. < MPepyices < MP agents (5.10)

and considering the more complex training phase in service development as moderate
measurement process improvement as

AOSE SOSE

rptraditional y y
MP ;foje’c‘;f?ommmng < MP MAS _ development < MP service _development * (5.11)

Furthermore, as including the (measured) resources in service application as a essential
measurement process improvement

AOSE SOSE

MPyys™ = MP service _application - (5.12)

46

6 Measurement Infrastructures as Proactive Measurement
6.1 Intention and Examples of Measurement Infrastructures

The importance of software measurement during the software development process is
generally accepted, nowadays. Unfortunately, in practice common software measurement
tools find small acceptance due to their high costs, inflexible structures, and therewith unclear
cost/benefit ratio. On this account this section introduces a framework creating a measurement
infrastructure by means of a service-oriented architecture. For this approach the ISO/IEC
15939 standard has been proved to be meaningful [ISO 15939]. By using meta-models and
ontologies, related services can be categorized and/or classified. Moreover, services can be
bound flexibly with the aid of configuration defaults being referenced by the meta-model.
Furthermore, we present a web-service based ontology aligned towards object-oriented
metrics as an example for a service-oriented infrastructure component.

Based on the general characteristics of ISO/IEC 15939 a service-oriented measurement
infrastructure with different services and components should be specified and implemented
to realise the defined processes and activities [Dumke 2005b].

To create such an infrastructure it is necessary to define the technology or the notation in
which the different elements or specifications have to be implemented or described. In this
way a level-based procedure was used as shown in figure 40.

Process-Definition
(BPMN)

Orchestration-Level

(BPEL)

Composition-Level

(SOAP)

Figure 40: Level-based infrastructure composition

At first it is essential to describe the process model in a semantic manner to obtain a high-
level view of the entire measurement process and to enforce a standard compliant procedure.
Therefore, we apply the Business Process Modelling Notation (BPMN) [BPMN 2005]. In
doing so this representation describes all processes, sub-processes, properties, and sub-
properties of ISO/IEC 15939. This process model is used to divide the complete measurement
process into different architectural components. Furthermore, we use the BPMN to produce
the business process diagram (figure 41) on the basis of the ISO/IEC 15939 process model.

47

H 2~ Plan H 3 - Perform H Evaluate J—O

[1IS015939]

1 — Establish and sustain commitment

Y (
[; .[r«:.:.:..l mquiremenis I B Assign resoeoes]
J \

PN

2 - Plan
3 — Perform

"-’_\.

g 199!819 nroceaumg Collect data and
Dmssgs mata informatian

(4 - Evaluate

Evaluale informalios Idenilily patential
P Mucﬂs improvemants

]

I

I

I

I

I

I

I

I

I

I

I

I

'

I

I

I

I

I

I

I

I

!

I

I

I

I

I - - w

i N ine dati Acquine and degiay

1 Iy s, — ¥
(Cnara{_:tanza .ﬂmalyza Im‘ormahan Slect measures coll iz, supparting

i ', organizationad unil [7| neec and reparting Iochnologies

i e structuras. measurement I.asks o -

i \

I

I J

I

i

i)

I

I

!

I

I

[

I

I

I

1

I

I

I

I

I

I

I

I

I

I

I

I

I

I

T e e e et e et et

Figure 41: Business process diagram for the ISO 15393 measurement standard

By using such representation one can derive the Business Process Execution Language
(BPEL) by using BPEL4WS (see also [BPMN 2005]).

This Business Process Execution Language leads us to a key technology for realising service-
oriented architectures: the web service orchestration [Erl 2005]. As shown in figure 42 the
orchestration process is used to build up new web services out of existing web services in a
hierarchical manner.

In the service-oriented infrastructure the web service orchestration is used for the composition
of the ISO/IEC 15939 process out of the four sub-processes (“establish”, “plan”, “perform”,
and “evaluate”) in the so called Orchestration Process (OP).

In this way the result of the orchestration process is four equitable sub-processes. One has to
recognise that collaboration of the four sub-processes has to be performed in a peer-to-peer
manner. Therefore, the different sub-processes are divided into four choreography processes
(CP) [Erl 2005]. The difference between orchestration and choreography means that
orchestration refers to an executable process and choreography traces the message sequence
between different sources [Peltz 2003].

48

Orchestration

WS-BPEL

Choreography

Request

Orchestration

Web
service,

Acknowledge

Y

SOAP

Accept

Acknowledge

A

Because of the fact that the choreography process implies the orchestration process, we define
the orchestration process as the level 1 process and the choreography process as the level 2

Web Web
service, service,

WS-BPEL

Figure 42: Orchestration versus choreography [Peltz 2003]

process (see figure 43).

By taking a closer look to the four sub-processes one has to identify which of the sub-
processes can be executed by the presented infrastructure or which sub-processes can merely
be supported by our infrastructure. In doing so, one has to ascertain that the “plan” sub-
process will be the key process in a service-oriented measurement infrastructure. Because of
that figure 43 describes a set of required components with a focus on the “plan” sub-process.
The colour of the component shows to which composition level (see figure 40) the distinct
component belongs.

