
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-013-2008

Formal Modelling of Software Measurement Levels of
Paradigm-Based Approaches

R. Dumke, M. Kunz, A. Farooq, K. Georgieva, H. Hegewald

Arbeitsgruppe Softwaretechnik

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-013-2008

Formal Modelling of Software Measurement Levels of
Paradigm-Based Approaches

R. Dumke, M. Kunz, A. Farooq, K. Georgieva, H. Hegewald

Arbeitsgruppe Softwaretechnik

Impressum (§ 10 MDStV):
Herausgeber:
Otto-von-Guericke-Universität Magdeburg

 Fakultät für Informatik
 Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Reiner Dumke

dumke@ovgu.de

101

31.10.2008

1

Formal Modelling of Software Measurement Levels of
 Paradigm-Based Approaches

Reiner Dumke, Martin Kunz, Ayaz Farooq, Konstantina Georgieva, Heike Hegewald

SML@b, University of Magdeburg, Germany, http://www.smlab.de

Contents

1 Introduction 2
1.1 Measurement Ingredients 5
1.2 Measurement Output 6
1.3 Measurement Results 7
1.4 Measurement Resources 8
1.5 Measurement Repercussions 10
1.6 General Characterization of Software Measurement Process 11

2 Software Measurement Process Levels 12
2.1 Basics of Scalability 12
2.2 Main Characteristics Preferences of Measurement Process Components 13
2.3 Sub Characteristics Preferences of Measurement Process Components 14
2.4 Combined Characteristics Preferences of Measurement Process Components 14
2.5 Simple Examples of Measurement Process Description 15
2.6 Measurement Process Improvements 16

3 Software e-Measurement Processes as Ubiquitous Measurement 18
3.1 Basics of e-Measurement 18
3.2 Description of Chosen e-Measurement Processes 19
3.3 Measurement Levels in e-Measurement 24

4 Measurement as Controlling for Agent-Based and Self-Managed Systems 25
4.1 Characteristics of Agent-Oriented Software Engineering (AOSE) 25
4.2 AOSE related Measurement Extensions 27
4.3 Agent Technology and Measurement Levels 36

5 Adaptive Measurement of Service-Oriented Systems 38
5.1 Characteristics of Service-Oriented Software Engineering (SOSE) 38
5.2 SOSE addressed Measurement Descriptions 41
5.3 SOSE intended Measurement Levels 45

6 Measurement Infrastructures as Proactive Measurement 47
6.1 Intentions and Examples of Measurement Infrastructures 47
6.2 The QuaD2 Approach of Dynamic Quality Assurance 53

7 Conclusions and Future Work 59

8 References 61

2

1 Introduction

Formal descriptions of software measurement can be found in the following kinds of
exemplary motivations,

� Understanding the essential components, operations, methodologies and empirical
background of this special kind of measurement

� Clarification of the different scale types of metrics or measures considering the
different software process areas as product processes and resources

� Foundation as a theoretical basis for classification, structuring and formal proving of

the software measurement paradigms.

The following figure shows some kinds of formal approaches that could be found in the
literature (see [Dumke 2005c] for detailed descriptions).

Figure 1: Formal approaches of software measurement

Considering the measurement systems aspects we define a software measurement system in a
declarative manner as following ([Dumke 2005c], [Skyttner 2005]):

MS = (MMS, RMS) = ({G, A, M, Q, V, U, E, T, P}, RMS) (1.1)

where G is the set of the measurement goals, A the set of measured artefacts or measurement
objects, M the set of measurement methods, objects or entities, Q the set of measurement
quantities, V the set of measurement values (especially we could have the situation Q =V),
U the set of measurement units, E the set of measurement-based experience, T the set of
measurement CASE tools (respectively CAME tools), and P the set of the measurement
personnel. RMS defines all meaningful relations between the elements of MMS. Note that our
description involves the principles of goal question metric (GQM), SPICE and CMMI
measurement intentions and fulfils the basic characteristics of the ISO 15939 software
measurement standard shown in the following figure [ISO 15939].

Axiomatic
Approaches

Information-theoretic
Approaches

Algebraic Approaches

Statistics

Structure-Based
Approaches Rule-Based

Approaches

Functional Approaches

Formal Measurement Approaches

Prather
Zuse
Poels

Khoshgoftaar/Munson
Allen

Chapin

Shepperd
Hastings/Sajev

Whitmire

Evanco/Lacovara
Dao
Han
Juristo
Singpurwalla
Kitchenham
Lei
Dumke/Hanebutte
Shneidewind
Pandian
Wohlin

McCabe
Fenton/Pfleeger

Whitty
Zuse

Baudry

Hausen
Jacobi/Cahill

Halstead
Boehm
Ejiogu

Albrecht
Putnam

Peters/Parnas
Munson

3

Figure 2: The ISO 15939 software measurement standard

Especially, the measurement process MP as one of the instantiations of a software
measurement system could be explained by the following sequence of relations

MP: (G � A � M)T,P � (Q � E)T,P � (V � U)T,P � E’� A’ (1.2)
This measurement process description explains the process results as quantities including
some thresholds, values involving their units and/or extended experiences combined with
improved or controlled measurement artifacts.

Software measurement process is embedded in the general motivation and classification
characterized in the following figure.

Figure 3: The general layer model of software measurement

4

Furthermore, the detailed phases of software measurement and their different kinds of
measurement methods can be described as following.

Figure 4: Software measurement phases and methods

Finally the kernel consideration what software measurement is could be characterized as
homomorphous relationship verbally described in the following figure.

Figure 5: The homomorphous relationship of software measurement

Based on our software measurement experiences we can derive the following refinement1 on
the process description above ([Braungarten 2007], [Dumke 1999], [Dumke 2005a], [Dumke
2006a], [Ebert 2007], [Rud 2006], [Schmietendorf 2002]).

1 This refinement does not fulfil the principle of completeness.

5

1.1 Measurement Ingredients

The tuple of (G � A � M) describes the input and basis for any software measurement. The
detailed characteristics of these three sets are2 :

G: Intention: We will consider in our approach the goals as understanding, evaluation,
improving and managing. This enumeration corresponds to an increasing level of
measurement goals.

Viewpoint: On the other hand the goals depend on the special viewpoint such as internal
goals/quality, external goals/quality and goals/quality in use.

A: Domain: The considered measurement artefacts should be the general classification of
software as products (systems), processes (e. g. project) and resources (including their
different parts or aspects (e. g. product model, process phases or personal resources)).

Origin: Note that we could consider a pendant or analogical artefact of measurement that
led us to the kinds of measurement as analogical conclusion. Analogy can be defined as
tuning (where we use a pendant in the same class of software systems) and as adaptation
(where we use another pendant of artefact). This kind of description is motivated in the
following consideration below.

Figure 6: The complexity of software as measurement artefacts

2 Note that we will define two characteristics for every set as two types of classification.

6

The complexity of the measured artefact could be explained as following: Software
measurement of different systems is related to the kind of systems (information-based,
embedded, web-based, decision support, knowledge-based etc.) and to the different kinds
of software development paradigms such as object-oriented software engineering
(OOSE), aspect-oriented programming (AOP), component-based software engineering
(CBSE), feature-oriented development (FOD), service-oriented software engineering
(SOSE), event-based design (EBD) and agent-oriented software engineering (AOSE).

On the other hand, general characteristics of software systems are meaningful in different
IT environments such as performance, security and usability or context-dependent as
outsourcing and off shoring. And finally, measurement artifacts can depend upon
different kinds of systems such as embedded systems and information systems etc. Figure
6 shows the relationships between these characteristics in a simplified manner.

M: Method: The chosen measurement methods should be classified here as experiment/case
study, assessment, improvement and controlling. That means that measurement should
contain the partial phases as referencing, modelling, measurement, analysis, evaluation
and application and could cover different parts of these phases. Note that the dominant
use of experiences could lead to the kinds of measurement as estimation or simulation.
Sort: Furthermore, depending on the measured artefact(s) that is involved in the
measurement we will distinguish between no measurement (no artefact), aspect-oriented
measurement (considering some aspects of product or process or resources), capability-
oriented measurement (considering the whole product, the whole process or all resources)
and whole measurement (considering all, product and process and resources).

1.2 Measurement Output
The immediate output of software measurement consists of numbers that would be interpreted
by using any experience described by the pair as (Q � E). The typical properties of these sets
are:

Q: Value: This set of metrics values/numbers characterises a qualitative measurement and
are given in a nominal scale or ordinal scale.
Structure: Measured values could be structured in different kinds of presentations and
transformations such as tuple, table, aggregation and normalization.

Figure 7: UML based metrics data base example

7

E: Form: The appropriate experiences for Q are given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesises and rules
of thumb.
Contents: The contents or kinds of experience could be thresholds, lower and upper
limits, gradients, calculus and proofs.

Typical kinds of measurement repositories are metrics databases. The example of such a data
base was the one used in T-Systems for UML based product measurement [Ebert 2007] as
given in figure 7.

Figure 8: The java measurement service OOMJ

An excellent variety of measurement quantities is stored in the Java measurement repository
as OOMJ implemented by Farooq [Farooq 2005] as shown in the figure 8.

1.3 Measurement Results

As a higher level of measurement output we want to achieve real measures including their
units. Characteristics of the sets in the tuple (V � U) are:

V: Measure: This set of metrics values characterises a quantitative measurement and is
given an interval scale or ratio scale.
Aggregation: The values could be built as different structures and aggregations such as
measurement repositories, simple visualizations (e. g. diagrams scatter plots), dashboards
and cockpits.

U: Type: The measurement unit could be CFP (COSMIC FFP functional size), program
length of Halstead, kilo delivered lines of code (KDSI), cyclomatic complexity of McCabe
etc.

8

Standard: Otherwise the mostly used units could be classified as physical, economical,
sociological, software and hardware units.

The ISBSG (International Software Benchmarking Standards Group) is an international
community that summarizes the project management data from IT companies worldwide. The
following figure shows an example evaluation of some of these measurement values [ISBSG
2003].

Figure 9: The ISBSG project measurement repository

1.4 Measurement Resources

Every phase of the software measurement process is supported by tools used by personnel.
The detailed characteristics of these sets are:

T: Level: The kind of tool and the tool support should be classified as manual (without any
tools), semi-automatic and automatic.
Support: On the other hand the tool could be applied in the IT area (as internal
measurement) or by vendors (as external measurement).

P: Kind: The measurement personnel involve the different kinds of measurement and
intentions and could be distinguished as measurement researchers, practitioners and
managers.
Area: Furthermore the measurement personnel could be divided in origin measurement
staff (measurement analyst, certifier, librarian, metrics creator, user and validator) and in
IT staff who use the software measurement indirectly (administrator, analyst, auditor,
designer, developer, programmer, reviewer, tester, maintainer, customer and user).

9

An example of measurement tool using the tomograph methodology that differs the phase of
measurement and evaluation is shown in the following figure for Web measurement [Dumke
2003].

Figure 10: The Web tomograph tool layout for Web measurement

Furthermore, supporting the agile software development, a helpful solution consists in the
metrics-based evaluation of the stepwise implemented results shown in the following figure.

Figure 11: The tool-based metrics evaluation of agile software development

10

1.5 Measurement Repercussions

Finally, the software measurement could/should lead to extensions of the experience and to
improvements of the measures artefacts explained in the tuple (E’� A’). Typical properties
are:

E’: Form: The obtained experiences are also given as analogies, axioms, correlations,
intuitions, laws, trends, lemmas, formulas, principles, conjectures, hypothesises and rules
of thumb.
Extension: Especially the marked set of experiences explains the extended knowledge
based on the measurement, evaluation and exploration and can produce formula
correction, principle refinement, criteria approximation and axiom extension.

A’: Domain: The kinds of measurement that include the change or improvement of the
measured artefacts leads to such a marked set A.

Changing: Depending on the measurement process goals and methods, the artefact could
be understood, evaluated, improved, managed or controlled.

In the IT practice the summarizing of measurement results as cockpits or dashboards is
helpful in order to achieve a holistic view.

Figure 12: Example of a software measurement dashboard [Ebert 2007]

11

1.6 General Characterization of Software Measurement Process

The measurement process MP itself should be characterized by the level of
covered/measured artifacts (as approach) and by the kind of IT relationship (as solution).
Hence, we could define the essential measurement process characteristics in the following
formal manner [Dumke 2007]:

 MP approach
solution : (1.3)

 (G intention
viewpoint � A domain

origin � M method
sort)T level

support ,P kind
area � (Q value

structure � E form
contents)T level

support ,P kind
area

� (V measure
naggregatio � U type

standard)T level
support ,P kind

area � E form
extension � A domain

changing

The classification of the measurement process MP itself is based on the measured artefact.
The measurement of aspects (aspects product or processes or resources) leads us to the
aspect-oriented measurement. The measurement of all aspects of a product or all aspects of
the process or all aspects of the resources would be called as capability-oriented
measurement. If we involve all software artefacts (product and process and resources) we will
call this as a whole measurement. These characteristics build the “approach” attribute of
measurement process.

