Nr.: FIN-05-2008

Evaluation Approaches in
Software Testing

Ayaz Farooq, Reiner R. Dumke

Arbeitsgruppe Softwaretechnik

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 10 MDStV):

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fir Informatik

Der Dekan

Verantwortlich fir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Reiner Dumke

Postfach 4120

39016 Magdeburg

E-Mail: dumke@ivs.cs.uni-magdeburg.de

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage: 81
Redaktionsschluss: Juli 2008

Herstellung: Dezernat Allgemeine Angelegenheiten,
Sachgebiet Reproduktion

Bezug: Universitatsbibliothek/Hochschulschriften- und
Tauschstelle

Otto-von-Guericke-University of Magdeburg

Faculty of Computer Science
Institute for Distributed Systems
Software Engineering Group

Evaluation Approaches in Software Testing

Authors:

Ayaz Farooq
Reiner R. Dumke

University of Magdeburg
Faculty of Computer Science
P.O. Box 4120, 39016 Magdeburg

Germany

Farooq, Ayaz

Dumke, Reiner R.

Evaluation Approaches in Software Testing
Technical Report
Otto-von-Guericke-University of Magdeburg
2008.

Contents i

Contents

1__Introduction 1
(L1 _FEvaluation Defined 2
(1.2 Evaluation in Software Engineering| 2
(1.3 Evaluation 1n Software Testing| 3
(1.4 Structure of the Reportf, 5

P TesiP —Basics & Maturities 7
2.1 Test Process Fundamentals|

2.1.1 TestProcess Contexts|.
[2.1.2 Research over Test Processl 10
[2.2 Test Process Definition & Modelng| 11
[2.2.1 Generic Test Process Descriptions| 11
[2.2.1.1 Test Management Approach-TMap| 13
[2.2.1.2 Drabick’s Formal Testing Process| 13
2.2.1.3 Test Driven Development| 15
[2.2.1.4 Independent Verification & Validation| 17
[2.2.2° Domain Specific Test Processes| 18
2.2.2.1 Test Process for Embedded Softwarel 18
[2.2.3 Formal Approaches|. L. 19
2.2.3.1 Model based Testing|. 19
[2.2.3.2 Cangussu’s Formal Models| 21
2.2.4 Test Process Standardizationl 24
[2.3 Test Process Evaluation & Improvement| 24
[2.3.1 Qualitative Approaches|. 25
[2.3.1.1 Testing Maturity Model (TMM)(. 27
[2.3.1.2 Testing Process Improvement Model (TPI)| 29
[2.3.1.3 Test Maturity Model Integrated (TMMi)[. 29
[2.3.2 Quantitative Approaches| L. 32

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

ii Contents

23.2.1 TestProcess Metricsl 33

3 Test Techniques: Fundamentals & Efficiencies] 35
[3.1 Static techniques| 35
(3.1.1 Verifying| 37
BI1.1 Formal verification] 37

(3.1.1.2 Symbolictesting| 38

[(3.1.2 Analyzing|. 39

1.2.1 Testmeasures 39

[3.1.2.2 Software reviews, inspections and walk-throughs|. . . 39

(3.1.2.3 Fagan Inspections| 39

[3.2 Evaluation of Static Techmiques| 40
3.2.1 Evaluation criteria & methods| 40
322 FEvaluationresults|. L. 40

[3.3 Dynamic techniques|. 41
33.1 Structureoriented|. 41
B3.3.1.1 Control-flow oriented 41

3.3.1.2 Data-floworiented 43

B32 Functionoriented 43
(3.3.2.1 Functional equivalence classes| 44

(3.3.2.2 Cause-and-effect graphing analysis| 44

(3.3.2.3 Syntaxtesting 44

[3.3.3 Diversifyingl oL 45
(3.3.3.1 Regressiontests| 45

[3.3.4 Domain Testing|. 46

[3.4 Evaluation of Dynamic Techmques|. 47
3.4.1 Evaluation criteria & methods| 47
342 FEvaluationresultsl. 48

4 Capabilities of Test Tools] 51
M1 Fundamentalsl L oo 51
411 IsaTestToollInevitable? 51
M12 ToolResources 52
i.1.3 Testing Tool Classifications| 53

/4.2 Evaluation of Testing Tools| 53
4.2.1 Pre-Implementation Analysis/ Tool Selection| 55

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Contents iii

1.2.2 In-Process & Post-Implementation Analysis|. 56

M23 Summaryl 56

5 Summary & Future Work| 59
5.1 Future Workl 59
List of Tables 63
[List of Figures| 65
Bibliography 67

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

iv Contents

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1 Introduction

There have been many reports of catastrophic effects of software failures. Peter Neu-
mann’s regular column Risks to the Public in ACM’s Software Engineering Notes mag-
azine lists several accounts of everyday incidents arising primarily due to software fail-
ures. The consequences of software failures may vary between mild and severe depend-
ing upon the kind of system involved [iee, 1990].