Resource ldentification

Service
directory

Measurement
Services

N

Process Description

ISO/IEC 15939

Business
Goals [*
Gam
Information
Meeds)
Establish CP
Integration- 4
architecture
Plan CP
Trigger
SOA | Perform CP
3 4
Evaluate CP

Level 2

Orchestration-
Process (OP)

Level 1

Figure 43: Fragment of the proposed infrastructure

49

The semantic description as shown in figure 40 is realised within a metrics ontology (see
figure 43). In history ontologies possessed the capability to retain this semantic knowledge in
a machine-accessible manner. Therefore, we use the ontology approach for a cataloging web
system [Martin 2003] to create our own ontology for a subset of metrics (object-oriented
metrics). Thereby, the ISO/IEC 9126 product quality standard is used to categorise the
metrics. In general the ontology is used to connect an information need with a certain metric.

That means that all metrics which are calculated by an included measurement service must be
described within this ontology. At the moment we restrict our ontology to object-oriented
metrics. The ontology scheme is illustrated in figure 44 by using the Unified Modelling
Language (UML) [Wang 2001].

Ohject-Oriented Metric Ontlogy]

m hasinformationhleed
5 1%
£y Infornmtion need
-description: String

\ \
|anm1 sra!el ‘Orm'nalsrde‘ ‘mrervd sm!el hasScale Sopiten o
usestetric -name:String
Ratio scale| | Absolute scalel densilie -approach:String
. -specification: String
-references String
o isDerived Object-oriented Metric
: i makesPredication
-name:String
-acranym.string 1.
Base mettic | | Darived metiic ‘ -informalDescription: String e
-forrralD e scription byte]) 13 Measurement Predication
isMemberOf -interpretation:String LtilizesM elric -tirmepairt :Date -result: String
isDefinedFor producesRestlt
usesElerment isPerformedon i isBasadOn
o ’—‘_‘ Measurement results| 4 =
; Object-oriented Software hasGoal
-walues:Set 1.%
Process melric * —

*hasPropert assezzesCharacteristic Measurement goal
il — L appliesTa
hasCharacteristic

— istic |
i

Resource char.l |Pmcss char.l |Prnduﬂ char. |

| Ohject-oriented structure Object-oriented concept

i hasStartElement

Fomar
-narme:String coversConcept
—visibility: String[0..1] hasTargetElement paes cion Expirience
-modifier:String(* T

inherits from

implaments

demnes ’Ei =

overrides i

information hiding

EI—Dl Functionality I——' Design |
P - [emciency | Retianury |

instances ! {=| Portability Usapitty
LK) =

a =
Availability

| Object ‘ ‘MagePessmg
i
Coupling
-inputanonym®
Polyrnorphism
He .

calls

b

Naintainability

~function: String

Stahility

-values Set
Changeability
Analyzability
W

Elementary Data Type

Figure 44: Object-oriented metrics ontology

50

In our context, the essential intentions and motivations for measurement infrastructures’ can
be described as following:

» Measurement infrastructures includes some of the main characteristics of the
described software technology paradigms in this technical report:

e This infrastructures could be considered as a kind of e-Measurement as e-
Services especially,

e The requested autonomous characteristic of the built measurement services
involves any basics of agent-based and self-managed systems,

e Combining the characteristics above the measurement infrastructures
represents the (Web) service paradigm obviously.

> Measurement infrastructures themselves are based on the Semantic Web architectural
basis such as

e Measurement ontology for different software paradigms (OOSE, CBSE,
SOSE etc.),

o Proactivity in measurements depending on determination of ad hoc
requirements or critical situations and their proactive evaluation and decision,

o Evolutionarity of measurement by different technologies for measurement-
and experience-based service extension and adaptation,

» Measurement infrastructures should be oriented to a higher measurement level
considering the higher complexity and criticality of the software systems. That means

e Higher measurement level as capability-oriented measurement for product
and process areas and involvements based on essential and remarkable
measurement process improvements mainly,

e Measurement integration in order to achieve a measurement application as
improvement and controlling in the most relevant cases (outsourced
measurement should have the same level like inhouse measurement in this
context).

The typical measurement level in measurement infrastructure solutions should be achieved by
the following characteristics.

P oo service: (6.1)
(G g ATt ot) e
(Vi iets Ul seanit) 7
— Elron < AL eested
That should be characterized as MP fﬂ:ﬁngth&d and should involve the

practitioner

for the first development phase only.

> Our use of the term infrastructure means a technology-based integration of Web-based systems, agent and service
technologies themselves.

51

On the other hand, the measurement infrastructure development could be characterized as
following

infrastructure
meas._service_development *

managing prrocess
(Gexte'm.al _JoaIA x Ao‘u;gin.al

MP (6.2)

sessment semi_automati practit
X M:emuzmem)T some_measurement '’ meas

otdinal_scale cziteria emi aut
- (xepository X I threshold) T:,,,,e'_ \ I ¢_application_staff
ules_of thumb % A prrocess

extension man.aged :

.2,

—

In order to fulfil the criteria above we want to develop a measurement service solution that
should be based on the development characteristics of (6.2) at the beginning and should
achieve the application situation described in (6.1). This requires a high flexibility and
possibility of aggregation between existing measurement tools and services.

The following example includes an analysis about the current situation from the tool vendor
point of view. One of the results is shown in the following figure considering the openness of
the measurement tools [Schmietendorf 2007b].

W 56%

010%

@ no export functionality
| properietary format

0O Database connection
0O XML-based interface
m Web-Senice interface

Figure 45: Analysis of service orientation of chosen measurement tool vendors

Furthermore, we need semantic descriptions for all aspects of measurement process
components and involvements in order to implement first solutions in the manner of
proactivity and self-managing.

The following example shows an agent-based modelling of the detailed operationalities
specified by the ISO 15939 standard itself [Dumke 2005b].