Otherwise, the “solution” characteristic of the measurement process can be explained
depending on their kind of performing such as in-house or outsourced or based on
methodology of global production.

Finally, further information about examples of software measurement methods and processes
can be found in the Software Measurement Laboratory at the University of Magdeburg
(SML@b) at http://www.smlab.de.

Figure 13: The SML@b portal

12

2 Software Measurement Process Levels

2.1 Basics of Scalability
In this section we give a first graduation of the software measurement characteristics
introduced in the section 1. The idea of classification of measurement aspects and processes is
not new. Examples are

1. Zelkowitz defines a ranking of validation of research papers as a 14-scale taxonomy in
decreasing manner as: project monitoring, case study, field study, literature search, legacy
data, lessons learned, static analysis, replicated experiment, synthetic, dynamic analysis,
simulation, theoretical, assertion, no experimentation [Zelkowitz 2007].

2. A consideration of the experiment levels by Kitchenham leads to (also decreasing):
industrial case studies, quasi experiment, and formal experiment [Kitchenham 2007].

3. Sneed identifies a ranking of (function point based) productivity related to the kinds of
developed systems as (decreasing): industry, trading, governance, assurance and banking
[Sneed 2005].

We will use these experiences and some of the results from our industrial projects at Alcatel,
Siemens, Bosch and German Telekom ([Braungarten 2005], [Dumke 2007], [Ebert 2007],
[Richter 2005], [Schmietendorf 2007] and [Wille 2005]) in order to achieve a holistic
approach. The different aspects of the measurement process component are defined as a first
assumption in an ordinal manner/scale (considering also [Bourque 2007], [Braungarten
2007], [Farooq 2005], [Laird 2006], [Pandian 2004], [Schmietendorf 2007] and [Sneed
2005]). Our first ordinal classifications of the measurement process components in an
increasing manner are the following

G: intention � {understanding, evaluation, improving, managing} (2.1)
viewpoint � {internal_goals, external_goals, goals_in_use}

A: domain � {(product_aspects � process_aspects � resources_aspects), (2.2)
(product � process � resources), (product � process � resources)}

origin � { other_pendant, pendant_in_same_domain, original }

M: method � {experimen/case study, assessment, improvement, controlling} (2.3)
sort � {analogical_conclusion, estimation, simulation, measurement}

T: level � {manual, semi-automatic, automatic} (2.4)
support�{one_measurement_phase, some_measurement_phases, whole_measurement}

P: kind � {manager, researcher, practitioner} (2.5)
area � {measurement_expert_staff, measurement_application_staff}

Q: value � {identifier/nomination, ordinal_scale} (2.6)
structure � {single_value, (normalization � transformation), aggregation}

E: form � {(intuition � law � trend � principle), analogy, (criteria � rules_of_thumb),
 (axiom � lemma � formula)} (2.7)

contents � {(limits � threshold), (gradient � calculus), proof}

13

V: measure � {interval_scale, ratio_scale} (2.8)
aggregation � {values, (data_basis � repository), (dashboard � cockpit)}

U: type � { sociological_unit, economical_unit, physical_unit, hardware_unit,
software_unit} (2.9)

standard � {non_standard, quasi_standard, standardized}

E’: form: see above (2.10)
extension � {correction, (refinement � approximation � adaptation), extension}

A’: domain: see above (2.11)
changing � { understood, improved, managed, controlled }

Including the different levels of performing the measurement in the IT area leads us to the
following classification

MP: approach � {aspect-oriented_measurement, (2.12)
 capability-oriented_measurement, whole_measurement}

solution � { outsourced, global_production, inhouse}

Note that the exponents address the main characteristics and the indexes show the sub
characteristics. This assumption explains some first relationships.

2.2 Main Characteristics Preferences of Measurement Process Components

In the following we will present some examples of this kind of measurement aspects scaling.
Related to the measurement artefacts we can establish (note that the sign “�” characterizes
the so-called evidence level (see [Kitchenham 2007])

A aspects
origin � A resourcesprocessproduct ��

origin � A resourcesprocessproduct ��
origin . (2.13)

Considering the measurement and including the application leads to

M case_study
sort � M assessment

sort � M timprovemen
sort � M gcontrollin

sort . (2.14)

Addressing the tool aspects gives

T manual
support � T aticsemi_autom

support � T automatic
support . (2.15)

Achieving the personnel background we obtain

14

P manager
area � P researcher

area � P erpractition
area . (2.16)

And finally addressing the used experiences leads to

E principle
contents � E analogy

contents � E humbrules_of_t
contents � E ormulaf

contents . (2.17)

2.3 Sub Characteristics Preferences of Measurement Process Components

Considering the sub characteristics we will present chosen relationships also. Relating to sub
characteristics of the artefacts we can establish

A domain
antother_pend � A domain

dantdomain_pen � A domain
original . (2.18)

Describing the measurement and application aspects gives

M method
n_conclusioanalogical �M method

estimation � M method
simulation � M method

tmeasuremen . (2.19)

Relating the tool aspects leads to

T level
phaseone_meas._ � T level

_phasessome_meas. � T level
urementwhole_meas . (2.20)

Achieving the personnel background as

P kind
t_expertmeasuremen � P kind

fn_stafapplicatio . (2.21)

Furthermore, considering the experiences we obtain

E form
threshold � E form

gradient � E form
proof . (2.22)

2.4 Combined Characteristics Preferences of Measurement Process Components

Finally, using both kinds of characteristics leads to the following example relationships.

 A aspects
dantdomain_pen � A aspects

original � A resourcesprocessproduct
antother_pend

�� (2.23)

 � A resourcesprocessproduct
dantdomain_pen

�� � A resourcesprocessproduct
antother_pend

�� .

or

 M
case_study

n_conclusioanalogical �M timprovemen
estimation � M

gcontrollin
estimation � M experiment

simulation (2.24)

 �M assessment
simulation �M

case_study
tmeasuremen �M assessment

tmeasuremen �M
gcontrollin

tmeasuremen .

and

15

 E law
threshold � E law

calculus � E law
proof � E analogy

limits � E
analogy
gradient � E analogy

proof (2.25)

 � E criteria
threshold � E humbrules_of_t

calculus � E axiom
threshold � E lemma

gradient � E formula
proof .

2.5 Simple Examples of Measurement Process Description

At first we will use our formal descriptions in order to describe some typical software
measurement situations and implementations. Therefore we can establish some different
levels of measurement evidence such as

� Using only the next lower levels of previous paradigm measurement experiences leads us
to the measurement approximation

� Using one or more of the second and/or third lower substitution levels can be considered as
measurement qualification

� Using only the lowest level of previous paradigm measurement experiences leads us to the
measurement initialization

In the following we will describe some examples using our scaled measurement process
description. Usually, in the software development and application we can describe some of
the following tasks and activities based on our formal background [Dumke 2007].

First general metrics application:
Our first example shows a simple (first) application of metrics based on a simple
measurement process.

MP entedaspect_ori
inhouse : (2.26)

(G evaluation
oalsinternal_g � A pectsproduct_as

original � M experiment
tmeasuremen)T

aticsemi_autom
_phasessome_meas. ,P

erpractition
t_expertmeasuremen

� (Q aleordinal_sc
ionnormalizat � E formulas

threshold)

Product quality assurance:
Then next example describes a more practical situation considering the (full) product
measurement in an IT area.

 MP orientedcapability
inhouse

� : (2.27)

(G managing
oalsexternal_g � A product

original � M assessment
tmeasuremen)T aticsemi_autom

t_phasesmeasuremen ,P
erpractition

t_expertmeasuremen

 �V eratio_scal
cockpit � U software

edstandardiz

Process improvement:
This example characterizes some of the process improvements using process improvement
standards.

MP orientedcapability
inhouse

� : (2.28)

(G improving
segoals_in_u � A process

original � M timprovemen
tmeasuremen)T aticsemi_autom

t_phasesmeasuremen ,P
erpractition

afft_appl._stmeasuremen

16

 � (Q aleordinal_sc
naggregatio � E criteria

threshold) T aticsemi_autom
t_phasesmeasuremen ,P

erpractition
t_expertmeasuremen

�E criteria
ionapproximat � A process

improved

Project controlling:
Another example of process measurement and evaluation is given in the following.

 MP
orientedcapability

ductionglobal_pro
� : (2.29)

(G managing
oalsexternal_g � A process

original � M
gcontrollin

tmeasuremen)T
automatic

urementwhole_meas ,P
nerpractictio

._staffmeas._appl

 � (V eratio_scal
cockpit � U nitsoftware_u

edstandardiz)T
automatic

urementwhole_meas ,P
nerspractictio

._staffmeas._appl

� E criteria
adaptation � A process

controlled

Resources adaptation:
The last example is addressed to the resource measurement as an improvement of the IT
infrastructure.

 MP orientedcapability
outsourced

� : (2.30)

(G improving
segoals_in_u � A resources

pendant � M timprovemen
tmeasuremen)T

aticsemi_autom
t_phasesmeasuremen ,P

erpractition
t_expertmeasuremen

 � (Q tionidentifica
esinle_valu � E intuition

threshold) T aticsemi_autom
t_phasesmeasuremen ,P

erpractition
t_expertmeasuremen

 � E analogies
adaptation � A resources

improved

These examples demonstrate some of the possible constellations of measurement processes.
One example involves an aspect-oriented approach and the other ones are capability-oriented.
In order to perform a general comparison and classification we must consider all the MP
characteristics (at first the G level then the A level etc.). Hence we obtain

(2.26) � (2.28) � (2.30) � (2.27) � (2.29)
or

MP ltraditiona
ics_appl.first_metr � MP ltraditiona

provementprocess_im � MP ltraditiona
daptationresource_a � (2.31)

MP ltraditiona
rance.ality_assuproduct_qu � MP ltraditiona

ntrollingproject_co

This is only one of the results. On the other hand we can identify the point of view in order to
achieve any improvement in the measurement process level.

2.6 Measurement Process Improvements

In the sections above we have characterized an ordinal scaled multi-dimensional “space” of
software measurement aspects that consists of the lowest measurement level as

MP entedaspect_ori
outsourced : (2.32)

(G ingunderstand
oalsinternal_g � A product

in_same_domapendant_in

17

� M experiment
n_conclusioanalogical)T

manual
phasesone_meas._ ,P

manager
rt_staffmeas._expe

� (Q tionidentifica
esinle_valu � E intuition

threshold)

some immediate levels or measurement situations such as

MP entedaspect_ori
inhouse : (2.33)

 (G evaluation
oalsexternal_g � A pectsproduct_as

original � M assessment
estimation)T

aticsemi_autom
_phasessome_meas. ,P

researcher
._staffmeas._appl

 (Q nomination
ionnormalizat � E analogy

calculus)

 V caleinterval_s
data_basis � U nithardware_u

dardquasi_stan

(can be improved by “aspect-oriented” � “capability-oriented”, “evaluation” �
“improving”, “external_goals” � “goals_in_use”, “product_aspect” � “product” etc.)

and the highest software measurement level

MP urementwhole_meas
inhouse : (2.34)

 (G managing
segoals_in_u � A resourcesprocessproduct

original
�� � M

gcontrollin
tmeasuremen)T

automatic
urementwhole_meas ,P

erpractition
._staffmeas._appl

 �(V eratio_scal
cockpit � U nitsoftware_u

edstandardiz) T
automatic

urementwhole_meas ,P
erpractition
._staffmeas._appl

� E formulas
extension � A resourcesprocesspoduct

controlled
��

Furthermore, we will differentiate the following graduation of measurement improvements
as a first kind of improvement classification:

� Weak measurement improvement: This kind of improvement consists of an
improvement of a measurement sub characteristic to the next level (as one step).

� Moderate measurement improvement: The improvement of the measurement process
based on more than one step of a/some sub characteristic(s) building this kind of
measurement process improvement.

� Essential measurement improvement: This kind of improvement consists of an
improvement of a measurement main characteristic to the next level (as one step).

� Remarkable measurement improvement: The improvement of the measurement
process based on more than one step of a/some main characteristic(s) building this
kind of measurement process improvement.

Therefore, based on the formal described measurement process methods of measurement
improvement are identified easily.

�{ }

18

3 Software e-Measurement Processes as Ubiquitous Measurement

3.1 Basics of e-Measurement

In following we will give some examples of formal modelling of measurement processes
embedded, oriented, involved and implemented in the World Wide Web. This kind of
software measurement was called e-Measurement and was defined by Lother [Lother 2007]
(see also [Abran 2006], [Ebert 2007], [Dumke 2004] and [Farooq 2008]) as:

“Software e-Measurement is the process of the quantification of object’s or
component’s attributes according to selected measurement goals by using the
capabilities of ICN (Information, Communication, Net) technologies.”

Let us establish the basic components of the traditional software assurance characterized in
the following figure by Lother [Lother 2007].

Figure 14: The traditional software assurance approach

Then the software e-Measurement could be described in the following manner (also adapted
from [Lother 2007]) shown in the figure 15.