Software testing is used as a primary quality assurance technique to establish our con-
fidence over successful execution of software. A detailed report [Tassey, 2002]] analyzes
economic impacts of insufficient software testing. The report summarizes the effects on
software industry due to inadequate test technology as,

e increased failures due to poor quality
e increased software development costs
e increased time to market due to inefficient testing

e increased market transaction costs

When we acknowledge the criticality of software testing we must pay special atten-
tion to manage this activity. While we are attempting to manage testing, we often come
across probably the two most common questions. First, when testing should be stopped
and software be released? While there may be many structured approaches for the pur-
pose based on reliability, defects, or economic value [Sassenburg, 2005]], a practitioner’s
response most probably would be *when there is no more time or money left to invest!”.
Second, how effectively and efficiently testing is being (or has been) performed? It is
a kind of continuous in-process and post-process evaluation of testing to track, monitor
and control these activities. This spans determining efficiency and effectiveness of tech-
niques used, process and activities carried out, and testing tools applied. But other finer
criteria such as predictability and reliability could also be interesting to investigate. De-
fect detection rate is commonly used to evaluate testing artifacts, but we will need other
measures too, for evaluating such numerous criteria. In this regard, a lot of evaluation
techniques and criteria have been developed.

This report intends to summarize available evaluation approaches in the area of soft-
ware testing. Available functional and quality criteria against which we can benchmark
our various testing artifacts will be surveyed. Strengths and weaknesses of existing tech-
niques will be analyzed and possibility of future work will be explored and suggested.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

2 1 Introduction

1.1 Evaluation Defined

When it comes to software engineering in general and software process in particular,
the terms evaluation and assessment are interchangeably used in literature and prac-
tice. We however differentiate between them and follow the viewpoint of Kenet and
Baker [Kenett and Baker, 1999] which seems quite logical specially in view of avail-
able process evaluation approaches. The nature of the software evaluation, according
to him, may be qualitative ("assessment") or quantitative ("measurement"). "Measure-
ment encompasses quantitative evaluations that usually use metrics and measures which
can be used to directly determine attainment of numerical quality goals. On the other
hand, any evaluative undertaking that requires reasoning or subjective judgment to reach
a conclusion as to whether the software meets requirements is considered to be an
assessment. It includes analysis, audits, surveys, and both document and project re-
views" [Kenett and Baker, 1999]. Figure [I.1] visualizes this relationship.

Evaluation

|
v v

Assessment Measurement

Figure 1.1: Relationships among evaluation, assessment, and measurement

This text will follow this distinction between qualitative and quantitative evaluations
while studying and analyzing evaluative works in the discussed areas.

1.2 Evaluation in Software Engineering

A very promising classification of software engineering (SE) research problems
has been given by Lazaro and Marcos [Lazaro and Marcos, 2005]. They dis-
tinguish SE research into engineering problems (concerned with the formulation
of new artifacts) and scientific problems involving analysis of existing artifacts.
One of the criticisms to software engineering research is that it ignores evalua-
tion [Zelkowitz and Wallace, 1997]. This opinion is further strengthened by a survey
conducted by Glass et al. [[Glass et al., 2004] in which it was found that 79% of ap-
proaches in the field of general computer science and 55% of approaches in software
engineering were formulative in nature while only about 14% approaches were evalu-
ative works. Perhaps still today many research efforts follow the research model that
Glass [Glass, 1994] once described as advocacy research consisting of steps, "conceive
an idea, analyze the idea, advocate the idea" ignoring the comparative evaluation among
the proposed and existing approaches.

Evaluation is an important tool of software quality assurance. A typical software
quality program involves i) establishment, implementation, and control of requirements,
i1) establishment and control of methodology and procedures, and iii) software quality

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.3 Evaluation in Software Testing 3

Software Quality
Program

Methodology
Establishment &
Implementation

Process & Product
Quality Evaluation

Requirements
Management

Figure 1.2: Software Quality Elements [Kenett and Baker, 1999]

evaluation [Kenett and Baker, 1999, p. 4]. Figure summarizes this observation.
The software quality evaluation component is aimed at evaluating products (both in-
process and at completion), activities and processes (for optimization and compliance
with standards), and methodologies (for appropriateness and technical adequacies).

In addition to the conventional subjective evaluation methods such as interviews,
surveys, and inspections, software measurement is a tool for objective evaluation
in software engineering. Kan [Kan, 2002] has analyzed the role of measurement
in a variety of perspectives of software quality engineering. It is not very recent
at all that the application of software measurement as an evaluation technique has
been advocated by researchers and realized by practitioners. Software measure-
ment is part of almost all key areas within IEEE’s Software Engineering Body of
Knowledge [Abran et al., 2004]]. It has itself now become a well established re-
search area with the availability of dedicated measurement frameworks and pro-
cesses [Zuse, 1998]][Dumke, 2005]] [Dumke et al., 2005]][[Dumke and Ebert, 2007]]
[Ebert et al., 2004]|[1so, 2007]]. With the application of software measurement we are
better able to perform a cost benefit analysis of software tools, methods, and processes.

But despite all these advancements and envisaged benefits, software measurement
does not seem to have fully penetrated into industrial practices. It still seems to reside
in the minds and works of researchers while industry and practitioners, who are over-
whelmed by the pursuit of immediate business goals constrained by time and cost limits,
tend to pay less attention to it than it deserves. As far as the use of software measure-
ment for quality evaluation is concerned, Hofer and Tichy [Hofer and Tichy, 2007] have
observed that its application has been as yet limited since most software metrics are still
being used mainly for cost estimation.