52

Pras - " T~
Planing /// Controlling agents \\\\
agents / \
g 1/ N
!)
\ /
< Feedback agent X e
. ~ Information agent -~
Characterising S~ _-7
agent L~ /N \ T~ ——a______--- PN N
- Identifying 4 N
Establishin i 4
9 Information agent /’Evaluation
agents needs // agents \
Candidate / \
Measurement measures H \
commitment Performing \ \
, agents ! -
) | Process | Evaluation |y
Measurement Selecting Selected Measured | agent criteria [\
requirements agent measures artifacts 'l ‘|
A t — | Procedure 1 ‘
cceptanct Descrlp_tlon_ of the agent Information f Collected || !
agent organizational H
) M t products data !
unit easuremen Improvement |
tasks a
gent 1
:]
Plan for % Intzg;ant:ng % \ Lession I’
measurement) \ learned i
ressources Reviewing Analysing | \ /
Assign agent agen
agent N Mea;urement
Criteria Supporting Stored experience base
agent agen X data =
9 Collecting
Training agent
course
materials
ommunigdting
7; agént O
IT manager % ;t
T T T T~ O Measurement
-~ S~ analyst
QA manager, ~ ~ 7*
// \\
/ \
! \ QA
|) administrator
\ .
_ Reporting agent Exploration agent /
. . e O
~ X Conclusion agent ~
~~ . Experience agents -7 7<
Measurement
librarian
Legend:
N
O R
| |
v !
_/
Measurement Measurement Support Measurement Adent grou
user agent agent object/artifact gent group

Figure 46: Ontology and agent-based measurement infrastructure for ISO 15939

The kernel process of this self-managed open system including proactivity and adaptation as
ubiquitous solution is based on the knowledge-based dynamic quality assurance described in

the next section.

6.2 The QuaD? Approach of Dynamic Quality Assurance

The QuaD? was published in any conferences ([Kunz 2006a], [Kunz 2006b], [Kunz 2008] and

[Mencke 2008]) and led to many feedbacks for improvement and completion.

Due to manifold advantages of high-flexible infrastructures compared to monolithic products
a lot of initiatives propose approaches for the integration of single components (e.g. services).

53

Semantic metadata provides the basis for the automation of this process. But those approaches
lack a thorough consideration of empirical data. Either only functional requirements or single
quality attributes are taken into consideration. In contrast to existing approaches the QuaD?
framework reveals a holistic orientation on quality aspects. It combines semantic web
technologies for the fast and correct assembly of system elements and quality attribute
evaluations for making the best assembly decisions possible. Therefore complex quality
models are considered as well as empirical evaluations. Furthermore different types of quality
evaluations like simulation and static and dynamic software measurement are used.
Combining them delivers a holistic quality view on components and the flexibility enables a
quality improvement of the targeted system by the exchange of single components if the
evaluation of their quality attributes decreases.

The presented general QuaD*-Framework (Quality Driven Design) can easily be adapted to a
lot of different fields of application, e.g. service-oriented architectures or enterprise
application integration. In general the sub processes of this empirical-based assembly process
are the initialization, the feasibility check (checking the functional coverage), the selection
process based on empiricism as well as the operation of the established application. Quality
assurance is achieved by certain sub processes that allow optimizations at initialization time
as well as during runtime. Furthermore measurement sub processes are performed to update
evaluation data. The major goal of the described core process is an architecture consisting of
single services. Such a service contains metadata-annotated functionality. In order to achieve
the sketched goals a special process is developed below. The basis of the presented approach
is a collection of semantically-annotated sources: the process model repository, the service
repository, a quality model repository and furthermore an experience factory.

The process model repository is the source for process models that serve as descriptions for
the functionality of the aspired distributed system. Example for such processes can be
ISO/IEC 15939 [ISO 15939] for the software measurement process or didactical approaches
[Mencke, 2008]. Technological realization may vary, too. That can result in UML, BPMN
[BPMN 2005], ontologism [Mencke 2007], etc. An important source for empirical quality
evaluations are quality models being provided by a quality model repository. The basis of a
quality model’s definition is an extensible list of quality attributes. The specification of a
certain quality model is realized by selecting and weighting appropriate attributes. The
evaluation and selection of appropriate services is based on evaluation criteria for each
included attribute. Such attributes can be e.g. cost, performance, availability, security and
usability. The attributes and corresponding evaluation formulas are standardized e.g. in
ISO/IEC 9126. The service repository contains services, their semantic description and their
evaluation data regarding all defined quality attributes.

The selection and adoption of process models and quality models are difficult tasks which
constitutes the need for guidance and support. Because of this, the presented framework
proposes the usage of existing experiences and knowledge about previously defined and used
process models and quality models to support both process steps. Based on the Quality
Improvement Paradigm, Basili and Rombach proposed the usage of an Experience Factory
which contains among others an Experience Base and Lessons Learned [Basili 1994], [Basili
1999]. In the presented framework, the Experience Factory is fed from the process evaluation
process and is the major building block to save empirical data and the user’s experiences with
specific process procedures or with distinct quality attributes®.

* See the publications above in order to understand the special meaning of the used symbols.