This e-Measurement can be divided in different kinds of measurement such as e-Measurement
services, e-Measurement repositories etc. Note that especially the Web 2.0 hype can provide
any new kinds of services, roles and infrastructures in the world-wide software quality
assurance community and marketplaces.

19

Figure 15: The software e-Measurement based quality assurance

In the following we will characterize some of these external (Web based) components in
software quality assurance (based on measurement) and their achieved measurement levels.

3.2 Description of Chosen e-Measurement Processes

Note that the formal indexes in the following formal descriptions characterize the main kinds
of Web technology.

The e-Measurement Service as a Web service usable for everyone can be described as

MP tMeasuremene
Servicee

�
� : (3.1)

 (G � A � M)
logyWeb_technoT ,P � (Q � E)

logyWeb_technoT ,P

� (V � U)
logyWeb_technoT ,P � E’� A’

with a simple explanation as e-Service � {global_production, outsourced} and
Web_technology � {document-based, dynamic, semantic, service, mobile, agent,
operational}.

Note that we have shown such a service in figure 8 including both as measurement results and
the measurement of Java applications.

20

The e-Measurement Community as a virtual environment for the measurement community
including features for knowledge transfer, communication, cooperation and coordination
activities is characterized by

MP tMeasuremene
Communitye

�
� : (G � A � M)

logyWeb_technoT , lityoperationasystemP _
 (3.2)

� (Q � E)
logyWeb_technoT , lityoperationasystemP _

�(V � U)
logyWeb_technoT

lityoperationasystemP _
�E’� A’

with the same kind of description as e-Community � {P2P, research team, cooperating team,
organization, competence network}, Web_technology � {document-based, dynamic,
semantic, service, mobile, agent, operational} and system_operationality � {coordination,
conferencing, cooperation, collaboration}.

An example for the FSM community was implemented prototypically by Lother shown in the
following figure [Lother 2004].

Figure 16: The Functional Size Measurement community portal

21

Essential backgrounds as e-Repository and/or e-Experience can be described in a simplified
yet formal manner as

MP tMeasuremene
Experiencee

�
� : (G � A � M)

logyWeb_technoT , lityoperationasystemP _
 (3.3)

� (Q
logyWeb_techno

 � E
logyWeb_techno

)
logyWeb_technoT , lityoperationasystemP _

 �(V
logyWeb_techno

 � U
logyWeb_techno

)
logyWeb_technoT

lityoperationasystemP _

�E’
logyWeb_techno

� A’

whereas e-Experience � {information basis, repository, knowledge data basis, experience
factory}, Web_technology � {document-based, dynamic, semantic, service, mobile, agent,
operational} and system_operationality � {coordination, conferencing, cooperation,
collaboration}.

An example of Web-based services of experiences is shown in the following figure including
descriptions of software engineering methods and practices (http://www.software-
kompetenz.de).

Figure 17: The German software engineering experience portal

The e-Quality Service are helpful Web-based activities and are described as

 MP tMeasuremene
Qualitye

�
� : (G � A � M

logyWeb_techno
)

logyWeb_technoT , lityoperationasystemP _
 (3.4)

� (Q
logyWeb_techno

 � E
logyWeb_techno

)
logyWeb_technoT , lityoperationasystemP _

�(V
logyWeb_techno

 � U
logyWeb_techno

)
logyWeb_technoT

lityoperationasystemP _

�E’
logyWeb_techno

� A’

22

with an explanation as e-Quality � {information, certification, consulting, estimation},
Web_technology � {document-based, dynamic, semantic, service, mobile, agent, operational}
and system_operationality � {coordination, conferencing, cooperation, collaboration}.
The SML@b Web application could be considered as example quality services by using
existing (estimation) methods.

Figure 18: The quality method application in the SML@b

Especially, the e-Control summarizes a lot of Web technologies and methodologies in order
to perform this operational kind of Web systems, described as

 MP tMeasuremene
Controle

�
� : (3.5)

(G � A
logyWeb_techno

 � M
tmeasuremenoftype __

)
logyWeb_technoT , lityoperationasystemP _

� (Q
logyWeb_techno

 � E
logyWeb_techno

)
logyWeb_technoT , lityoperationasystemP _

�(V
logyWeb_techno

� U
logyWeb_techno

)
logyWeb_technoT ,

lityoperationasystemP _

�E’
logyWeb_techno

� A’

with the details as e-Control � {evaluation, improvement, managing, controlling},
Web_technology � {document-based, dynamic, semantic, service, mobile, agent,
operational}, system_operationality � {coordination, conferencing, cooperation,
collaboration} and type_of_measurement � {modelling, measurement, evaluation,
application}.

A simple example of process controlling is given in the following figure that extends any
office solutions in order to measure the different files using profiles (see [Abran 2006]).

23

Figure 19: The HackyStat extension for process controlling

Finally, the Measurement e-Learning as one of the measurement training aspects can be
formalized as

MP tMeasuremene
Learninge

�
� : (3.6)

(G
logyWeb_techno

� A
logyWeb_techno

� M operationtmeasuremenWeb _
)

logyWeb_technoT , lityoperationasystemP _

� (Q
logyWeb_techno

 � E
logyWeb_techno

)
logyWeb_technoT , lityoperationasystemP _

�(V
logyWeb_techno

 � U
logyWeb_techno

)
logyWeb_technoT ,

lityoperationasystemP _

�E’
logyWeb_techno

� A’
logyWeb_techno

whereas it holds that e-Learning � {learning, repetition, consultation, practice,
examination}, Web_technology � {document-based, dynamic, semantic, service, mobile,
agent, operational}, system_operationailty � {coordination, conferencing, cooperation,
collaboration, consulting} and measurement_operation � {artefactBasedOp,
quantificationBasedOp, valueBasedOp, experienceBasedOp}. The following example of
CMMI application in the Web demonstrates the measurement e-Learning in principle.

Figure 20: The CMMI explanation and application in the SML@b

24

Note that this kind of formalization motivates further ideas and possibilities of Web-based
software measurement supports and innovations (examples are given in [Abran 2006],
[Dumke 2003a], [Dumke 2004], [Ebert 2007], [Lother 2004] and [Lother 2007]).

3.3 Measurement Levels in e-Measurement

The main benefit of e-Measurement leads to the availability of such e-Services and e-
Supports. Therefore, the measurement level could be characterized as immediate level mainly.
Otherwise, using e-Measurement the case of outsourced measurement is the typical one. A
usual measurement level description of measurement e-Services as external process
evaluation could be given as following.

MP entedaspect_ori
outsourced : (G evaluation

oalsinternal_g � A process
original (3.7)

� M assessment
estimation)T

aticsemi_autom
phasesone_meas._ ,P

erpractition
rt_staffmeas._expe

� (Q aleordinal_sc
esinle_valu � E analogy

threshold)

Another example of measurement e-Learning based on the “Web-based Measurement” at the
SML@b, http://www.smlab.de) as Java measurement service has the following measurement
characteristics (as immediate measurement level also).

MP entedaspect_ori
outsourced : (3.8)

 (G evaluation
oalsinternal_g � A pectsproduct_as

original � M assessment
tmeasuremen)T

aticsemi_autom
_phasessome_meas. ,P

researcher
rt_staffmeas._expe

 � (Q scale ordinal
uesingle_val � E intuition

threshold)

The best case of measurement level in e-Measurement could be a remote service of e-Control
(as server management) including the following measurement characteristics.

MP _orientedcapability
outsourced : (3.9)

 (G managing
segoals_in_u � A resources

original � M
gcontrollin

tmeasuremen)T
automatic

urementwhole_meas ,P
erpractition
._staffmeas._appl

 �(V eratio_scal
cockpit � U nitsoftware_u

edstandardiz) T
automatic

urementwhole_meas ,P
erpractition
._staffmeas._appl

� E formula
extension � A resources

controlled

Otherwise, simple relationships could be built comparing the traditional kinds of
measurement described in the section before. It is simple to see that holds

 MP ltraditiona
ics_appl.first_metr � MP tMeasuremene

Servicee
�
� � MP ltraditiona

rance.ality_assuproduct_qu (3.10)

and

MP tMeasuremene
Controle

�
� � MP ltraditiona

ntrollingproject_co (3.11)

where the non obvious improvements of e-Measurement is reasoned in their better kind of
availability and more (world-wide) involved experiences as described above.

25

4 Measurement as Controlling for Agent-Based and Self-Managed
Systems

4.1 Characteristics of Agent-Oriented Software Engineering (AOSE)

Software agents can be applied to solve new types of problems such as dynamic open systems:
the structure of the system itself is capable of changing dynamically and its components are
not known in advance, can change over time, and may be highly heterogeneous. Usually, the
AOSE would be divided in the three areas of software agent, multi-agent systems (MAS) and
MAS development (see [Bauer 2004], [Ciancarini 2001], [Gerber 2001], [Huhns 2004],
[Jennings 1998], [Knapik 1998], [Liu 2001], [Panait 2006] and [Wooldridge 2002]).
Software agents: The essential components of a software agent form a measurement point of
view in the following scheme [Wille 2005].

Figure 21: Components of a general software agent (original and measured)

The next aspects of software agents are related to their communication and/or co-operation.
The following figure explains these aspects in general.

Figure 22: Communications between software agents

26

Multi-agent systems: The viewpoints of agent-based systems – especially multi-agent systems
(MAS) - are generally defined in architecture models. We will also start with a general
description of the MAS aspects as shown in the following figure.

Figure 23: General components of multi-agent systems (MAS)

The following figure suggests a all measurement intentions for our agent-based systems.

Figure 24: Measurement-based MAS architecture

27

MAS development: The specification, design and implementation of agent-based system
and/or MAS differs from the OO development by starting with subjects (roles) and
introducing a training phase after the system implementation. The following figure shows this
AOSE development phase involving measurement and evaluation characteristics [Mencke
2007].

Figure 25: Measurement-based MAS development

4.2 AOSE related Measurement Extensions

First, we describe the measurement of software agents considering the new kind of controlling
by the agents themselves.

MP AOSE
agents : (4.1)

 (G managing
ntionagent_inte � A agents

original � M gcontrollin
tmeasuremen)T

automatic
rementsome_measu

 �(V eratio_scal
repository � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu

� E edge_basisgent_knowla
extension � A gentimproved_a

controlled

28

Especially, the measurement methods �agent can be summarized as

measurement � { � size
agent , � structure

agent , � complexity
agent , � ityfunctional

agent , (4.2)

 �)(tdevelopmenndescriptio
agent , �)(napplicationdescriptio

agent , �)(npublicationdescriptio
agent ,

 � oncommunicat
agent , � ninteractio

agent , � learning
agent , � adaptation

agent , � nnegotiatio
agent ,

 � ioncollaborat
agent , � oncoordinati

agent , � ncooperatio
agent , � onreproducti

agent ,

 � eperformanc
agent , � tionspecializa

agent }

The metrics for the agent design level are: Software agent size � size
agent : The size considers

both aspects of an agent: the functional size and the physical size of a software agent.
Software agent component structure � structure

agent : The structure depends on the kind of the agent

(intelligent, reactive, deliberative etc.), and the agent interface is related to the kind of agent
coupling (as fixed, variable or evolutionary). Software agent complexity � complexity

agent : The

complexity is divided into the computational and psychological complexity and should be
measured using both concrete aspects. Software agent functionality � ityfunctional

agent : This aspect

considers the appropriateness of the agent with respect to the requirements.

The metrics for the agent description level are: Software agent development description level
�)(tdevelopmenndescriptio

agent : It considers the completeness of the development documentation

(including tests and change supports). Software agent application description level
�)(napplicationdescriptio

agent : The metric includes the quality (readability, completeness, on-line

support etc.) of the user documentation. Software agent publication description level
�)(npublicationdescriptio

agent : This metric considers the public relations for using the software agent

and involves the system description.

The metrics for the agent working level are: Software agent communication level
� oncommunicat

agent : Considers of the size of communication and the level of the conversation

required to sustain the activities. Software agent interaction level � ninteractio
agent : This metric is

related to the agent context and environment and their different kinds of actions (as
transformation, reflecting, executing, modification, commands, perception, deliberation).
Software agent learning level � learning

agent : This metric evaluates the skills, intentions, and

actions of extending the agent facilities itself. Software agent adaptation level � adaptation
agent :

The adaptation metric considers facilities of an agent changing in order to react to new
conditions in the environment. Software agent negotiation level � nnegotiatio

agent : The

measurement is based on the evaluation of facilities like the agent intentions, conflict
resolution, and realized commitments for successful negotiation. Software agent collaboration

29

level � ioncollaborat
agent : This metric is oriented towards the agent’s facility to work together with

other agents. Software agent coordination level � oncoordinati
agent : The agent’s facility of

managing any one agent task is considered. Software agent cooperation level � ncooperatio
agent :

This metric considers the volume and efficiency of an agent relating to a common task.
Software agent self-reproduction level � onreproducti

agent : The number of destroyed agents related

to repaired agents is counted. Software agent performance level � eperformanc
agent : This metric

considers the task related performance of an agent. Software agent specialization level
� tionspecializa

agent : The metric considers the degree of specialization and the degree of redundancy

of an agent.