1.3 Evaluation in Software Testing

Software testing is a complex and critical task among software development activities.
Figure [I.3] presents a visualization of different elements that are involved with and sup-
port the task of software testing. Testing methods and techniques, tools, standards,
measurements, and empirical knowledge etc. are the main elements of interest in the
software testing domain.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

4 1 Introduction

Methods & Techniques

Tools Process

Software
Testing

Measurements Empirical Knowledge

Standards

Community

Figure 1.3: Software Testing Elements of Interest

The area of software testing research is almost as old as the software engineering it-
self. It has largely been driven by quest for quality software. Historically speaking, an
overwhelming portion of software testing research has focused on test case design, static
and dynamic testing techniques, problem-centered testing approaches such as for object-
oriented design or for embedded systems software, testing tools, and designing effective
testing processes. A few articles [Harrold, 2000][Taipale et al., 2005][Bertolino, 2007|]
have discussed about past and future research trends in software testing. It has been
observed that the research on fundamental testing issues such as testing methods, tools,
and processes has somewhat matured (however, the same is not true for emerging tech-
nologies such as for example service-oriented architectures etc.). Our focus is now
more on advanced and finer problems such as establishing empirical baseline on testing
knowledge, test process improvement, standardization, demonstrating effectiveness of
testing methods, tools, and processes, and on test automation. Table [I.1] summarizes
lists of active research issues in software testing mentioned in latest literature on testing
research.

One of these open and rather neglected issues is evaluation of various testing ar-
tifacts. The role of measurement in software testing has been exemplified by Mun-
son [Munson, 2003] with various examples. He maintains that evaluating the test ac-
tivities will give great insight into the adequacy of the test process and the expected
time to produce a software product that can meet certain quality standards. But the first
question is which testing artifacts can be and should be evaluated? A study of the list
of topics over software testing given in IEEE’s Software Engineering Body of Knowl-
edge [Abran et al., 2004, p. 5-2] and in an initial work on Testing Body of Knowl-
edge [Harkonen, 2004, p. 26] can give us an answer. The topics contained therein
consist mainly of test levels, test techniques, test measures, test process, and test tools.
Therefore, test techniques are one element of evaluation, we need to know how much
effective is our technique in terms of effort and defect finding capability. 7est tools are
another target of measurement. We need to assess and analyze our tools themselves for
their efficiency. Test process is perhaps the most substantial element to evaluate since
evaluation itself is the first step in improving the test process. By evaluating test process

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

1.4 Structure of the Report 5

Table 1.1: Research Issues in Software Testing
Reference Issues Highlighted

[Harrold, 2000]] Testing component-based systems
Test effectiveness
Creating effective testing processes
Testing evolving software

[Abran et al., 2004, p. 5-3] Test selection
Test effectiveness
Test oracles
Testing for defect identification
Testability
Theoretical and practical limitations of testing

[Taipale et al., 2005]] Testing automation
Standardization
Test process improvement
Formal methods
Testing techniques

[Bertolino, 2007]] Test process improvement
Test effectiveness
Compositional testing
Empirical body of evidence
Model-based testing
Test oracles
Domain specific test approaches

we try to find out how much effective and efficient is it in terms of money, time, effort,
and defect identification and removal.

1.4 Structure of the Report

Starting with a short overview of status of evaluation in software engineering and
software testing in the current chapter, the report dedicates three chapters to analyze
evaluation works relative to each of the three core elements of evaluation in soft-
ware testing, 1.e. process, techniques, and tools. Chapter 2 reviews test process in
different paradigm contexts, summarizes existing test process descriptions, and ana-
lyzes strengths/weaknesses and capabilities/limitations of current test process evalua-
tion models and methods. Chapter 3 and 4 present similar works related to testing tech-
niques and tools, respectively. A summary of findings and future research directions in
this context are discussed in chapter 5.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

6 1 Introduction

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2 Test Processes: Basics &
Maturities

With fast growing size of software systems, numerous complexity issues and wealth of
professional practices, software development is no longer a programmer oriented ac-
tivity. Process based software engineering methodology has evolved out of this chaos
as a systematic approach that can handle issues related to development methodology &
infrastructure, organization, and management of software development activities. Soft-
ware processes has become a key research area in the field of software engineering
today.

Being critical to the quality of the developed product, testing activities occupy ma-
jor portion of the software development process and involve heavy expenses, devel-
opment effort, and time. Owing to their important role, testing related activities
and issues are generally seen as a separate software testing process. Similar to the
two levels of studying software engineering processes as mentioned in IEEE SWE-
BOK [Abran et al., 2004} p. 9-1], the test process can also be studied at two levels. The
first level refers to technical and managerial activities that are carried out to verify and
validate development artifacts throughout the software development lifecycle. The sec-
ond is the meta-level which involves the definition, implementation, assessment, mea-
surement, management, change, and improvement of the test process itself. This chapter
mainly concerns with this meta-level description of the test process which applies to all
kinds of testing methods and domains.