54

& =
Inflalizaiion
¥
Feasniity
chisci
v
Procass Modsl
Clusby Procisa Moded | Eementisericay | SROHE
Amsrancs ‘Flamarm Guary *| Evaluation Dats Matrix
e
Yy rr
Ihrdu!hh:ﬂm ;-
L
1 ﬁ
Barvice -
i i Expcaution
7 T |
MG l L Operalion
Owy [Bervien f
Procegs Step |
* Euskogion [V 4|I Exaciticn
1 i
Hrocess Stata | 3 Service
& Evaluation uni Rapoiton
d
p -
L
Progeas

Figure 47: Quad’ framework workflow

The focus on quality is a thorough property of the developed process and results in certain
measurement and evaluation sub processes that are introduced in the following general

55

process description and are described in more detailed in subsequent sections. The derived
results are directly used for optimization purposes.

Initialisation Steps: The selection of an appropriate process model that defines the functional
requirements for the parts of the later distributed system is the first step. Due to the fact, that
such a choice can be a manual process, it should be supported by an experience factory
providing knowledge and experiences — lesson learned — for the decision for or against a
specific process model for the current need. The process model is essentially based on
semantic metadata to allow the later automatic mapping of semantically described service
functionalities to the functional requirements specified by the process model. With the chosen
process model a set of concrete distributed systems is possible. In our measurement process
characterization it means an essential measurement improvement combining the artefact
descriptions in (6.1) and (6.2) as

ptoduct Aesources processs ,o'coduct/\teéou'f.ceA/\ Prrocess
o'zigin.al A o'zigin.al A o‘ugin.al (6 : 3)

After the experience-supported selection of an appropriate process model the second step of
the presented approach is a selection of a quality model from a quality model repository. This
is intended to be done automatically. For certain domains manual adaptations can be more
efficient. A manual individualization of this predefined set of quality attributes as well as of
their importance weighting is also possible. That means we can establish the experience basis
in the measurement process as essential measurement improvement (considering (6.1) and
(6.2) again)

b criteria UK formula N formula (6. 4)

threshold extension repository *

For these purposes an experience factory can be helpful again. As a result of this step: a
process model and importance-ranked quality attributes are defined.

Feasibility Check Steps: With this information process step three is able to determine
whether enough available services exist to provide an acceptable amount of functionality
demanded by the process model. If there is no acceptable coverage after the negotiation sub
processes, then an abort probability based on already collected data can be computed. The
user needs to decide whether he accepts the probability or not. If not the distributed system
provision process will be aborted. In the case of an acceptable coverage the runtime sub
processes of the last/fourth step can start. The involved transformation of measurement results
could be characterized as remarkable measurement improvement as

oxdinal_scale critetia atio_scale oftwae_unit
(Qstnabocele x 7 fhesions) — (Viojeote x Unlutieins) (6.5)

The first of them determines the next process step to be executed following the process
model. Therefore information about the last process steps can be taken into consideration to
optimise the next process step execution. Exception handling in case of aborted pre-sub
processes is a functional requirement and thereby should be covered by the process model
itself. Due to the fact that new services can be added to the service repository, another
coverage check for the next process step is performed next. Now, up-to-date service

56

information, their evaluation values as well as the data of the quality model are available to
identify the best service possible.

Selection Steps: The weighting of the quality attributes during the initialisation delivered
weighted attributes. This procedure is not intended to be performed during runtime, because
the executed distributed system should not be interrupted (abort, costs ...). In general the
service selection has several steps. The first identifies all possible services according to the
required functionality defined within the process model (during initialisation phase). An
additional step selects the identified quality model that specifies what quality aspects are
useful for the intended usage and how important they are for the initiator of the application to
be assembled. Manual adjustments are possible, but not necessary and are performed during
initialisation, too. Only in exceptional cases a manual adjustment during runtime is
reasonable. That means that the measurement itself using the QuaD? approach is changed as
essential measurement improvement in the following manner

Dsessment _, ppeonteling (6.6)

measutement measutement

Following the defined necessities and given data the service selection is formally described
below. For the following formulas let PM be the chosen process model. Formula

f7"(PM) specified in (6.7) is used to determine the set of services E from the service

repository. Each of them can deliver the functionalities specified within the chosen process
model within (6.8).

£/t Process model > {Service, ...} D

E = f™(PM) (6.8)

Using the classic normalization approach presented in (6.9), the evaluation values v, ; of

quality requirements j defined in the quality model must be normalized for each service i.
These v, ; are the measurement/simulation values to anticipate the optimal decision for the

next process step.
v; + —min(v;)
v{f‘}”” = b/ " *(max
max(v;) —min(v;)

norm_minnorm) + minﬂOl’m (6.9)

With the help of the weighted requirements matrix from the (maybe adjusted) quality model
the last step — the identification of the optimal service according to the empirical data and the
quality model — can be performed (see (6.10) to (6.14)). Formula (6.10) adjusts the
normalized evaluation values to ensure proper calculation. If v=1, it describes the best quality
level and no adjustments are necessary, otherwise a minimum extremum is desired and /-v
must be calculated.

) v ,if a maximalv is the best 6.10)
V) = .
1—v ,if aminimalv is the best
n—1
feval(ei): Z fmm(vlgfgrm)ei eE/\n=|QM| (6'11)
j=0
v =1{f""(e,|Ve, € E} (6.12)

57

" =e, |index = min({x v, = min(V)})/\ e,

index

€E (6.13)

E'=E\e"o™ (6.14)

To determine the best evaluated service, Formulas (6.11) to (6.14) are repeated until
E'contains only 1 element. It provides the needed functionality and is the most appropriate
one according to the specified quality model. After the service’s selection it can be executed
and measurement about runtime behavior will be captured to get additional quality
evaluations for this service.

The result is a best possible distributed system based on the existing services as well as the
specified quality model.