Note that the metrics-based analysis of the agent behavior is one of the new and extended
areas in software measurement of agent-based systems. An example of agent measurement is
shown in the following figure (left the green, right the red evaluation based on continued
measurement [Wille 2005]).

Figure 26: Examples of agent measurement (as aglet performance)

We describe the measurement of multi-agent systems (MAS) considering the new kind of
system controlling in the same manner as.

MP AOSE
MAS : (4.3)

 (G managing
tionuser_inten � A MAS

original � M gcontrollin
tmeasuremen)T

automatic
rementsome_measu

 �(V eratio_scal
repository � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu

� E basisknowledgeagent __
extension � A MASimproved _

controlled

Especially, the measurement methods �MAS can be summarized as

measurement � { � size
MAS , � structure

MAS , � complexity
MAS , � ityfunctional

MAS , (4.4)

 �)(tdevelopmenndescriptio
MAS , �)(napplicationdescriptio

MAS , �)(npublicationdescriptio
MAS ,

� ioncommunicat
MAS , � ninteractio

MAS , � knowledge
MAS , � lifeness

MAS , � conflict
MAS , � community

MAS ,

30

�management
MAS , � napplicatio

MAS , � stability
MAS , � eperformanc

MAS , � onorganizati
MAS }

The metrics for the MAS design level: Agent system size � size
MAS : The measured system size

includes the potential number of (active) agents and their contents; further, the size is related
to the environment. Agent system component structure � structure

MAS : This metric includes agent
the type of organizational structure (hierarchies or egalitarian), the degree of parallelism, the
kinds of organizational functions (representational, organizational, conative, interactional,
productive, or preservative). Agent system complexity � complexity

MAS : One of these measured
aspects leads to the degree of the organizational dimensions (social, relational, physical,
environmental, and personal). Agent system functionality � ityfunctional

MAS : This metric considers
the realization of all of the functional system requirements.

The metrics for the MAS description level: Agent system development description level
�)(tdevelopmenndescriptio

MAS : This metric considers the integration of the agent concepts and
dynamics and their sufficient documentation. Agent system application description level
�)(napplicationdescriptio

MAS : This considers the user documentation of all aspects of the system
applications related to the different user categories. Agent system publication description level
�)(npublicationdescriptio

MAS : Publication metrics evaluate the user acceptance and marketing
aspects of the agent-based system application.

The metrics for the MAS working level: Agent system communication level � ioncommunicat
MAS :

The number of ACLs between the different kinds of software agents and their different roles
and actions. Agent system interaction level � ninteractio

MAS : This metric deals with the average
types of interactions relating to the agents and their roles in the environment of the agent-
based system. Agent system knowledge level � knowledge

MAS : This metric measures the results of
agent learning for agent-based system (based on the different kinds of agents, either tropistic
or hysteretic). Agent system lifeness level � lifeness

MAS : This metric is based on the agent
adaptation which reflects the adaptation level of the whole agent-based system. Agent system
conflict management level � conflict

MAS : The system success is based on agent negotiation and
considers the relations between the different kinds of a fair play in the realization of the
system tasks. Agent system community level � community

MAS : This metric considers the level of
different agent communities based on the agent collaboration. Agent system management level
�management

MAS : This system metric is based on the agent coordination level with respect to the

whole agent system structure. Agent system application level � napplicatio
MAS : This metric is

related to the application area and the different agent roles in cooperation. Agent system
stability level � stability

MAS : The stability measure is based on the agent self-reproduction. Agent

system performance level � eperformanc
MAS : The handling with object to realize special tasks

31

through the different agents is considered. Agent system organization level � onorganizati
MAS : The

different agent roles (archivist, customer, mediator, planner, decision-maker, observer, and
communicator) are considered.

Figure 27: Example of MAS measurement (as benchmarking [Gerber 2001])

Finally, we describe the measurement of MAS development including their resources in the
same manner. Note that the MAS development consists of two pairs as the development of the
agent(s) and the development/building of the MAS itself.

MP AOSE
tdevelopmenMAS _ : (4.5)

(G managing
ntentioncustomer_i � A tdevelopmensystemagent

concept
__

�M timprovemen
tmeasuremen)T

aticsemi_autom
rementsome_measu ,P

erpractition
ion_stafft_applicatmeasuremen

 �(Q aleordinal_sc
repository � E criteria

threshold) T
aticsemi_autom
rementsome_measu , P

erpractition
ion_stafft_applicatmeasuremen

� E ymethodolog
extension � A systemagentdimplemente

trainedbeto
__

__

Especially, the measurement methods �development(agent) and �development(MAS) can be summarized
as

measurement � { � phases
Agenttdevelopmen)(, �milestones

Agenttdevelopmen)(, �workflow
Agenttdevelopmen)(, (4.6)

� ymethodolog
t(Agent)developmen , � paradigm

Agenttdevelopmen)(, �CASE
Agenttdevelopmen)(, �)(

)(
projectmanagement
Agenttdevelopmen ,

32

 �)(
)(

onconfiguatimanagement
Agenttdevelopmen , �)(

)(
qualitymanagement
Agenttdevelopmen , � phases

MAStdevelopmen)(, �milestones
MAStdevelopmen)(,

 �workflow
MAStdevelopmen)(, � ymethodolog

t(MAS)developmen , � paradigm
MAStdevelopmen)(, �CASE

MAStdevelopmen)(,

�)(
)(

projectmanagement
MAStdevelopmen , �)(

)(
ionconfiguratmanagement

MAStdevelopmen , �)(
)(

qualitymanagement
MAStdevelopmen , �)(

)(
developerskill

Agenttdevelopmen ,

 �)(
)(

developerioncommunicat
Agenttdevelopmen , �)(

)(
developertyproductivi
Agenttdevelopmen , �)(

)(
softwareparadigm

Agenttdevelopmen ,

�)(
)(

softwareeperformanc
Agenttdevelopmen , �)(

)(
softwaretreplacemen
Agenttdevelopmen , �)(

)(
hardwareyreliabilit

Agenttdevelopmen , �)(
)(

hardwareeperformanc
Agenttdevelopmen ,

 �)(
)(

hardwaretyavailabili
Agenttdevelopmen , �)(

)(
developerskill

MAStdevelopmen , �)(
)(

developeroncomunicati
MAStdevelopmen , �)(

)(
developertyproductivi
MAStdevelopmen ,

�)(
)(

softwareparadigm
MAStdevelopmen , �)(

)(
softwareeperformanc
MAStdevelopmen , �)(

)(
softwaretreplacemen
MAStdevelopmen , �)(

)(
hardwareyreliabilit

MAStdevelopmen ,

 �)(
)(

hardwareeperformanc
MAStdevelopmen , �)(

)(
hardwaretyavailabili
MAStdevelopmen }

The metrics for the agent development life cycle: Software agent phases level
� phases

Agenttdevelopmen)(: The characteristics (size, structure, complexity) in the different

development phases are considered. Software agent milestones level �milestones
Agenttdevelopmen)(: This

metric evaluates agent development with respect to a milestone. Agent requirements workflow
level �workflow

Agenttdevelopmen)(: This metric considers the implemented requirements during the

development phases.

Figure 28: MAS development measurement as JAVALite extension [Wijata 2000]

Presentation
Agent

DB

Application
Agent

Measurement
Agent

Distributed Application

WAN

Monitor
Create

and
Control

Monitor
Request

33

The metrics for the agent development method level: Software agent methodology level
� ymethodolog

t(Agent)developmen : The level of the development method used is quantified. Software agent

paradigm level � paradigm
Agenttdevelopmen)(: This metric evaluates the appropriateness of the chosen

development paradigm. Software agent CASE level �CASE
Agenttdevelopmen)(: This metric

quantifies the tool support for the agent implementation.

Figure 29: Example of Agent UML (AUML) application [Huhns 2004]

The metrics for the agent development management level: Agent project management level
�)(

)(
projectmanagement
Agenttdevelopmen : This set of metrics considers the management level of the development

risks and methods. Agent configuration management level �)(
)(

onconfiguatimanagement
Agenttdevelopmen : This

considers the successful of the version control with respect to an agent. Agent quality
management level �)(

)(
qualitymanagement
Agenttdevelopmen : This set of metrics considers the quality assurance

techniques related to an agent.

Auctioneer

inform (start auction)

Auction Participants

cfp (initial price)

propose (price)

{m>0} not understood
(d:10)

n

(d(current time, start) > delay)
n reject proposal (price)

accept proposal (price)

k

m

n

{n>=2} cfp (price + 10)

inform (end auction)

{price >= reserved price} request (price)

(d:10)

Sending message until
delivery

Notation:

BroadcastXOR

34

Now, we consider the development process of the MAS and define the following appropriate
software metrics for the measurement and evaluation of these aspects {�development(MAS)}.

The metrics for the MAS development life cycle: Agent system phases level
� phases

MAStdevelopmen)(: This evaluation considers the system metrics of size, structure and

complexity during system development. Agent system milestones level �milestones
MAStdevelopmen)(:

The metric evaluates MAS development with respect to a milestone. System requirements
workflow level �workflow

MAStdevelopmen)(: The requirements implementation during the development

phases in the whole system is considered.

The metrics for the MAS development method: Software agent methodology level
� ymethodolog

t(MAS)developmen : The level of the development method used is quantified. Software agent

paradigm level � paradigm
MAStdevelopmen)(: This metric evaluates the appropriateness of the chosen

development paradigm. Software agent CASE level �CASE
MAStdevelopmen)(: This metric quantifies

the tool support for the agent implementation.

The metrics for the MAS development management level: System project management level
�)(

)(
projectmanagement
MAStdevelopmen : The management level of the development risks and methods of the

system is considered. System configuration management level �)(
)(

ionconfiguratmanagement
MAStdevelopmen : This

metrics includes the evaluation of the dynamic aspects of the system configuration. System
quality management level �)(

)(
qualitymanagement
MAStdevelopmen : The quality assurance techniques related to

the whole agent-based system is considered.

The agent and MAS development process require different resources such as personnel
(developer, tester, administrator etc.), software resources (MAS COTS and CASE tools), and
platform resources, including the hardware components. Therefore, we need measurement
values with respect to the characteristics (especially the quality) of these resources. Hence, we
define the following metrics which are also necessary to evaluate the MAS development
process.

The metrics for the agent developer level: Agent developer skill level �)(
)(

developerskill
Agenttdevelopmen :

This metric is related to the skills to develop and implement an software agent. Agent
developer communication level �)(

)(
developerioncommunicat

Agenttdevelopmen : The ability of the developer to

improve his work by collaboration and cooperation is considered. Agent developer
productivity level �)(

)(
developertyproductivi
Agenttdevelopmen : This metric evaluates the quantity of work.

The metrics for the agent software resources level: Agent software paradigm level
�)(

)(
softwareparadigm

Agenttdevelopmen : This metric evaluates the appropriateness of the chosen software basis

35

and used software components for the implementation of an software agent. Agent software
performance level �)(

)(
softwareeperformanc
Agenttdevelopmen : This metric addresses the software components and

their effectiveness. Agent software replacement level �)(
)(

softwaretreplacemen
Agenttdevelopmen : This metric

considers the effort of adaptation when using different versions of the basic software.

Figure 30: Example of MAS resources measurement (Agent Academy, [Wille 2005])

The metrics for the agent hardware resources level: Agent hardware reliability level
�)(

)(
hardwareyreliabilit

Agenttdevelopmen : This metrics considers the reliability of the types of hardware required

for running the software agent. Agent hardware performance level �)(
)(

hardwareeperformanc
Agenttdevelopmen :

This set of metrics considers the platforms used for an agent. Agent hardware availability
level �

)(
)(

hardwaretyavailabili
Agenttdevelopmen : The average availability of the different platforms used from a

(mobile) agent is considered.

The metrics for the MAS developer level: System developer skill level �)(
)(

developerskill
MAStdevelopmen :

This metric is based on the agent developer skills and is extended by the (dynamic) system
characteristics. System developer communication level �)(

)(
developeroncomunicati

MAStdevelopmen : This set of

metrics considers the ability of the developer(s) to improve his work by collaboration and

36

cooperation. System developer productivity level �)(
)(

developertyproductivi
MAStdevelopmen : The quantity of work

is considered.

The metrics for the MAS software resources level: System software paradigm level
�)(

)(
softwareparadigm

MAStdevelopmen : The appropriateness of the chosen software basis and COTS system used

for the implementation of the agent-based system is evaluated. System software performance
level �)(

)(
softwareeperformanc
MAStdevelopmen : This metric considers the evaluation of the efficiency of the

involved software base and the external components. System software replacement level
�)(

)(
softwaretreplacemen
MAStdevelopmen : The adaptation to the different versions of the basic software is

considered.

A metrics-based analysis of different Java-based agent technologies shows the following two
tables from Kernchen [Kernchen 2006] (see also [Ebert 2007]).