2.1 Test Process Fundamentals

Different kinds of meta-level descriptions of test process exist. It is usually described
as generic process phases or as a series of various levels of testing. It is commonly
studied as an organization of testing techniques [Everett et al., 2007], as a quality as-
surance approach [Tian, 2005][Lewis, 2004], or a means to managing different kinds of
testing activities [Pol et al., 2002]. A well established test process can bring about many
benefits to all stakeholders. According to Perry [Perry, 2006] these advantages include,

o Testing is consistent: Following test process matures the practices. Successful
practices can be re-implemented for other projects which reduces variability of
activities and increases our confidence.

o Testing can be taught: In a heroic testing where no process exists, testing is mainly
an art confined to a master tester. Breaking testing into processes makes it under-
standable and teachable.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

g

8 2 Test Processes: Basics & Maturities

e Test processes can be improved: By using processes we can identify ineffective ar-
eas and activities. Such deficiencies can be removed to make testing cost-effective
and improve product quality.

e Test processes become manageable: When a process is in place, it can be man-
aged. If it is not, then things are being done in an ad-hoc manner where there can
be no management.

A generic very high level structure of test process activities has been given by
Tian [Tian, 2005, p. 68]. He divides test process into three main groups of test activities
which are,

e Test planning and preparation, which set the goals for testing, select and overall
testing strategy, and prepare specific test cases and the general test procedures.

o Test execution and related activities, which also include related observation and
measurement of product behavior

e Analysis and follow-up, which include result checking and analysis to determine
if a failure has been observed, and if so, follow-up activities are initiated and
monitored to ensure removal of the underlying causes, or faults, that led to the
observed failures in the first place.

Figure [2.1] summarizes these common test process activities.

) a\s
estanis” o
entr Planning & | . no Goals es
_y) p ? » Execution Satisfied Y
reparation test cases & atisfie exit
procedures (_35 _‘er 9
QD o £
7] o 9
= SEN
© o $
3 @S NES
(] e 6\)
2 o©
(2 4 =)
) a“?’“
Analysis &
Followup

Figure 2.1: Generic Structure of Testing Process [Tian, 2005]

Scope of Testing in Software Process: Testing is mainly a support activity of the
development process. It serves as an evaluation technique for the software development
artifacts as well as a tool for quality assurance.

e Guide to the Software Engineering Body of Knowledge (SWE-
BOK) [Abranetal., 2004, p. 11-1] lists testing related processes inside
software quality knowledge area. It describes software quality management
processes as comprising software quality assurance, verification, validation,
reviews, and audits.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.1 Test Process Fundamentals 9

e Jeff Tian in [Tian, 2005, p. 27] describes verification, validation and testing as
part of quality assurance.

o IEEE/EIA 12207 standard [1ee, 1998c|] organizes software life cycle processes
into three categories, namely primary life cycle processes, supporting processes,
and organizational life cycle processes. Quality assurance, verification, valida-
tion, joint reviews, and audit are listed inside supporting life cycle processes,
while quality assurance process may in turn make use of results of other support-
ing processes such as verification, validation, joint reviews, and audit.

Figure[2.2] gives a visual representation of context relationship among software qual-
ity engineering, software quality assurance and software testing discussed above.

SQM Processes SQE Supporting Life
Cycle Processes
(QA \
QA
so» (e)
Reviews/Audit
—
IEEE SWEBOK SQE by Jef Tian ISO/IEC Std. 12207

Figure 2.2: Some Context Descriptions of Software Testing

2.1.1 Test Process Contexts

The field of software engineering possesses a number of dimensions. On one axis is the
development methodology. Here we refer to methodology as the software development
life cycle followed, whether it is based on traditional waterfall or an iterative approach.
The second axis refers to software engineering technologies which have evolved in the
form of assorted programming paradigms and software architectures. We write our pro-
grams using structured programming, object-oriented or aspect-oriented programming
approaches or others and design our software systems using distributed, component-
based or service-oriented architectures etc. On the third side we have the kind of ap-
plication system to which our software will be serving. Examples are information sys-
tems, embedded systems, or communication systems etc. Figure [2.3] visualizes these
dimensions. Each of these SE dimensions involve peculiarities which pose special re-
quirements on software testing. Although a meta-level generic testing process may fit
any of these contexts, these three dimensions will warrant some corresponding testing
considerations at lower levels of test process abstractions.

For example, testing activities follow a different path in a waterfall kind of devel-
opment life cycle in comparison to iterative approaches. Testing may pose different
requirements in case of component-based systems and in service-oriented architectures
(SOA). For component-based systems unit testing, integration testing and performance

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

10 2 Test Processes: Basics & Maturities

SE Technology
A

—+— SOA

—t+— AOP

—+— CBSE

|
Information Systems } ‘ 3 >
|

Embedded Systems SE Methodology

Communication
Systems

SE Application
Systems

Figure 2.3: Software Engineering Dimensions

testing are the main concerns. On the other hand, SOA poses different quality con-
cerns [O’Brien et al., 2007] and new testing challenges [Zhu, 2006]]. Testing techniques
and approaches for communication systems, embedded systems and business informa-
tion systems will also certainly differ. Alongside generic test processes, some custom
test processes also exist that take care of some of these domain specific requirements
and constraints.

2.1.2 Research over Test Process

Three main issues concerning test process research are: definition or modeling, evalua-
tion, and improvement.

The definition of the test process refers to the definition of the processes as models,
plus any optional automated support available for modeling and for executing the mod-
els during the software process (derived from [[Acufa et al., 2001]]). This may be in the
form of a description of part/whole of test process using a suitable process modeling
language. Examples include model-based testing approaches. Another way to define
a test process is to give an activity based description of the process aimed at activity
management. Examples include well known testing standards and other generic and
domain-specific test process descriptions.