Operation and Evaluation Steps: Once the most optimal service is identified it can be
executed and measured in parallel. These data are used to evaluate the last process step. The
runtime sub processes are repeated until either all process steps of the process model are
successfully executed or an abort due to missing services takes place. Considering the quality
assurance the modified kind of measurement tools can be described as essential measurement
improvement as

semi_autmatic N utmatic R utomatic (6 15)
one_meas. _P/lug one_meas. _/J/uue whole_measurement .

including the derivation of the involved personnel that is used only for the first steps of
infrastructure building as

practitioner P
-
measurement_application_staff initial

(6.16)

The last step five of the presented approaches cover the evaluation of the entire process as an
input for the experience factory. It compares the achieved results with the desired ones.

This leads us to the unified approach of software measurement service infrastructure
combining the characteristics of (6.1) and (6.2) using the explanations in (6.3) to (6.6) and
(6.15) to (6.16) as

infrastructure
MP 1ea5uremen t service * (6.17)
Gman.aglng ptodu.ct A\zeldou’tces N P‘ZOCEAS
(goals_in_use oxiginal

X jv[contto{li'g) TAem.i_automatic

measdutement some_measutement ’ r initial

»(V'catio.‘scale % (]-"Oft"’a"e_“""t)Tautam.atlc

data_basis QuaAi_Atanda'cd some_measutement’ P ipitial

_ fotmula A /;‘todu.ct

extension controlled *

58

7 Conclusions and Future Work

This technical report discussed the software measurement involvements and different levels
addressing different software technology paradigms such as Web-based software engineering
(WBSE), agent-based software engineering (AOSE) and service-oriented software
engineering (SOSE). Based on these technologies an infrastructure-based measurement
service was discussed considering the quality assurance themselves. The following figure
summarizes the different aspects of measurement process evaluation considering the best at
the outer circle.

Measurement mgredrems

- Measurement T~
¥ artefact A |
P Product ©~ ~ — _
Measurement P process A ~~_ Measurement
goal - () resources ~. method AV
- ~ A
. . O
‘s Managing Product v process
s . ¥ resources e C&'Qrolllng
Vi N
’ ,‘, L, Imc;;arw::r;r;n::5 () Original . Impmmn'lan‘!\
/ !" 2 o remal g () Damain pearant . S 5 l‘\
aliffialion 4
= ! Measurament / y miermal gosls () Other pardant {Oanalogy \ Measurement %
2! / valuation Assessment A\ y o
.g_,. f quantity lassification - Aspects .I . value \ %
BgorEgatian Under- ' | -
Oy i . ranslormation .- stan- O ..' \'ahesRmm'b O Ratia I \ a
=1 Q ! - o iy Uﬂgminaﬁun ding) (1 Case study O . 5calell Il'l 3
D s . g
£ (“~0 0.9 O o Interval ‘L =1
gl ! e e scale I lﬁ @
=01 Principle "0
a ‘L Criterta _ Anlony @000 lovel [OOO@ 0, e, | ¥
& | Measurement . . O ey . Soci, c OO0 cd | Measurement 'I =
) Threshold i) umi COrom.
= |\ experience 1 O Froof Geadient Manual .rin- - 0 nit ph,.s;:m Ha rdwm _ unit '
N 0 ciple & un| it Sofn,vare !
7\ somt 2 wanagen, o s
\\ automatic (7 Wikole meas,) J‘\Spﬁﬂ i l.,"
\ 1) L, ;
Analogy L Researcher ;
4 Aub&rqatic - Corection £ g Meaa.sxper /
@ \ Measurement Féir;srxn;r:-nrr . Product v 'Y Meas. user) /.f Measurement
o Practitioner
- process ra
" &@u‘- \ tools > Criteria v resources Umssrsod personnel J @-6\
G e N T N o &y imaraved L0 P P
=3 Q”-‘{: N o O Praduct # () Manages -7 < \)“G @
‘?:!- {9‘? . Foimula) process & &) onirolled - P4 'Er:‘.' \}{(J
S . - resources - -7 @\e'@‘ao
e — et A
h artefact A
e - - P - -

Measurement repercusssions

Figure 48: Software measurement process aspects and levels
Note the shown sub characteristics in this chart are described only one time per measurement

component.

Based on this kind of visualization we can demonstrate the different levels of measurement
processes in the following manner. The first figure 49 compares the measurement process
levels of an example of traditional measurement, e-Measurement and AOSE.

59

N raditiond

roduct_quality _asswance.
g Measurement MF jgeﬁi *
artefact A —
Measurement A7 Measurement
goal - S method .

§o opeccae 7
ME e—Measurement ¥
- e-Service

Measurement-/ \ Measurement
quantity . value
\ V
|
\
|
Measurement | Measurement
experience unit
E U
\
A
\
\
N /
7
Measurement Measurement
tools personnel

Extended e —— - -

. “improved *
experience r pro A

artefact

Figure 49: Examples of software measurement process levels

The kernel idea constructing proactive measurement infrastructures is based on the so-called
QuaD? framework. This framework can be implemented using various technologies as e.g.
ontologies, web services and agents. The presented quality-driven approach uses semantic
descriptions for processes automation and supports different quality models and quality
attribute evaluations. The easy extensibility of process models, services, interfaces and quality
models makes the presented framework deployable for many fields of application.