Table 1: Size measurements for measured AOSE technologies

System # Classes # Methods LOC/Class Methods/Class
Aglets 180 1863 67.61 10.35
JADE 487 4652 99.18 9.55
MadKit 683 5929 109.0 8.68

Considering the C&K metrics has highlighted the following characteristics between the
different agent technologies as software Aglets, JADE development platform and the MadKit
system.

Table 2: Chidamber and Kemerer measurements for OOSE and AOSE technologies

Aglets JADE MadKit Mean of
AOSE

Std. dev.
of AOSE

Mean of
OOSE

Std.
dev. of
OOSE

DIT 0.239 0.745 0.685 0.556 0.276 0.59 0.82
NOC 0.222 0.353 0.387 0.321 0.087 0.15 0.45
WMC 10.35 9.552 8.69 9.531 0.830 8.69 7.90
CBO 5.022 6.951 5.331 5.768 1.036 3.00 4.22
RFC 25.05 15.871 21.931 20.951 4.667 14.78 16.35
LCOM 80.011 55.585 50.144 61.913 15.907 37.51 82.82

The values of the OOSE evaluation are based on the Java 1.5 measurement using the C&K
metrics (see for more details [Kernchen 2006]).

The metrics for the MAS hardware resources level: System hardware reliability level
�)(

)(
hardwareyreliabilit

MAStdevelopmen : The reliability of the kinds of hardware for running the agent-based

system is considered. System hardware performance level �)(
)(

hardwareeperformanc
MAStdevelopmen : This set of

metrics considers the platforms used for an agent-based system. System hardware availability

37

level �)(
)(

hardwaretyavailabili
MAStdevelopmen : The average availability of the different platforms used with the

agent-based system is considered.

4.3 Agent Technology and Measurement Levels

Usually, agent measurement means controlling considering some of the product
characteristics during the run time. This situation can also be established for the multi-agent
system itself. Furthermore, agent controlling does not include any personal resources
explicitly. Hence, we can characterize the high level of software measurement for agent
technology as following.

MP _orientedcapability
inhouse : (4.7)

 (G managing
segoals_in_u � A product

original � M gcontrollin
tmeasuremen)T

automatic
rementsome_measu

 �(V eratio_scal
repository � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu

� E formula
extension � A product

controlled

Otherwise, the process of agent and MAS development could be classified as an immediate
measurement level. The following description demonstrates this case of software
measurement ingredients.

MP entedaspect_ori
inhouse : (4.8)

(G managing
oalsexternal_g � A process

original

�M timprovemen
tmeasuremen)T

aticsemi_autom
rementsome_measu ,P

erpractition
ion_stafft_applicatmeasuremen

 �(Q aleordinal_sc
repository � E criteria

threshold) T
aticsemi_autom
rementsome_measu , P

erpractition
ion_stafft_applicatmeasuremen

� E humbrules_of_t
extension � A process

improved

The agent-based measurement level comparing to the other paradigms described above leads
to the following relationships:

MP ltraditiona
rance.ality_assuproduct_qu � MP tMeasuremene

Controle
�
� � MP AOSE

agents (4.9)

based on the internal (in-house) measurement and improvement and considering the training
phase in MAS development as

MP ltraditiona
ntrollingproject_co � MP tMeasuremene

Qualitye
�
� � MP AOSE

tdevelopmenMAS _ (4.10)

that could be characterized as a moderate measurement process improvement.

38

5 Adaptive Measurement for Service-Oriented Systems

5.1 Characteristics of Service-Oriented Software Engineering (SOSE)

The concepts of software architecture shall be clarified by a rather classic definition cited here
from [Bass 2003]:

”The software architecture of a program or computing system is the structure or structures
of the system, which comprises software components, the externally visible properties of
those components, and the relationships among them.”

In general, service-oriented architectures (SOA) can be characterized by the fact that they
separate the implementation of the service from its interface. Withal, a “find, bind, and
execute” paradigm enables a service’s customer to query a third-party registry for an adequate
service implementation. In case that the registry contains a matching service, it provides the
customer with a contract and an endpoint address. Following the notes of [McGovern 2003],
SOA configures its six entities, namely service consumers, service providers, registries,
contracts, proxies, and service leases after all, to support the above mentioned paradigm.

The general idea of SOSE could be characterized in the model-based description of the
OASIS standardization committee shown in the following figure [MacKenzie 2006].

Figure 31: SOA reference model by OASIS

The general involved technology in Web services is given in the figure 32 below starting at
the SOAP level. Web services are network-based applications that use the WSDL protocol
(Web Service Description Language) to describe the functions they offer on the Internet,
XML documents (eXtensible Markup Language) to exchange information, and the SOAP
protocol (Simple Object Access Protocol) for calling remote methods and transferring data.
The data and function calls that are packaged into XML documents are typically transferred
using the http protocol which means communication can also take place across firewalls. It is
this property in particular that opens up the possibility of developing genuine Business to
Business (B2B) applications. UDDI directory services (Universal Description, Discovery, and
Integration) are used to localize the Web services provided on the Internet.

Service

Execution
Context

Real world effect
Contract & Policy

Visibility
Service-

description

Interaction

SOA - Architecture model

SOA – Organisation model

SOA – Evaluation model

SOA - Strategy

39

Figure 32: Example of SOA architectural basics

[Hanson 2006] describes different levels of granularity. He points out that the level of
granularity generally depends upon the purpose of the software entity. The different levels are
shown in figure 32. The level of granularity for composite services should be coarser than the
level of granularity for basic services, objects or components. Figure 33 shows furthermore
the kinds of development support. Objects and components support more than the
development of single applications (application centric). Basic services and composite
services support the development of IT-architectures (architecture centric) for the entire
enterprise. That means with the application of services, development of individual
applications does not stand in the foreground any more.

Figure 33: Degrees of service granularities by [Hanson 2006]

40

A typical SOA in an industrial environment is given in the following figure existing in the
telecommunication area (eLoC means effective lines of code).

 Figure 34: Architecture of an industrial SOA service by [Schmietendorf 2007b]

The service development must consider the existing SOA-infrastructure from the customer
side. That means that the service should be usable within the established runtime-
environment.

The right granularity of corresponding service offers is crucial for the successful
implementation of a SOA. Object-oriented, component-based and service-oriented software
engineering paradigms have many resembling features – modularity, encapsulation of
functionality and data, separation of interface and implementation, and so on. Therefore, it
could be possible to derive experiences from this field. [Griffel 1998] proposes the following
set of metrics to measure the granularity indirectly:

� Size of the service interface (operations, parameter, …)

� Share of the service of the complete application (like supported business processes)

� Size of the effective source code (lines of code, number of classes, …)

A first approach for an evaluation model follows the well known GQM (goal question metric)
paradigm and leads to the granularity identification by the use of metrics. Therefore an
assessment for the granularity behavior of a service offering should provide answers to the
following questions:
 How much should be the size of the service interface?

(Number of provided operations, Number of contained data types for each operation,
Kinds of used data types)

 How much business functionality is considered by the service?
(Information about the successful application, Number of encapsulated legacy
systems, Difference between basic and composite services)

 Is a “white box” or/and “black box” view supported?
(Information about the used implementation technology, Structure metrics for the
service implementation, Overview of the chosen implementation architecture)

41

5.2 SOSE addressed Measurement Descriptions

Typical measurements in the context of a SOA scorecard could refer to the following areas
[Schmietendorf 2007a]:

� SOA – Business Measurements: Market penetration, time to market, customer
satisfaction, turnover increase etc.

� SOA – Process Measurements: Process terms, process mistakes, number of process-
referential events etc.

� SOA – Financial measurements: Return of Investment, cost savings, project costs etc.

� SOA – Usage measurements: Number of used service offerings, number of service
customers etc.

� SOA – Performance measurements: Performance of basic and orchestrated Services
and availability etc.

� SOA – IT efficiency measurements: Productivity, development time, quality behavior
etc.

� SOA – Optimization measurements: Number of services in conception, development
and production etc.

� SOA – Governance measurements: Standard conformity, potential exceptions etc.

A general characterization of service measurement could be explained in the following
manner considering the autonomous behaviour of services themselves.

MP SOSE
services : (5.1)

(G managing
QoS � A product

original �M gcontrollin
tmeasuremen)T

automatic
rementsome_measu

 �(V eratio_scal
data_basis � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu

� E levelservice _
extension � A product

controlled

Especially, the measurement methods �service can be summarized as (based on [Rud 2006a]
and [Rud 2006c]; see also [Cardoso 2006], [Hiekel 2007], [Kalepu 2003], [Perepletchikov
2008], [Thielen 2004] and [Yu 2007])

measurement � { � complexity
CY , � complexity

NSIC , � complexity
SIY , (5.2)

� ycriticalit
CSES , � ycriticalit

ADS , � ycriticalit
AIS , � ycriticalit

ACS , � ycriticalit
RC ,

� ygranularit
DAS , � ygranularit

DCCS , � ygranularit
CDOS , � ygranularit

DGOS }

The evaluation of a service as product is based on the different metrics of complexity,
criticality and granularity. The product/service metrics of complexity are: Cohesion of the
system � complexity

CY , number of services involved in the compound service � complexity
NSIC and

service independence in the system � complexity
SIY .

42

The product/service metrics of criticality are: Count of semantic equivalents of the service
� ycriticalit

CSES , absolute importance of the service � ycriticalit
AIS , absolute dependence of the service

� ycriticalit
ADS , absolute criticality of the service � ycriticalit

ACS and overall reliability of the compound

service � ycriticalit
RC .

The product/service metrics of granularity are: Domains affected by the service � ygranularit
DAS ,

domains completely covered by the service � ygranularit
DCCS , context-dependence of operations of

the service � ygranularit
CDOS and data-oriented granularity of operations of the service � ygranularit

DGOS .

The following example of Web service measurement is based on the architecture shown in
figure 34 [Schmietendorf 2007b]. Under the consideration of the messages within the SOAP-
header, the number for the transmitted parameters increases. The sum of all transmitted
parameters per operation (request and response) is shown in figure 35. All request operations
contain the same kind of license information.

 Figure 35: Characteristics of an industrial SOA service by [Schmietendorf 2007b]

A general characterization of measurement of the service development could be explained in
the following manner.

MP SOSE
tdevelopmenservice _ : (5.3)

(G managing
oalsexternal_g � A process

original �M assessment
tmeasuremen)T

aticsemi_autom
rementsome_measu , P erpractition

ion_stafft_applicatmeasuremen

 �(Q aleordinal_sc
repository � E criteria

threshold) T
aticsemi_autom
rementsome_measu , P

erpractition
ion_stafft_applicatmeasuremen

� E ymethodolog
extension � A process

managed

Especially, the measurement methods �dev.(service) can be summarized as (based on [Rud 2007a]
and [Rud 2007b])

measurement � { � integrity
CY , �maturity

QMM } (5.4)

0

2

4

6

8

10

12

14

Oper. 1 Oper. 2 Oper. 3 Oper. 4 Oper. 5 Oper. 6 Oper. 7

Nu
m

be
r

of
 p

ar
am

et
er

s

Sum Request Sum Response

43

The evaluation of a service development as process is based on the different metrics of
integrity and process maturity. The process metrics of integrity is: Integrated process quality
of SOA adoption � integrity

CY .

The process metrics of maturity are: Quality of the maturity model �maturity
QMM where QMM

could be based on SOA-MMLinthicum, SOA-MMSonic, SOA-MMIBM, SOA-MMOracle, SOA-MMBEA,
SOA-MMEDS etc. (see [Rud 2007b] for more details and model ranking).

Finally, a general characterization of measurement service in use could be explained in the
following manner.

MP SOSE
napplicatioservice _ : (5.5)

(G managing
SLA � A resources product

original
� �M gcontrollin

tmeasuremen)T
automatic

rementsome_measu

 �(V eratio_scal
data_basis � U _uniteconomical

dardquasi_stan) T
automatic

rementsome_measu

� E levelservice _
extension � A product

controlled

Especially, the measurement methods �appl.(service) can be summarized as (based on [Rud
2007a])
 measurement � { � versioning

CVS , � versioning
ACSVY , � versioning

ALTVS , � versioning
ALTSVY , � versioning

MCFS , (5.6)

� versioning
MCFY , � yreliabilit

SLACS , � yreliabilit
SLAVDS , � yreliabilit

FRO , � yreliabilit
FRY ,

� eperformanc
ANBPY , � eperformanc

BPCY }

The evaluation of a service application is based on the different metrics of versioning,
reliability and performance. Note that the service application is a non trivial process of
orchestration, optimization and autonomous application. The service application metrics of
versioning are: Count of simultaneous versions of the service � versioning

CVS , average count of

services’ versions in the system � versioning
ACSVY , average life time of versions of the service

� versioning
ALTVS , average life time of services’ versions in the system � versioning

ALTSVY , metadata change

frequency of the service � versioning
MCFS and overall metadata change frequency in the system

� versioning
MCFY .

The service application metrics of reliability are: SLA compliance of the service � yreliabilit
SLACS ,

SLA violation danger of the service � yreliabilit
SLAVDS , fault rate of the operation � yreliabilit

FRO and

overall fault rate in the system � yreliabilit
FRY .