Test process evaluation is a systematic procedure to investigate the existence, ade-
quacy, and performance of an implemented process system against a model, standard,
or benchmark (derived from [Wang and King, 2000, p. 42]). It is the investigation of the
current state of the process with a view of finding necessary improvement areas. Pro-
cess evaluation is typically performed prior to any process improvement initiative. Test
process evaluation and improvement is motivated by a concern for cutting on testing

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 2.2 Test Process Definition & Modeling 11

costs and improving product quality.

Test process improvement is a systematic procedure to improve the performance of
an existing process system by changing the current process or updating new processes
in order to correct or avoid problems identified in the old process system by means of
a process assessment (derived from [Wang and King, 2000, p. 42]). In parallel with
the concern for software process improvement, test process improvement also contin-
ues to be a major research direction within software testing. It has been ranked by
Taiple [Taipale et al., 2005] as one of the top three important issues in software testing
research.

In most cases a solution may address more than one of the above mentioned three
issues at the same time. For instance process evaluation and improvement are mutually
connected issues of software test process. Any software process improvement initiative
needs first an evaluation of the current level of performance of the process. Any pro-
cess evaluation exercise should eventually follow an identification of and suggestions
over most important process improvement areas. Therefore, test process evaluation and
improvement will be reviewed in the same section in this text.

2.2 Test Process Definition & Modeling

Existing test process modeling approaches include some empirical and descrip-
tive and formal and descriptive process models. According to Wang and
King [Wang and King, 2000, p. 40] an empirical process model defines an organized
and benchmarked software process and best practices, a descriptive model describes
"what to do" according to a certain software process system, while a formal model de-
scribes the structure and methodology with an algorithmic approach.

2.2.1 Generic Test Process Descriptions

An activity-based description of the software test process has been given by
Perry [Perry, 2006, Ch. 6]. He divides the test process intro seven steps. The pro-
cess has been designed to be used by both developers and an independent test team.
Since the details of the process activities are very generic in nature, the process must be
customized by organization before its actual use.

Figure [2.4] gives an overview of the proposed process. It follows the V concept of
development/testing. The seven steps as given in [Perry, 2006, p. 157] are being sum-
marized below.

1. Organizing for testing: This is a kind of preparation step which is aimed at
defining scope of the testing activities and responsibilities of whoever will be
involved in testing process. Furthermore, the development plan must be analyzed
for completeness and correctness which is the basis for the next step of test plan
development.

2. Developing the test plan: After the preliminary steps, a test plan must be devel-
oped that precisely describes testing objectives. A test plan will mention exactly

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

12

2 Test Processes: Basics & Maturities

Development of Software)
Independent Testing of Software

Define Requirements Step 1
Organizing for
Software Testing

Step 2
Design Software Test Plan

\ Steé

Verification Testing

\ Step 4

Validation Testing
Install Software /

Step 5
Analyzing and Reporting

Operate and Maintain

Build Software

Software Step 6
Acceptance and
: Oper’at}n Testing
Step 7

Post-implementation Analysis

Figure 2.4: V-Diagram for Seven Step Test Process [Perry, 2006]

how and what kinds of testing activities will be performed. Possible risks should
also be identified at this step.

. Verification testing: The purpose of this step is verify activities and products

of each of the design and development process to ensure that software is being
constructed correctly. This will enable an early detection of defects before devel-
opment is complete.

. Validation testing: Dynamic testing of the code using the pre-established meth-

ods and tools should be performed now. This step should ensure that the software
fulfill the stated requirements.

. Analyzing and reporting test results: Test results should be analyzed to com-

pare the developed product with the intended development goals. Results should
be reported with the defect reports etc.

. Acceptance and operational testing: A final step is the testing of the software

by the actual users. Upon completion of the acceptance testing, the software must
once again be testing in the production environment to observe and conflicts or
other faults.

. Post-implementation analysis: This step is a kind of post-mortem analysis of the

whole testing process. Efficiency and effectiveness of the testing process must be
analyzed. This will help us identify lessons learned, and future improvement areas
for the test activities.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Test Process Definition & Modeling 13

L: Lifecycle T T: Techniques
Planning_& Control Strategy development
Preparation Test point analysis
Specification Testability review
Execution L Test spec. techniques
Completion I O Checklists
I: Infrastructure O: Organization
Operational test process
Test environment Structural test organization
Test tools Test management and control
Office environment Staff and training

Structuring the test process

Figure 2.5: Test Management Approach-TMap

2.2.1.1 Test Management Approach-TMap

The Test Management Approach (TMap) has been developed by a Dutch firm Sogeti.
A detailed description of the approach can be found in [Pol et al., 2002]]. The TMap ap-
proach primarily focuses on structured testing and provides answers to the what, when,
how, where, and who questions of software testing [van Veenendaal and Pol, 1997]. Fig-
ure [2.5] gives an overview of TMap. It is founded on four cornerstones;

L adevelopment process related life cycle model for the testing activities
O solid organizational embedding
I the right resources and infrastructure

T usable techniques for the various testing activities

Relating to each of these four aspects, TMap provides guidelines on objectives, tasks,
responsibilities, deliverables and related issues. For example, the life cycle model (L)
contains a sequence of testing activities which operate in parallel to the software devel-
opment life cycle phases.