L] N N
mfrasoruaure [] MP corvice applicarion®
M ice devel . Measurement —arpt
- meqs._senice_develgoment . — . —
= - artefact A
| - |
Measurement

Measurement

- method
goal ~. M

(e
L
 J
N
I/ A\
£’ \
Measurement +? \ Measurement
quantity \ value
-
" Vv
QN
I
h .
| 1)
| .
|
Measurement . Measurement
experience N rr unit
o '
\
\
A
\
A
N
Measurement A\ //Measurement

tools

mfrasoructure Extended e ___ -
QuaD? experience 10"

MFP 'h;provad A’

artefact

Figure 50: Software measurement process levels including the QuaD? approach

60

An implementation of this approach for specific systems is currently being performed. For the
areas of software measurement infrastructures [Kunz, 2006] first components are realised.
Their completion and usage may reveal opportunities for future steps.

8 References
[Abran 2006] Abran, A. et al. (Eds.): Applied Software Measurement. Shaker Publ., 2006

[Basili, 1994] Basili, V.R.; Caldiera, G. and Rombach, H.D.: The Experience Factory, Wiley & Sons, pp. 469-
476, 1994.

[Basili, 1999] Basili V. R.: The Experience Factory: Packaging Software Experiences, In Proceedings of the
NASA Goddard Space Flight Center's 14th Annual Software Engineering Workshop, ISERN-99-19
Production and Maintenance of Software Measurement Models, 1999.

[Bass 2003] Bass, L.; Clements, P.; Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional, 2nd (hardcover) edition, 2003

[Bauer 2004] Bauer, B. and Miiller, J.: Methodologies and Modeling Languages. In: Agent-Based Software
Development, Luck, M.; Ashri, R. and d'Inverno, M. (Editors), Artech House, Boston, pp. 77-131, 2004.

[Boehm 2007] Boehm, B. W.: Software Engineering. IEEE Computer Society, Los Alamitos, 2007

[Bourque 2007] Bourque, P.; Oligny, S.; Abran, A.; Fournier, B.: Developing Project Duration Models in
Software Engineering. Journal of Computer Science and Technology, 22(3), pp. 348-357

[BPMN 2005] OMG (Object Management Group): Business Process Modeling Notation (BPMN). Final Adopted
Specification, 2005

[Braungarten 2007] Braungarten, R.: The SMPI model: A stepwise process model to facilitate software
measurement process improvement along the measurement paradigms. PhD, University of Magdeburg,
May 2007

[Braungarten 2005] Braungarten, R.; Kunz, M.; Farooq, A.; Dumke, R.R.: Towards Meaningful Metrics Data
Bases. Proc. of the IWSMOS5, September 12-14, 2005, Montreal, Shaker Publ., pp. 1-34

[Cardoso 2006] Cardoso, J.: Approaches to Compute Wotkflow Complexity. In: Leymann et al.:The Role of
Business Porcesses in Service Oriented Architectures. Proc. of Dagstuhl Seminar, 2006

[Ciancarini 2001] Ciancarini, P. and Wooldridge, M. J.: Agent-Oriented Software Engineering. In: Agent-
Oriented Software Engineering, Springer, Berlin, 2001

[Dumke 1999] Dumke, R.: 4 Framework for Software Measurement Evaluation. Proc. of the IWSM'99, Lac
Superieur, Quebec, Canada, September 1999, pp. 24-37

[Dumke 2005a] Dumke, R.: Software Measurement Frameworks. Proceedings of the 3rd World Congress for
Software Quality (Vol. III), Munich, September 2005, pp. 75-84

[Dumke 2006a] Dumke, R.R.; Blazey, M.; Hegewald, H.; Reitz. D.; Richter, K.: Causalities in Software Process
Measurement and Improvement. Proc. of the MENSURA 2006, November, 6-8, 2006, Cadiz, Spain, pp.
483-498

[Dumke 2005b] Dumke, R., Braungarten, R., Kunz, M., Hegewald, H. An ISO 15939-Based Infrastructure
Supporting the IT Software Measurement. In: Biiren et al.: Praxis der Software-Mesung, Shaker Pzbl.,
2005, pp. 87-106

[Dumke 2006b] Dumke, R.R.; Braungarten, R.; Kunz, M.; Schmietendorf, A.; Wille, C.: Strategies and
Appropriateness of Software Measurement Frameworks. Proc. of the MENSURA 2006, November, 6-8,
2006, Cadiz, Spain, pp. 150-170

[Dumke 2007] Dumke, R.; Braungarten, R.; Mencke, S.; Richter, K.; Yazbek, H.: Experience-Based Software
Measurement and Evaluation Considering Paradigm Evolution. Biiren et al.: Metrikon 2007 — Praxis der
Software-Messung, Shaker-Publ., 2007, pp. 47-62

[Dumke 2004] Dumke, R.; Lother, M.; Schifer, U.; Wille, C.: Web Tomography - Towards e-Measurement and
e-Control. In: Abran et al.: Software Measurement - Research and Application, Shaker Publ., 2004, pp.
245-254

61

[Dumke 2003] Dumke, R.; Lother, M.; Wille, C.; Braungarten, R.; Winkler, D.: eMeasurement — Gegenwdrtiger
Stand und Perspektiven. In: Biiren et al.: Software-Messung in der Praxis, Shaker Publ., 2003, pp. 135-148

[Dumke 2003a] Dumke, R.; Lother, M.; Wille, C.; Zbrog, F.: Web Engineering. Pearson Education Publ., 2003

[Dumke 2005¢] Dumke, R.; Schmietendorf, A.; Zuse, H.: Formal Description of Sofiware Measurement and
Evaluation. Technical Report, University of Magdeburg, 2005 http://ivs.cs.uni-magdeburg.de/sw-
eng/agruppe/forschung/ Preprints.html