The service application metrics of performance are: Average number of business processes
in the system � eperformanc

ANBPY and business process capacity of the system � eperformanc
BPCY .

A simple example of the analysis of service-based resources for chosen Web services shows
the following situation of the used SOA technologies [Schmietendorf 2002].

44

 Figure 36: Contribution of technologies for existing Web services

Another example analyses Web services considering their availability, performance and
quality of description was implemented as a service itself (available since 2006, [Rud 2006a]).

 Figure 37: The Wesement service of continued Web service evaluation

The BPEL engine of Rud could be considered as a kernel approach of service measurement
described in [Rud 2006b] as BPELmeter.

45

 Figure 38: Infrastructure of the BPELmeter

Finally, a measurement service based on the shown architecture in figure 39 was implemented
[Ebert 2007]. It has the possibility to measure the availability, the performance, the
functionality and the complexity of a specific Web service from the users (or better
integrators) point of view.

 Figure 39: Architecture of a measurement service

It provides a simple graphical control interface. Provides the configuration of the
measurements time interval and measurement goals and generates simple graphical reports
too.

5.3 SOSE intended Measurement Levels
The measurement levels in SOSE will be characterized as the three areas above. The first
described level is addressed to the service measurement and could be explained in the
following manner considering the autonomous behaviour of services themselves (like agents).

WS
access

Configuration
of the Web

service access

User
configuration
and access

Measurement
storage

and export

Measurement probes

WSDL-based Access Layer (Measurement Service)

Web based GUI

Prediction
component

WS
access

WS
access

WS
accessWS

access
WS

access
WS

access
WS

access

Load driver
component

WS
access
WS (Web
Service)
access

WS
access

Configuration
of the Web

service access

User
configuration
and access

Measurement
storage

and export

Measurement probes

WSDL-based Access Layer (Measurement Service)

Web based GUI

Prediction
component

WS
access

WS
access

WS
accessWS

access
WS

access
WS

access
WS

access

Load driver
component

WS
access
WS (Web
Service)
access

46

MP entedaspect_ori
inhouse : (5.7)

(G managing
oalsinternal_g � A product

original �M
gcontrollin

tmeasuremen)T
automatic

rementsome_measu

 �(V eratio_scal
data_basis � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu

� E formula
extension � A product

controlled

Note that the service measurement includes its application from the beginning and leads to a
short cycle of development and application.

The second area of SOSE considers the measurement of the service development and could be
explained in the measurement level as following.

MP entedaspect_ori
inhouse : (5.8)

(G managing
oalsexternal_g � A process

original �M assessment
tmeasuremen)T

aticsemi_autom
rementsome_measu , P erpractition

ion_stafft_applicatmeasuremen

 �(Q aleordinal_sc
repository � E criteria

threshold) T
aticsemi_autom
rementsome_measu , P

erpractition
ion_stafft_applicatmeasuremen

� E humbrules_of_t
extension � A process

managed

Finally, the third area is addressed to the measured service application and achieves the
following measurement level usually.

MP _orientedcapability
outsourced : (5.9)

(G managing
segoals_in_u � A resources product

original
� �M

gcontrollin
tmeasuremen)T

automatic
rementsome_measu

 �(V eratio_scal
data_basis � U _uniteconomical

dardquasi_stan) T
automatic

rementsome_measu

� E formula
extension � A product

controlled

The difference of the in-house and outsourced characteristic between service measurement
and service application measurement is reasoned in the external view of the choreographic
and orchestration aspects.

The SOSE based measurement level comparing to the other paradigms described above leads
to the following relationships:

MP ltraditiona
rance.ality_assuproduct_qu � MP SOSE

services� MP AOSE
agents (5.10)

and considering the more complex training phase in service development as moderate
measurement process improvement as

 MP ltraditiona
ntrollingproject_co � MP AOSE

tdevelopmenMAS _ � MP SOSE
tdevelopmenservice _ . (5.11)

Furthermore, as including the (measured) resources in service application as a essential
measurement process improvement

MP AOSE
MAS � MP SOSE

napplicatioservice _ . (5.12)

47

6 Measurement Infrastructures as Proactive Measurement

6.1 Intention and Examples of Measurement Infrastructures

The importance of software measurement during the software development process is
generally accepted, nowadays. Unfortunately, in practice common software measurement
tools find small acceptance due to their high costs, inflexible structures, and therewith unclear
cost/benefit ratio. On this account this section introduces a framework creating a measurement
infrastructure by means of a service-oriented architecture. For this approach the ISO/IEC
15939 standard has been proved to be meaningful [ISO 15939]. By using meta-models and
ontologies, related services can be categorized and/or classified. Moreover, services can be
bound flexibly with the aid of configuration defaults being referenced by the meta-model.
Furthermore, we present a web-service based ontology aligned towards object-oriented
metrics as an example for a service-oriented infrastructure component.

Based on the general characteristics of ISO/IEC 15939 a service-oriented measurement
infrastructure with different services and components should be specified and implemented
to realise the defined processes and activities [Dumke 2005b].

To create such an infrastructure it is necessary to define the technology or the notation in
which the different elements or specifications have to be implemented or described. In this
way a level-based procedure was used as shown in figure 40.

Figure 40: Level-based infrastructure composition

At first it is essential to describe the process model in a semantic manner to obtain a high-
level view of the entire measurement process and to enforce a standard compliant procedure.
Therefore, we apply the Business Process Modelling Notation (BPMN) [BPMN 2005]. In
doing so this representation describes all processes, sub-processes, properties, and sub-
properties of ISO/IEC 15939. This process model is used to divide the complete measurement
process into different architectural components. Furthermore, we use the BPMN to produce
the business process diagram (figure 41) on the basis of the ISO/IEC 15939 process model.

48

Figure 41: Business process diagram for the ISO 15393 measurement standard

By using such representation one can derive the Business Process Execution Language
(BPEL) by using BPEL4WS (see also [BPMN 2005]).

This Business Process Execution Language leads us to a key technology for realising service-
oriented architectures: the web service orchestration [Erl 2005]. As shown in figure 42 the
orchestration process is used to build up new web services out of existing web services in a
hierarchical manner.

In the service-oriented infrastructure the web service orchestration is used for the composition
of the ISO/IEC 15939 process out of the four sub-processes (“establish”, “plan”, “perform”,
and “evaluate”) in the so called Orchestration Process (OP).

In this way the result of the orchestration process is four equitable sub-processes. One has to
recognise that collaboration of the four sub-processes has to be performed in a peer-to-peer
manner. Therefore, the different sub-processes are divided into four choreography processes
(CP) [Erl 2005]. The difference between orchestration and choreography means that
orchestration refers to an executable process and choreography traces the message sequence
between different sources [Peltz 2003].

49

Figure 42: Orchestration versus choreography [Peltz 2003]

Because of the fact that the choreography process implies the orchestration process, we define
the orchestration process as the level 1 process and the choreography process as the level 2
process (see figure 43).

By taking a closer look to the four sub-processes one has to identify which of the sub-
processes can be executed by the presented infrastructure or which sub-processes can merely
be supported by our infrastructure. In doing so, one has to ascertain that the “plan” sub-
process will be the key process in a service-oriented measurement infrastructure. Because of
that figure 43 describes a set of required components with a focus on the “plan” sub-process.
The colour of the component shows to which composition level (see figure 40) the distinct
component belongs.

Figure 43: Fragment of the proposed infrastructure

50

The semantic description as shown in figure 40 is realised within a metrics ontology (see
figure 43). In history ontologies possessed the capability to retain this semantic knowledge in
a machine-accessible manner. Therefore, we use the ontology approach for a cataloging web
system [Martin 2003] to create our own ontology for a subset of metrics (object-oriented
metrics). Thereby, the ISO/IEC 9126 product quality standard is used to categorise the
metrics. In general the ontology is used to connect an information need with a certain metric.

That means that all metrics which are calculated by an included measurement service must be
described within this ontology. At the moment we restrict our ontology to object-oriented
metrics. The ontology scheme is illustrated in figure 44 by using the Unified Modelling
Language (UML) [Wang 2001].

Figure 44: Object-oriented metrics ontology

51

In our context, the essential intentions and motivations for measurement infrastructures3 can
be described as following:

� Measurement infrastructures includes some of the main characteristics of the
described software technology paradigms in this technical report:

� This infrastructures could be considered as a kind of e-Measurement as e-
Services especially,

� The requested autonomous characteristic of the built measurement services
involves any basics of agent-based and self-managed systems,

� Combining the characteristics above the measurement infrastructures
represents the (Web) service paradigm obviously.

� Measurement infrastructures themselves are based on the Semantic Web architectural
basis such as

� Measurement ontology for different software paradigms (OOSE, CBSE,
SOSE etc.),

� Proactivity in measurements depending on determination of ad hoc
requirements or critical situations and their proactive evaluation and decision,

� Evolutionarity of measurement by different technologies for measurement-
and experience-based service extension and adaptation,

� Measurement infrastructures should be oriented to a higher measurement level
considering the higher complexity and criticality of the software systems. That means

� Higher measurement level as capability-oriented measurement for product
and process areas and involvements based on essential and remarkable
measurement process improvements mainly,

� Measurement integration in order to achieve a measurement application as
improvement and controlling in the most relevant cases (outsourced
measurement should have the same level like inhouse measurement in this
context).

The typical measurement level in measurement infrastructure solutions should be achieved by
the following characteristics.

MP
tureinfrastruc

t_servicemeasuremen : (6.1)

(G managing
segoals_in_u � A resources product

original
� � M gcontrollin

tmeasuremen)T
aticsemi_autom
rementsome_measu

 �(V eratio_scal
data_basis � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu

� E formula
extension � A product

controlled .

That should be characterized as MP
_orientedcapability

inhouse and should involve the

P
erpractition

ion_stafft_applicatmeasuremen for the first development phase only.

3 Our use of the term infrastructure means a technology-based integration of Web-based systems, agent and service
technologies themselves.

52

On the other hand, the measurement infrastructure development could be characterized as
following

MP
tureinfrastruc

pmentice_develomeas._serv : (6.2)

(G managing
oalsexternal_g � A process

original

� M assessment
tmeasuremen)T

aticsemi_autom
rementsome_measu ,P erpractition

ion_stafft_applicatmeasuremen

 � (Q aleordinal_sc
repository � E criteria

threshold) T
aticsemi_autom
rementsome_measu , P

erpractition
ion_stafft_applicatmeasuremen

� E humbrules_of_t
extension � A process

managed .

In order to fulfil the criteria above we want to develop a measurement service solution that
should be based on the development characteristics of (6.2) at the beginning and should
achieve the application situation described in (6.1). This requires a high flexibility and
possibility of aggregation between existing measurement tools and services.

The following example includes an analysis about the current situation from the tool vendor
point of view. One of the results is shown in the following figure considering the openness of
the measurement tools [Schmietendorf 2007b].

Figure 45: Analysis of service orientation of chosen measurement tool vendors

Furthermore, we need semantic descriptions for all aspects of measurement process
components and involvements in order to implement first solutions in the manner of
proactivity and self-managing.

The following example shows an agent-based modelling of the detailed operationalities
specified by the ISO 15939 standard itself [Dumke 2005b].

0%

56%

10%

34%

0%

no export functionality
properietary format
Database connection
XML-based interface
Web-Service interface

53

Figure 46: Ontology and agent-based measurement infrastructure for ISO 15939

The kernel process of this self-managed open system including proactivity and adaptation as
ubiquitous solution is based on the knowledge-based dynamic quality assurance described in
the next section.

6.2 The QuaD2 Approach of Dynamic Quality Assurance

The QuaD2 was published in any conferences ([Kunz 2006a], [Kunz 2006b], [Kunz 2008] and
[Mencke 2008]) and led to many feedbacks for improvement and completion.

Due to manifold advantages of high-flexible infrastructures compared to monolithic products
a lot of initiatives propose approaches for the integration of single components (e.g. services).

Measurement
agent

Legend:

Measurement
user Agent group

Evaluation
agents

Lession
learned

Evaluation
criteria

Process
agent

Improvement
agent

Integrating
agent

Analysing
agent

Controlling agents

Information agent
Feedback agent

Planing
agents

Identifying
agent

Training
course

materials

Characterising
agent

Selecting
agent

Procedure
agent

Criteria
agent Supporting

agent

Reviewing
agent

Information
productsMeasurement

tasks

Information
needs

Candidate
measures

Selected
measures

Performing
agents

Measured
artifacts

Collecting
agent

Communicating
agent

Collected
data

Stored
data

Establishing
agents

Acceptance
agent

Assign
agent

Measurement
commitment

Measurement
requirements

Plan for
measurement

ressources

Description of the
organizational

unit

Measurement
experience base

Reporting agent

IT manager

Experience agents

Exploration agent

Conclusion agent

QA manager

QA
administrator

Measurement
librarian

Measurement
analyst

Support
agent

Measurement
object/artifact

54

Semantic metadata provides the basis for the automation of this process. But those approaches
lack a thorough consideration of empirical data. Either only functional requirements or single
quality attributes are taken into consideration. In contrast to existing approaches the QuaD2

framework reveals a holistic orientation on quality aspects. It combines semantic web
technologies for the fast and correct assembly of system elements and quality attribute
evaluations for making the best assembly decisions possible. Therefore complex quality
models are considered as well as empirical evaluations. Furthermore different types of quality
evaluations like simulation and static and dynamic software measurement are used.
Combining them delivers a holistic quality view on components and the flexibility enables a
quality improvement of the targeted system by the exchange of single components if the
evaluation of their quality attributes decreases.