2.2.1.2 Drabick’s Formal Testing Process

Drabick [Drabick, 2003|] presents a task-oriented process model for formal testing in-
tended for use on medium-to-large software-intensive programs. The model provides a
concise framework of testing tasks to assist test engineers. The author of the approach
assumes the model to be helpful in a number of ways, for example,

e Manage defects

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

14

2 Test Processes: Basics & Maturities

e Create efficient test plans

e Provide work breakdown structure for the test engineering function

e Provide a basis for documenting testing processes

The test process model is composed of a collection of Input-Process-Output (IPO) di-
agrams. Each IPO diagram lists inputs, process names, and relevant outputs. Figure
gives structure of the level 0 model for the formal testing. The description is very prim-
itive in nature at this level. This level of detail is not much meaningful and is meant to
present only a top-level picture of the test process.

INPUT PROCESS OUTPUT

Requirements

Software Design

Risk Data

Approved, Debugged,
Eng. Tested Code

Automated Test Tools

P

Formal

Testing
(1.0)

>

Tested Code

Test Doc. Review
Results

Problems Found
in Testing

<

Requirements, Design,

and Code Issues

Test Report

Test Incidents
System Limitations
Updated Test Doc.

Customer Problems
Change Requests

Figure 2.6: Drabick’s Formal Software Test Process-Level 0 IPO Diagram [Drabick, 2003]

Figure expands the level 0 description of the model into several sub-processes
which are listed below. The proposed model further drills down to level 2 and 3 for each
of these processes (which are not given here for the sake of brevity).

1. Extract test information from program plans

2. Create test plan

3. Create test design, test cases, test software, and test procedures

4. Perform formal test

5. Update test documentation

Although the process model contains several useful details of testing activities, yet
it speaks nothing about the evaluation of the process itself. It provides no mechanism
of evaluating how good the process has been performed or any other form of assessing

effectiveness or efficiency of the activities performed.

FIN-1VS, Otto-von-Guericke-University of Magdeburg

Ayaz Farooq

2.2 Test Process Definition & Modeling 15

MODELING THE
TESTING PROCESS

Program Plan Issues Requirements Requirements Issues
<+— Risk — Test Tool
Standards, l Data l
Templates 1
Program Plans | Extract Test L—» | Create Test Test Plan
— Information from » Plan -
Program Plans 1.1 | Requirements 1.2
from Pgm. Plans 'y
Requirements, Resources Standards, Design, Code,
Design, and and Staff Templates and Complexity|
’ . Test Plan
Code Issues Requirements, oo e ¢ Data
| SW Design, - ‘J
< Code Create Test Design,
Perform Formal Test [7oqtDesign, Cases, | 165t Cases, Test SW, |
14 Procedures, and Test Procedures, ,
Input Data :
T T Design,J T T
Code Reqts.
Test Tools Engineering lesues Test Test Doc. Problem
Test Data Tools 'estDoc. Froblems
" » Tested Source and Object Code
Test Doc. Test Report
Problems |Update Test Updated Test Incidents
Documentation —> ¢ System Limitations
— 15 Documentation

Test Documentation

Figure 2.7: Drabick’s Formal Software Test Process-Level 1 IPO Diagram [Drabick, 2003]

2.2.1.3 Test Driven Development

Agile software development is a conceptual framework for software development that
promotes development iterations, open collaboration, and adaptability. Agile methods
are development processes that follow philosophies of Agile manifesto and principles.
Some examples of these methods include Extreme Programming (XP), Adaptive Soft-
ware Development (ASD), Scrum, and Feature Driven Development (FDD) etc. Agility,
change, planning, communication, and learning are common characteristics of these
methods .

Extreme Programming (XP) is a well known and probably the most debated of the
Agile methods. Two of the twelve practices of XP include 7est First and Refactoring.
The test first principle requires that automated unit tests be written before writing a
single line of code to which they are going to be related. Test Driven Development
(TDD) [Beck, 2002] has evolved from this test first principle. Although TDD is an
integral part of XP but it can also be used in other development methods.

TDD is not a not a testing technique nor a testing method or a process, it is only
a style of development. Under this approach software evolves through short iterations.
Each iteration involves initially writing test cases that cover desired improvement or new
functionality. Necessary code is then implemented to pass these tests and the software
is finally refactored to accommodate changes. Test-driven development cycle consists

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

16 2 Test Processes: Basics & Maturities \%/

Refactor~ Add a

code Test
Run all Run all
tests (to tests (to
pass) fail)

some

code

Figure 2.8: Test-driven Development Cycle

of following sequence of steps; [Beck, 2002]

e Quickly add a test: A simple test is written as the first step which covers some
aspect of functionality of code.

e Run all tests and see the new one fail: Running the test cases in absence of
required code should essentially fail. This validates that the test harness is work-
ing correctly and that the new test does not mistakenly pass without requiring any
new code.

e Make a little change: The next step is to implement some code that is just enough
to pass the existing tests. This is meant to incrementally add functionality to
developed code.

e Run all tests and see them all succeed: If all tests now pass, the programmer
can be confident that the code meets all the tested requirements.

e Refactor to remove duplication: Refactoring is the process of making changes
to existing, working code without changing its external behavior. This step re-
moves cleans up the code and any duplication that was introduced getting the test
to pass.

e Repeat: This test-code-refactor cycle is repeated which leads to an evolution of
the whole program where the program-units are developed gradually.