[Ebert 2007] Ebert, C.; Dumke, R.: Software Measurement — Establish, Extract, Evaluate, Execute. Springer
Publ., 2007

[Erl 2005] Erl, T. Service-Oriented Architecture Concepts, Technology, and Design. Prentice Hall, 2005

[Farooq 2005] Farooq, A., Braungarten, R., Dumke, R.R.: An Empirical Analysis of Object-Oriented Metrics for
Java Technologies. Proceedings of the 9th IEEE International Multi Topic Conference (INMIC2005),
National University of Computer and Emerging Sciences, Karachi/Pakistan, December 2005

[Farooq 2008] Farooq, A.; Kernchen, S.; Dumke, R.R.; Wille, C.: Web Services based Measurement for IT
Quality Assurance. In: Cuadrado-Gallege t al.: Software Product and Process Measurement. LNCS 4895,
Springer-Verlag Berlin Heidelberg, 2008

[Gerber 2001] Gerber, C.: Self-Adaptation for Performance Optimisation in an Agent-Based Information System.
In: Agent Technology for Communication Infrastructures, Hayzelden, A. L. G. and Bourne, R. A. (Editors),
John Wiley & Sohns, LTD, Chichester, pp. 122-143, 2001

[Griftel 1998] Griffel F.: Componentware — Konzepte und Techniken eines Softwareparadigmas, dpunkt-Verlag,
Heidelberg 1998

[Hanson 2003] Hanson, J.: Coarse-grained interfaces enable service composition in SOA, URL:
http://builder.com.com/5100-6386-5064520.html

[Hiekel 2007] Hiekel, S.: Bedeutung und Qualitdiitseigenschaften des Enterprise Service Bus im Kontext von
serviceorientierten Architekturen. Diploma Thesis, University of Magdeburg, Dept. of Compuer Science,
2007

[Huhns 2004] Huhns, M. N.: Agent UML Notation for Multiagent System Design. IEEE Internet Computing,
(2004), pp. 63-71

[ISBSG 2003] Software Project Estimation — A Workbook for Macro-Estimation of Software Developmet Effort
and Duration. Melbourne, 2003

[ISO 15939] ISO/IEC 15939: Information Technology — Software Measurement Process. Metrics News 6(2001)
11-46

[Jennings 1998] Jennings, N. R. and Wooldridge, M. J.: Agent Technology - Foundation, Applications and
Markets, Springer, Berlin, 1998

[Kalepu 2003] Kalepu, S.; Krishnaswamy, S. Loke, S. W.: Verity: A QoS Metric for Selecting Web Services and
Providers. In: Proc Fourth International Conference on Web Information Systems Engineering, 2003, pp.
131-139

[Kernchen 2006] Kernchen, S.; Farooq, A.; Dumke, R.; Wille, C.: Evaluation of Java-Based Agent
Technologies. In: Abran et al.: Applied Software Measurement, Shaker Publ., 2006, pp. 175-188

[Kitchenham 2007] Kitchenham, B.: Empirical Paradigm — The Role of Experiments. In: Basili et al.: Emiprical
Software Engineering, Springer-Publ., 2007, pp. 25-32

[Knapik 1998] Knapik, M. and Johnson, J.: Developing Intelligent Agents for Distributed Systems, McGraw-Hill,
New York, 1998

[Kunz 2006a] Kunz, M.; Kernchen, S.; Dumke, R.R.; Schmietendorf, A.: Ontology-based Web service for
object-oriented metrics. In: Abran et al: Applied Software Measurement, Shaker Publ., 2006, pp. 99-106

[Kunz 2008] Kunz et al:: UnitMetrics: A Tool Support Refactoring in Agile Sofiware Development. IEEE IRI
2008, LasVegas, July 14-17, 2008

[Kunz 2008] Kunz, M.; Mencke, S.; Rud, D.; Dumke, R.: Empirical-Based Design - Quality-Driven Assembly of
Components. Proceedings of the 2008 IEEE International Conference on Information Reuse and Integration
(IEEE IRI-2008), July, 13-15, 2008, Las Vegas, Nevada, USA, S. 393-397

62

[Kunz 2006b] Kunz, M.; Schmietendorf, A.; Dumke, R.; Wille, C.: Towards a service- oriented measurement
infrastructure. In Proceedings of the 3rd Software Measurement European Forum (Smef 2006), pp. 197-
208, Rome, Italy, May 10.-12., 2006

[Laird 2006] Laird, L. M.; Brennan, M. C.: Sofiware Measurement and Estimation — A Practical Approach.
IEEEComputer Science, 2006

[Liu 2001] Liu, J.: Autonomous Agents and Multi-Agent Systems - Explorations in Learning, Self-Organization
and Adaptive Computation, World Scientific Publ., Singapore, 2001

[Lother 2007] Lother, M.: From Software Measurement to e-Measurement — A Functional Size Measurement-
oriented Approach for Software Measurement. Shaker Pul., 2007

[Lother 2004] Lother, M.; Braungarten, R.; Kunz, M.; Dumke, R.: The Functional Size eMeasurement Portal
(FSeMP) - A Web-based Approach for Effort Estimation, Benchmarking and eLearning. In: Abran et al.:
Software Measurement - Research and Application, Shaker Publ., 2004, pp. 27-40

[McGovern 2003] McGovern, J.; Tyagi, S.; Stevens, M. E.: Java Web Services Architecture. Morgan Kaufmann,
2003.