The presented general QuaD2-Framework (Quality Driven Design) can easily be adapted to a
lot of different fields of application, e.g. service-oriented architectures or enterprise
application integration. In general the sub processes of this empirical-based assembly process
are the initialization, the feasibility check (checking the functional coverage), the selection
process based on empiricism as well as the operation of the established application. Quality
assurance is achieved by certain sub processes that allow optimizations at initialization time
as well as during runtime. Furthermore measurement sub processes are performed to update
evaluation data. The major goal of the described core process is an architecture consisting of
single services. Such a service contains metadata-annotated functionality. In order to achieve
the sketched goals a special process is developed below. The basis of the presented approach
is a collection of semantically-annotated sources: the process model repository, the service
repository, a quality model repository and furthermore an experience factory.

The process model repository is the source for process models that serve as descriptions for
the functionality of the aspired distributed system. Example for such processes can be
ISO/IEC 15939 [ISO 15939] for the software measurement process or didactical approaches
[Mencke, 2008]. Technological realization may vary, too. That can result in UML, BPMN
[BPMN 2005], ontologism [Mencke 2007], etc. An important source for empirical quality
evaluations are quality models being provided by a quality model repository. The basis of a
quality model’s definition is an extensible list of quality attributes. The specification of a
certain quality model is realized by selecting and weighting appropriate attributes. The
evaluation and selection of appropriate services is based on evaluation criteria for each
included attribute. Such attributes can be e.g. cost, performance, availability, security and
usability. The attributes and corresponding evaluation formulas are standardized e.g. in
ISO/IEC 9126. The service repository contains services, their semantic description and their
evaluation data regarding all defined quality attributes.

The selection and adoption of process models and quality models are difficult tasks which
constitutes the need for guidance and support. Because of this, the presented framework
proposes the usage of existing experiences and knowledge about previously defined and used
process models and quality models to support both process steps. Based on the Quality
Improvement Paradigm, Basili and Rombach proposed the usage of an Experience Factory
which contains among others an Experience Base and Lessons Learned [Basili 1994], [Basili
1999]. In the presented framework, the Experience Factory is fed from the process evaluation
process and is the major building block to save empirical data and the user’s experiences with
specific process procedures or with distinct quality attributes4.

4 See the publications above in order to understand the special meaning of the used symbols.

55

 Figure 47: Quad2 framework workflow

The focus on quality is a thorough property of the developed process and results in certain
measurement and evaluation sub processes that are introduced in the following general

56

process description and are described in more detailed in subsequent sections. The derived
results are directly used for optimization purposes.

Initialisation Steps: The selection of an appropriate process model that defines the functional
requirements for the parts of the later distributed system is the first step. Due to the fact, that
such a choice can be a manual process, it should be supported by an experience factory
providing knowledge and experiences – lesson learned – for the decision for or against a
specific process model for the current need. The process model is essentially based on
semantic metadata to allow the later automatic mapping of semantically described service
functionalities to the functional requirements specified by the process model. With the chosen
process model a set of concrete distributed systems is possible. In our measurement process
characterization it means an essential measurement improvement combining the artefact
descriptions in (6.1) and (6.2) as

A resources product
original

� 	 A processs
original = A processresourcesproduct

original
�� (6.3)

After the experience-supported selection of an appropriate process model the second step of
the presented approach is a selection of a quality model from a quality model repository. This
is intended to be done automatically. For certain domains manual adaptations can be more
efficient. A manual individualization of this predefined set of quality attributes as well as of
their importance weighting is also possible. That means we can establish the experience basis
in the measurement process as essential measurement improvement (considering (6.1) and
(6.2) again)

E criteria
threshold 	 E formula

extension � E formula
repository . (6.4)

For these purposes an experience factory can be helpful again. As a result of this step: a
process model and importance-ranked quality attributes are defined.

Feasibility Check Steps: With this information process step three is able to determine
whether enough available services exist to provide an acceptable amount of functionality
demanded by the process model. If there is no acceptable coverage after the negotiation sub
processes, then an abort probability based on already collected data can be computed. The
user needs to decide whether he accepts the probability or not. If not the distributed system
provision process will be aborted. In the case of an acceptable coverage the runtime sub
processes of the last/fourth step can start. The involved transformation of measurement results
could be characterized as remarkable measurement improvement as

(Q aleordinal_sc
repository � E criteria

threshold) � (V eratio_scal
data_basis � U nitsoftware_u

dardquasi_stan) (6.5)

The first of them determines the next process step to be executed following the process
model. Therefore information about the last process steps can be taken into consideration to
optimise the next process step execution. Exception handling in case of aborted pre-sub
processes is a functional requirement and thereby should be covered by the process model
itself. Due to the fact that new services can be added to the service repository, another
coverage check for the next process step is performed next. Now, up-to-date service

57

information, their evaluation values as well as the data of the quality model are available to
identify the best service possible.

Selection Steps: The weighting of the quality attributes during the initialisation delivered
weighted attributes. This procedure is not intended to be performed during runtime, because
the executed distributed system should not be interrupted (abort, costs …). In general the
service selection has several steps. The first identifies all possible services according to the
required functionality defined within the process model (during initialisation phase). An
additional step selects the identified quality model that specifies what quality aspects are
useful for the intended usage and how important they are for the initiator of the application to
be assembled. Manual adjustments are possible, but not necessary and are performed during
initialisation, too. Only in exceptional cases a manual adjustment during runtime is
reasonable. That means that the measurement itself using the QuaD2 approach is changed as
essential measurement improvement in the following manner

M assessment
tmeasuremen � M gcontrollin

tmeasuremen (6.6)

Following the defined necessities and given data the service selection is formally described
below. For the following formulas let PM be the chosen process model. Formula

)(PMf funct specified in (6.7) is used to determine the set of services E from the service
repository. Each of them can deliver the functionalities specified within the chosen process
model within (6.8).

...} {Service, model Process: �functf (6.7)

)(PMfE funct
 (6.8)

Using the classic normalization approach presented in (6.9), the evaluation values jiv , of
quality requirements j defined in the quality model must be normalized for each service i.
These jiv , are the measurement/simulation values to anticipate the optimal decision for the
next process step.

normnormnorm

ii

ijinorm
ji vv

vv
v min)min(max*

)min()max(
)min(,

, ��
�

�

 (6.9)

With the help of the weighted requirements matrix from the (maybe adjusted) quality model
the last step – the identification of the optimal service according to the empirical data and the
quality model – can be performed (see (6.10) to (6.14)). Formula (6.10) adjusts the
normalized evaluation values to ensure proper calculation. If v=1, it describes the best quality
level and no adjustments are necessary, otherwise a minimum extremum is desired and 1-v
must be calculated.

�

�

�

best theis minimal a if, 1
best theis maximal a if,

)(
vv
vv

vf mm (6.10)

� � QMnEevfef i
n

j

norm
ji

mm
i

eval
���

�

1

0
,)((6.11)

� �� �EeefV ii
eval ��
 (6.12)

58

� � EeVvxindexee indexxindex
worst ��

)}min(|{min| (6.13)

worsteEE \
� (6.14)

To determine the best evaluated service, Formulas (6.11) to (6.14) are repeated until
E �contains only 1 element. It provides the needed functionality and is the most appropriate
one according to the specified quality model. After the service’s selection it can be executed
and measurement about runtime behavior will be captured to get additional quality
evaluations for this service.

The result is a best possible distributed system based on the existing services as well as the
specified quality model.

Operation and Evaluation Steps: Once the most optimal service is identified it can be
executed and measured in parallel. These data are used to evaluate the last process step. The
runtime sub processes are repeated until either all process steps of the process model are
successfully executed or an abort due to missing services takes place. Considering the quality
assurance the modified kind of measurement tools can be described as essential measurement
improvement as

T ticsemi_autma
phaseone_meas._ � T autmatic

phaseone_meas._ � T automatic
urementwhole_meas (6.15)

including the derivation of the involved personnel that is used only for the first steps of
infrastructure building as

P erpractition
ion_staft_applicatmeasuremen f � P initial (6.16)

The last step five of the presented approaches cover the evaluation of the entire process as an
input for the experience factory. It compares the achieved results with the desired ones.

This leads us to the unified approach of software measurement service infrastructure
combining the characteristics of (6.1) and (6.2) using the explanations in (6.3) to (6.6) and
(6.15) to (6.16) as

MP
tureinfrastruc

t_servicemeasuremen : (6.17)

(G managing
segoals_in_u � A process resources product

original
��

� M gcontrollin
tmeasuremen)T

aticsemi_autom
rementsome_measu , P initial

 �(V eratio_scal
data_basis � U nitsoftware_u

dardquasi_stan) T
automatic

rementsome_measu , P initial

� E formula
extension � A product

controlled .

59

7 Conclusions and Future Work

This technical report discussed the software measurement involvements and different levels
addressing different software technology paradigms such as Web-based software engineering
(WBSE), agent-based software engineering (AOSE) and service-oriented software
engineering (SOSE). Based on these technologies an infrastructure-based measurement
service was discussed considering the quality assurance themselves. The following figure
summarizes the different aspects of measurement process evaluation considering the best at
the outer circle.

Figure 48: Software measurement process aspects and levels

Note the shown sub characteristics in this chart are described only one time per measurement
component.

Based on this kind of visualization we can demonstrate the different levels of measurement
processes in the following manner. The first figure 49 compares the measurement process
levels of an example of traditional measurement, e-Measurement and AOSE.

60

Figure 49: Examples of software measurement process levels

The kernel idea constructing proactive measurement infrastructures is based on the so-called
QuaD2 framework. This framework can be implemented using various technologies as e.g.
ontologies, web services and agents. The presented quality-driven approach uses semantic
descriptions for processes automation and supports different quality models and quality
attribute evaluations. The easy extensibility of process models, services, interfaces and quality
models makes the presented framework deployable for many fields of application.

Figure 50: Software measurement process levels including the QuaD2 approach

61

An implementation of this approach for specific systems is currently being performed. For the
areas of software measurement infrastructures [Kunz, 2006] first components are realised.
Their completion and usage may reveal opportunities for future steps.

8 References
[Abran 2006] Abran, A. et al. (Eds.): Applied Software Measurement. Shaker Publ., 2006

[Basili, 1994] Basili, V.R.; Caldiera, G. and Rombach, H.D.: The Experience Factory, Wiley & Sons, pp. 469-
476, 1994.

[Basili, 1999] Basili V. R.: The Experience Factory: Packaging Software Experiences, In Proceedings of the
NASA Goddard Space Flight Center's 14th Annual Software Engineering Workshop, ISERN-99-19
Production and Maintenance of Software Measurement Models, 1999.

[Bass 2003] Bass, L.; Clements, P.; Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional, 2nd (hardcover) edition, 2003

[Bauer 2004] Bauer, B. and Müller, J.: Methodologies and Modeling Languages. In: Agent-Based Software
Development, Luck, M.; Ashri, R. and d'Inverno, M. (Editors), Artech House, Boston, pp. 77-131, 2004.