Figure [2.8| summarizes the TDD cycle. As in other conventional development and
testing practices, testing under TDD is not done in a linear fashion. The continuous
evolution and feedback that is obtained from running tests makes this method circular.
Since its inception, a number of techniques and tools have been developed that support
TDD style [Astels, 2003]].

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 2.2 Test Process Definition & Modeling 17

Improved quality, testability, and extensibility and other benefits are be-
lieved to be associated with TDD style of development. Some empiri-
cal works exist that have attempted to validate some of these claimed bene-
fits [|Canfora et al., 2006]][Siniaalto, 2006|]. However certain TDD is limited in certain
aspects too. First, it concentrates on automated unit tests to build clean code. It is a
fact that not all tests can be automated, for example user interface testing. Second in
database applications and those involving different network configurations full func-
tional tests are a necessity. Test-first approaches for these kinds of applications are still
missing. TDD’s lack of proper functional specifications and other documentations also
limit this style to small projects. There are some social factors such developer’s atti-
tude and management support will certainly be a hurdle in adoption of this evolutionary
approach.

2.2.1.4 Independent Verification & Validation

Zero defect software is a highly sought goal for some particular kinds of safety crit-
ical and complex large applications. Sometimes managerial commitments, financial
constraints and developer’s or tester’s bias may cause adverse affects on testing and
software quality compromises. According to IEEE independent verification and valida-
tion (IV&V) refers to the verification and validation performed by an organization that
is technically, managerially, and financially independent of the development organiza-
tion. But whether IV&V differs from V&V in more than just the independence of its
practitioners is still open to debate [Arthur et al., 1999].

IV&V activities have been found to help detect faults earlier in the software devel-
opment life cycle, reduce the time to remove those faults, and produce a more robust
product [Arthur et al., 1999]]. The advantages of an independent V&V process are many.
In particular, the independence in V&V [Arthur and Nance, 1996],

e provides an objective assessment of the product during its creation,
e adds a new analytical perspective not present in the development environment,

e brings its own set of tools and techniques to bear on ensuring development accu-
racy and validity,

e introduces "intermediate" users of the system who serve as "beta testers" before
the product goes to market, and

significantly enhances testing and the discovery of design flaws and coding errors.

Several software companies offer IV&V services. NASA’s IV&V Facility is a well-
known IV&V service provider for NASA’s critical projects and missions. Analysis of
IV&V approaches for different domains such as simulation and modeling and object-
oriented software applications has been performed.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

18 2 Test Processes: Basics & Maturities

Tap e Specific N\ _ | System
o] : Measures | Characteristics |

Mechanism

L I T O

Dedicated Test Approach

Figure 2.9: TEmb:Test Process for Embedded Systems [Broekman and Notenboom, 2003]

2.2.2 Domain Specific Test Processes

A very wide variety of software applications are being developed today, for exam-
ple those for distributed systems, communication systems, and embedded systems etc.
Type of the application domain naturally affects scope and range of software testing
involved. Certain techniques and levels of testing may no longer be applicable, and
new approaches to testing may be required. Testing activities and process will also be
affected. The next two sections will review testing process for embedded systems and
service-oriented applications as well-known examples which require specialized testing
requirements.

2.2.2.1 Test Process for Embedded Software

Many different types of embedded systems exist today such as mobile phones, electrical
home appliances, railway signal systems, hearing aids and other health care systems,
missile guidance systems, satellites, and space shuttles. Zero defect software is needed
for such systems since a failure can cause human lives or extremely huge financial
losses. Within this context, testing of embedded software becomes very complex and
poses much more challenges and requirements on testing than that of other common
software applications.

Many different kinds of techniques and tools have been developed to answer spe-
cific testing concerns of embedded softwares. Instead of discussing individual tech-
niques we review here a testing method which covers a wider perspective of embed-
ded software in comparison to specific techniques or tools. The method is called
TEmb. TEmb provides a mechanism for assembling a suitably dedicated test ap-
proach from the generic elements applicable to any test project and a set of spe-
cific measures relevant to the observed system characteristics of the embedded sys-
tem [Broekman and Notenboom, 2003, Ch. 2]. This method actually adapts the con-
cepts of TMap [Pol et al., 2002] approach to the embedded software domain. Figure[2.9]
gives an overview of the TEmb method.

The generic elements of the method involve descriptions of lifecycle, tech-
niques, infrastructure, and organization issues. The second part of the method in-

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Test Process Definition & Modeling 19

volves applying measures specific to the system context based on the analysis of
risks and system characteristics. Example of these specific measures include spe-
cific test design techniques, system modeling, dedicated test tools and lifecycle
etc [Broekman and Notenboom, 2003, p. 18].

2.2.3 Formal Approaches

Wang and King [Wang and King, 2000, p. 40] define a formal process model as a model
that describes the structure and methodology of a software process system with an algo-
rithmic approach or by an abstractive process description language. Formal approaches
to software process have been variably applied. Dumke et al. [Dumke et al., 2006a]]
mention few of such approaches. The same concept has been used in the domain of
testing process. The next two sections explain these approaches.