[MacKenzie 2006] MacKenzie et al.: Reference Model for Service Oriented Architecture 1.0. OASIS, July 2006

[Martin 2003] Martin, M., Olsina, L. Towards an Ontology for Software Metrics and Indicators as the
Foundation for a Cataloging Web System. 2003

[Mencke 2007] Mencke, S.; Dumke, R.: Agent-Supported e-Learning. Preprint No 8, Dept. of Computer
Science, University of Magdeburg, 2007

[Mencke 2008] Mencke, S.; Kunz, M.; Dumke, R.: Steps fo an Empirical Analysis of the Proactive Class
Schedule. Proceedings of the 3rd International Conference on Interactive Mobile and Computer Aided
Learning (IMCL 2008), April, 16-18, 2008, Amman, Jordan,

[Mencke, 2007] Mencke, S. and Dumke, R.: A Hierarchy of Ontologies for Didactics-Enhanced E-learning, In
Proceedings of the International Conference on Interactive Computer aided Learning (ICL2007), Villach,
Austria, September, 2007

[Panait 2006] Panait, L. and Luke, S.: Selecting Informative Actions Improves Cooperative Multiagent Learning.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS 200, Hakodate, Japan, May 8-12, pp. 760-766, 2006

[Pandian 2004] Pandian, C. R.: Software Metrics — A Guide to Planning, Analysis, and Application. CRC Press
Company, 2004

[Peltz 2003] Peltz, C. Web Services Orchestration and Choreography. IEEE Computer, 2003

[Perepletchikov 2008] Perepletchikov, M. Ryan, C.; Frampton, K.; Schmidt, H: Formalising Service-Oriented
Design. Journal of Software 3(2008)2, pp. 1-14

[Richter 2005] Richter, K.: Softwaregrofsfenmessung im Kontext von Software-Prozessbewertungsmodellen.
Diploma Thesis, University of Magdeburg, 2005

[Rud 2006a] Rud, D: Qualitiit von Web Services. VDM Verlag Dr. Miiller, Berlin, 2006

[Rud 2007a] Rud, D.; Mencke, S.; Schmietendorf, A.; Dumke, R.: Granularititsmetriken fiir servicerientierte
Architekturen. In: Bren et al.: Praxis der Software-Messung, Shaker Publ., 2007, pp. 297-308

[Rud 2006b] Rud, D.; Schmietendorf, A.; Dumke, R.: Performance Modeling of WS-BPEL-Based Web Service
Compositions. Proc of the SCW 2006, Sept. 18-22, 2006, Chicago, Illinois, IEEE Computer Society, pp.
140-147

[Rud 2006¢] Rud, D.; Schmietendorf, A.; Dumke, R.: Product Metrics for Service-Oriented Infrastructures. In:
Abranet al.: Applied Softwre Measurement, Shaker Publ., 2006, pp. 161-174

[Rud 2007b] Rud, D.; Schmietendorf, A.; Kunz, M.; Dumke, R.: Analyse verfiigbarer SOA-Reifegradmodelle —
State of the Art. In: Schmietendorf et al.: Bewertungsaspekte serviceorientierte Architekturen, Shaker Pul.,
2007, pp. 115-126

[Schmietendorf 2007a] Schmietendorf, A.: Eine strategische Vorgehensweise zur erfolgreichen Implementierung
serviceorientierter Architekturen in grofien IT-Organisationen. Shaker Publ., 2007

[Schmietendorf 2002] Schmietendorf, A.; Dimitrov, E.; Dumke, R.: Enterprise JavaBeans. MITP, 2002

63

[Schmietendorf 2007b] Schmietendorf, A.; Kunz, M.; Dumke, R.: Empirical analyses about the granularity of
industrially used Web Services. CONQUEST 2007, Sept, Berlin

[Skyttner 2005] Skyttner, L.: General Systems Theory — Problems, Perspectives, Practice. World Scientific
Publ., New Jersey, 2005

[Sneed 2005] Sneed, H.: Software-Projektkalkulation. Hanser Publ., 2005
[Solingen 1999] Solingen, v. R.; Berghout, E.: The Goal/Question/Metric Method. McGraw Hill Publ. (1999)
[Tayntor 2003] Tayntor, C. B.: Six Sigma Software Development. CRC Press, 2003

[Thielen 2004] Thielen, M.: Qualitdtssicherun von Webservices. Diploma Thesis, University of Koblenz-
Landau, 2004

[Wang 2001] Wang, X., Chan, C. Ontology Modeling Using UML. Proc. of the 7" International Conference on
Object Oriented Information Systems, 2001

[Wijata 2000] Wijata, Y. 1.; Niehaus, D. and Frost, V. S.: A4 Scalable Agent-Based Network Measurement
Infrastructure. IEEE Communications Vol. 38, (2000), No. 9, pp. 174-183

[Wille 2005] Wille, C.: Software Agent Measurement Framework. Shaker-Publ., 2005
[Wooldridge 2002] Wooldridge, M. J.: An Introduction to Multi-agent Systems. Wiley, 2002

[Yu 20067] Yu, Y.; Lu, J.: Fernandez-Ramil, J.; Yuan, P.: Comparing Web Services with other Software
Components. Proc. of the ICWS 2007, pp. 388-397

[Zelkowitz 2007] Zelkowitz, M., V.: Techniques for Empircal Validation. In: Basili et al.: Empirical Software
Engineering, Springer-Publ., 2007, pp. 4-9

[Zuse 1998] Zuse, H.: A Framework of Sofiware Measurement. de Gruyter Publ., Berlin, 1998

64