[Boehm 2007] Boehm, B. W.: Software Engineering. IEEE Computer Society, Los Alamitos, 2007

[Bourque 2007] Bourque, P.; Oligny, S.; Abran, A.; Fournier, B.: Developing Project Duration Models in
Software Engineering. Journal of Computer Science and Technology, 22(3), pp. 348-357

[BPMN 2005] OMG (Object Management Group): Business Process Modeling Notation (BPMN). Final Adopted
Specification, 2005

[Braungarten 2007] Braungarten, R.: The SMPI model: A stepwise process model to facilitate software
measurement process improvement along the measurement paradigms. PhD, University of Magdeburg,
May 2007

[Braungarten 2005] Braungarten, R.; Kunz, M.; Farooq, A.; Dumke, R.R.: Towards Meaningful Metrics Data
Bases. Proc. of the IWSM05, September 12-14, 2005, Montreal, Shaker Publ., pp. 1-34

[Cardoso 2006] Cardoso, J.: Approaches to Compute Wotkflow Complexity. In: Leymann et al.:The Role of
Business Porcesses in Service Oriented Architectures. Proc. of Dagstuhl Seminar, 2006

[Ciancarini 2001] Ciancarini, P. and Wooldridge, M. J.: Agent-Oriented Software Engineering. In: Agent-
Oriented Software Engineering, Springer, Berlin, 2001

[Dumke 1999] Dumke, R.: A Framework for Software Measurement Evaluation. Proc. of the IWSM'99, Lac
Superieur, Quebec, Canada, September 1999, pp. 24-37

[Dumke 2005a] Dumke, R.: Software Measurement Frameworks. Proceedings of the 3rd World Congress for
Software Quality (Vol. III), Munich, September 2005, pp. 75-84

[Dumke 2006a] Dumke, R.R.; Blazey, M.; Hegewald, H.; Reitz. D.; Richter, K.: Causalities in Software Process
Measurement and Improvement. Proc. of the MENSURA 2006, November, 6-8, 2006, Cádiz, Spain, pp.
483-498

[Dumke 2005b] Dumke, R., Braungarten, R., Kunz, M., Hegewald, H. An ISO 15939-Based Infrastructure
Supporting the IT Software Measurement. In: Büren et al.: Praxis der Software-Mesung, Shaker Pzbl.,
2005, pp. 87-106

[Dumke 2006b] Dumke, R.R.; Braungarten, R.; Kunz, M.; Schmietendorf, A.; Wille, C.: Strategies and
Appropriateness of Software Measurement Frameworks. Proc. of the MENSURA 2006, November, 6-8,
2006, Cádiz, Spain, pp. 150-170

[Dumke 2007] Dumke, R.; Braungarten, R.; Mencke, S.; Richter, K.; Yazbek, H.: Experience-Based Software
Measurement and Evaluation Considering Paradigm Evolution. Büren et al.: Metrikon 2007 – Praxis der
Software-Messung, Shaker-Publ., 2007, pp. 47-62

[Dumke 2004] Dumke, R.; Lother, M.; Schäfer, U.; Wille, C.: Web Tomography - Towards e-Measurement and
e-Control. In: Abran et al.: Software Measurement - Research and Application, Shaker Publ., 2004, pp.
245-254

62

[Dumke 2003] Dumke, R.; Lother, M.; Wille, C.; Braungarten, R.; Winkler, D.: eMeasurement – Gegenwärtiger
Stand und Perspektiven. In: Büren et al.: Software-Messung in der Praxis, Shaker Publ., 2003, pp. 135-148

[Dumke 2003a] Dumke, R.; Lother, M.; Wille, C.; Zbrog, F.: Web Engineering. Pearson Education Publ., 2003

[Dumke 2005c] Dumke, R.; Schmietendorf, A.; Zuse, H.: Formal Description of Software Measurement and
Evaluation. Technical Report, University of Magdeburg, 2005 http://ivs.cs.uni-magdeburg.de/sw-
eng/agruppe/forschung/ Preprints.html

[Ebert 2007] Ebert, C.; Dumke, R.: Software Measurement – Establish, Extract, Evaluate, Execute. Springer
Publ., 2007

[Erl 2005] Erl, T. Service-Oriented Architecture Concepts, Technology, and Design. Prentice Hall, 2005

[Farooq 2005] Farooq, A., Braungarten, R., Dumke, R.R.: An Empirical Analysis of Object-Oriented Metrics for
Java Technologies. Proceedings of the 9th IEEE International Multi Topic Conference (INMIC2005),
National University of Computer and Emerging Sciences, Karachi/Pakistan, December 2005

[Farooq 2008] Farooq, A.; Kernchen, S.; Dumke, R.R.; Wille, C.: Web Services based Measurement for IT
Quality Assurance. In: Cuadrado-Gallege t al.: Software Product and Process Measurement. LNCS 4895,
Springer-Verlag Berlin Heidelberg, 2008

[Gerber 2001] Gerber, C.: Self-Adaptation for Performance Optimisation in an Agent-Based Information System.
In: Agent Technology for Communication Infrastructures, Hayzelden, A. L. G. and Bourne, R. A. (Editors),
John Wiley & Sohns, LTD, Chichester, pp. 122-143, 2001

[Griffel 1998] Griffel F.: Componentware – Konzepte und Techniken eines Softwareparadigmas, dpunkt-Verlag,
Heidelberg 1998

[Hanson 2003] Hanson, J.: Coarse-grained interfaces enable service composition in SOA, URL:
http://builder.com.com/5100-6386-5064520.html

[Hiekel 2007] Hiekel, S.: Bedeutung und Qualitätseigenschaften des Enterprise Service Bus im Kontext von
serviceorientierten Architekturen. Diploma Thesis, University of Magdeburg, Dept. of Compuer Science,
2007

[Huhns 2004] Huhns, M. N.: Agent UML Notation for Multiagent System Design. IEEE Internet Computing,
(2004), pp. 63-71

[ISBSG 2003] Software Project Estimation – A Workbook for Macro-Estimation of Software Developmet Effort
and Duration. Melbourne, 2003

[ISO 15939] ISO/IEC 15939: Information Technology – Software Measurement Process. Metrics News 6(2001)
11-46

[Jennings 1998] Jennings, N. R. and Wooldridge, M. J.: Agent Technology - Foundation, Applications and
Markets, Springer, Berlin, 1998

[Kalepu 2003] Kalepu, S.; Krishnaswamy, S. Loke, S. W.: Verity: A QoS Metric for Selecting Web Services and
Providers. In: Proc Fourth International Conference on Web Information Systems Engineering, 2003, pp.
131-139

[Kernchen 2006] Kernchen, S.; Farooq, A.; Dumke, R.; Wille, C.: Evaluation of Java-Based Agent
Technologies. In: Abran et al.: Applied Software Measurement, Shaker Publ., 2006, pp. 175-188

[Kitchenham 2007] Kitchenham, B.: Empirical Paradigm – The Role of Experiments. In: Basili et al.: Emiprical
Software Engineering, Springer-Publ., 2007, pp. 25-32

[Knapik 1998] Knapik, M. and Johnson, J.: Developing Intelligent Agents for Distributed Systems, McGraw-Hill,
New York, 1998

[Kunz 2006a] Kunz, M.; Kernchen, S.; Dumke, R.R.; Schmietendorf, A.: Ontology-based Web service for
object-oriented metrics. In: Abran et al: Applied Software Measurement, Shaker Publ., 2006, pp. 99-106

[Kunz 2008] Kunz et al:: UnitMetrics: A Tool Support Refactoring in Agile Software Development. IEEE IRI
2008, LasVegas, July 14-17, 2008

[Kunz 2008] Kunz, M.; Mencke, S.; Rud, D.; Dumke, R.: Empirical-Based Design - Quality-Driven Assembly of
Components. Proceedings of the 2008 IEEE International Conference on Information Reuse and Integration
(IEEE IRI-2008), July, 13-15, 2008, Las Vegas, Nevada, USA, S. 393-397

63

[Kunz 2006b] Kunz, M.; Schmietendorf, A.; Dumke, R.; Wille, C.: Towards a service- oriented measurement
infrastructure. In Proceedings of the 3rd Software Measurement European Forum (Smef 2006), pp. 197-
208, Rome, Italy, May 10.-12., 2006

[Laird 2006] Laird, L. M.; Brennan, M. C.: Software Measurement and Estimation – A Practical Approach.
IEEEComputer Science, 2006

[Liu 2001] Liu, J.: Autonomous Agents and Multi-Agent Systems - Explorations in Learning, Self-Organization
and Adaptive Computation, World Scientific Publ., Singapore, 2001

[Lother 2007] Lother, M.: From Software Measurement to e-Measurement – A Functional Size Measurement-
oriented Approach for Software Measurement. Shaker Pul., 2007

[Lother 2004] Lother, M.; Braungarten, R.; Kunz, M.; Dumke, R.: The Functional Size eMeasurement Portal
(FSeMP) - A Web-based Approach for Effort Estimation, Benchmarking and eLearning. In: Abran et al.:
Software Measurement - Research and Application, Shaker Publ., 2004, pp. 27-40

[McGovern 2003] McGovern, J.; Tyagi, S.; Stevens, M. E.: Java Web Services Architecture. Morgan Kaufmann,
2003.

[MacKenzie 2006] MacKenzie et al.: Reference Model for Service Oriented Architecture 1.0. OASIS, July 2006

[Martin 2003] Martin, M., Olsina, L. Towards an Ontology for Software Metrics and Indicators as the
Foundation for a Cataloging Web System. 2003

[Mencke 2007] Mencke, S.; Dumke, R.: Agent-Supported e-Learning. Preprint No 8, Dept. of Computer
Science, University of Magdeburg, 2007

[Mencke 2008] Mencke, S.; Kunz, M.; Dumke, R.: Steps to an Empirical Analysis of the Proactive Class
Schedule. Proceedings of the 3rd International Conference on Interactive Mobile and Computer Aided
Learning (IMCL 2008), April, 16-18, 2008, Amman, Jordan,

[Mencke, 2007] Mencke, S. and Dumke, R.: A Hierarchy of Ontologies for Didactics-Enhanced E-learning, In
Proceedings of the International Conference on Interactive Computer aided Learning (ICL2007), Villach,
Austria, September, 2007

[Panait 2006] Panait, L. and Luke, S.: Selecting Informative Actions Improves Cooperative Multiagent Learning.
In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS 200, Hakodate, Japan, May 8-12, pp. 760-766, 2006

[Pandian 2004] Pandian, C. R.: Software Metrics – A Guide to Planning, Analysis, and Application. CRC Press
Company, 2004

[Peltz 2003] Peltz, C. Web Services Orchestration and Choreography. IEEE Computer, 2003

[Perepletchikov 2008] Perepletchikov, M. Ryan, C.; Frampton, K.; Schmidt, H: Formalising Service-Oriented
Design. Journal of Software 3(2008)2, pp. 1-14

[Richter 2005] Richter, K.: Softwaregrößenmessung im Kontext von Software-Prozessbewertungsmodellen.
Diploma Thesis, University of Magdeburg, 2005

[Rud 2006a] Rud, D: Qualität von Web Services. VDM Verlag Dr. Müller, Berlin, 2006

[Rud 2007a] Rud, D.; Mencke, S.; Schmietendorf, A.; Dumke, R.: Granularitätsmetriken für servicerientierte
Architekturen. In: Bren et al.: Praxis der Software-Messung, Shaker Publ., 2007, pp. 297-308

[Rud 2006b] Rud, D.; Schmietendorf, A.; Dumke, R.: Performance Modeling of WS-BPEL-Based Web Service
Compositions. Proc of the SCW 2006, Sept. 18-22, 2006, Chicago, Illinois, IEEE Computer Society, pp.
140-147

[Rud 2006c] Rud, D.; Schmietendorf, A.; Dumke, R.: Product Metrics for Service-Oriented Infrastructures. In:
Abranet al.: Applied Softwre Measurement, Shaker Publ., 2006, pp. 161-174

[Rud 2007b] Rud, D.; Schmietendorf, A.; Kunz, M.; Dumke, R.: Analyse verfügbarer SOA-Reifegradmodelle –
State of the Art. In: Schmietendorf et al.: Bewertungsaspekte serviceorientierte Architekturen, Shaker Pul.,
2007, pp. 115-126

[Schmietendorf 2007a] Schmietendorf, A.: Eine strategische Vorgehensweise zur erfolgreichen Implementierung
serviceorientierter Architekturen in großen IT-Organisationen. Shaker Publ., 2007

[Schmietendorf 2002] Schmietendorf, A.; Dimitrov, E.; Dumke, R.: Enterprise JavaBeans. MITP, 2002

64

[Schmietendorf 2007b] Schmietendorf, A.; Kunz, M.; Dumke, R.: Empirical analyses about the granularity of
industrially used Web Services. CONQUEST 2007, Sept, Berlin

[Skyttner 2005] Skyttner, L.: General Systems Theory – Problems, Perspectives, Practice. World Scientific
Publ., New Jersey, 2005

[Sneed 2005] Sneed, H.: Software-Projektkalkulation. Hanser Publ., 2005

[Solingen 1999] Solingen, v. R.; Berghout, E.: The Goal/Question/Metric Method. McGraw Hill Publ. (1999)

[Tayntor 2003] Tayntor, C. B.: Six Sigma Software Development. CRC Press, 2003

[Thielen 2004] Thielen, M.: Qualitätssicherun von Webservices. Diploma Thesis, University of Koblenz-
Landau, 2004

[Wang 2001] Wang, X., Chan, C. Ontology Modeling Using UML. Proc. of the 7th International Conference on
Object Oriented Information Systems, 2001

[Wijata 2000] Wijata, Y. I.; Niehaus, D. and Frost, V. S.: A Scalable Agent-Based Network Measurement
Infrastructure. IEEE Communications Vol. 38, (2000), No. 9, pp. 174-183

[Wille 2005] Wille, C.: Software Agent Measurement Framework. Shaker-Publ., 2005

[Wooldridge 2002] Wooldridge, M. J.: An Introduction to Multi-agent Systems. Wiley, 2002

[Yu 20067] Yu, Y.; Lu, J.: Fernandez-Ramil, J.; Yuan, P. : Comparing Web Services with other Software
Components. Proc. of the ICWS 2007, pp. 388-397

[Zelkowitz 2007] Zelkowitz, M., V.: Techniques for Empircal Validation. In: Basili et al.: Empirical Software
Engineering, Springer-Publ., 2007, pp. 4-9

[Zuse 1998] Zuse, H.: A Framework of Software Measurement. de Gruyter Publ., Berlin, 1998