2.2.3.1 Model based Testing

A major portion of software testing costs is associated with test case related activities.
Test case generation consumes resources such as for their planning, design, and execu-
tion. Manual design and execution of test cases is a tedious task. Therefore, automation
of test case generation and execution could be an interesting mechanism to reduce the
cost and effort of testing. Automatic execution of tests is offered by many automated
test tools. Model based testing (MBT) [Utting and Legeard, 2006]] takes a step forward
to automate the design process of test cases.

MBT involves creating an abstract model of the system under test which is mostly
based on functional requirements. Then a test tool automatically generates test cases
from this model of the system. A direct benefit is that overall test design time is re-
duced and a variety of test cases can be generated from the same model simply by
changing test selection criteria. MBT is supposed to offer many benefits such as shorter
schedules, lower cost and effort, better quality, early exposure of ambiguities in specifi-
cation and design; capability to automatically generate many non-repetitive and use-
ful tests, test harness to automatically run generated tests, and convenient updating
of test suites for changed requirements [El-Far and Whittaker, 2001]]. Utting and Leg-
eard [Utting and Legeard, 2006, p. 27] divide MBT into following five steps,

e Model: The very first step is to create an abstract model which describes behav-
ior of the system under test (SUT). This model is abstract in the sense in that it
mostly covers key aspects of the SUT. Some design language or a test specifi-
cation language must be used to create this model. Unified Modeling Language
(UML), TTCN-3 [], or Test Modeling Language (TML) [Foos et al., 2008]] can be
used for the purpose. Hartman et al. [Hartman et al., 2007] provide a survey of
test modeling languages which relevant to this step.

e Generate: The next step is to generate abstract tests from the model. An auto-
mated test case generator tool can be exploited at this step. To reduce the almost
infinitely possible test cases, a test selection criteria must be used. In addition

Thttp://www.ttcn-3.org/

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

http://www.ttcn-3.org/

20 2 Test Processes: Basics & Maturities

1. Model
Modeling Req. Tracgability
Notation Matrix
J\
Test S_ele_ction Y
Criteria L Model Coverage
2. Generate —
TestCase || [™] —+
Generator
Abstract
Test Cases
4
Test Script . -
Generator » 3. Concretize
Test Execution | | \ M
Tool
NN 4. Execute
Software i
Under Test Test Results
4
5. Evaluate

Figure 2.10: Model-based Testing Process

to a set of abstract test cases, this step sometimes also produces a requirements
traceability matrix and a model coverage report.

e Concretize: The abstract test cases from the previous step cannot be executed
directly on the SUT. They must be transformed into executable concrete form
which is done under this step. A test script generator tool may be used for the

purpose.

e Execute: This step executes the concrete steps over the system under test (SUT)
with the help of a test execution tool. The step produces the final test results. With
online testing, the above three steps are merges and tests are executed as they are
produced. In case of the offline testing, the above three steps will be performed as
described.

e Analyze: The final step is to analyze the test results. Actual and expected outputs
are compared and failure reports are analyzed. The step also involves deciding
whether to modify the model, generate more test cases, or stop testing.

Figure [2.10] gives a detailed description of the MBT process with necessary inputs
and outputs of each step.

Hundreds of MBT approaches have be developed to date. However, they are not
aimed at covering all testing aspects. For example MBT techniques mainly aimed at

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Test Process Definition & Modeling 21

A
Scale of SUT
System
Integration
Component;
Requirements Code
Unit (Black-box) (White-box) o
) Tests Derived from...
/" Functional
Robustness
Performance
Usability

Characteristics being Tested

Figure 2.11: Scope of Model-based Testing [Utting and Legeard, 2006]

functional testing since test cases are derived from functional specification of the sys-
tem. Only in very few cases have the MBT approaches been used for testing some non-
functional characteristics. Furthermore, MBT is a kind of black-box approach since the
system model has been derived from the behavioral descriptions. However, MBT can be
applied at any testing level (although it has mostly been applied for system level tests).
Figure [2.11] summarizes the scope of MBT with reference to different testing aspects.
A comprehensive characterization of these techniques has been given by Neto et
al. [Neto et al., 2007]. MBT techniques differ by behavioral model, test generation al-
gorithm, test levels, software domain, or level of automation etc. Choice of a particular
MBT approach out of the many can influence efficiency of the overall test process.

2.2.3.2 Cangussu’s Formal Models

A mathematical model of a software process attempts to describe its behavior and pro-
vides a feedback mechanism which guides the managers in adjusting model parameters
to achieve desired quality objectives. The generic procedure to select, adopt and apply
these kinds of models as quoted by Apel [Apel, 2005] is outlined below.

p—

. Postulate general class of models

\S)

. Identify model to be tentatively entertained
3. Estimate model parameters
4. Perform diagnose checking (model validation)

5. Use model for prediction or control

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

22 2 Test Processes: Basics & Maturities \%

Several mathematical models of software test process have been developed by Can-
gussu et. al[[Cangussu, 2002]][Cangussu, 2003]][[Cangussu et al., 2003a] These mathe-
matical models attempt to predict some aspect of the software test process (with special
focus on system test phase) such as effort, schedule slippage, failure intensity or effect
of learning etc. Most of these approaches followed a feedback control mechanism as
outlined in the figure[2.12]

expected quality (Qe)

input parameters

b d lit
STP observed quality (Qo) >

output

change in input

parameters ordinary approach

|
setlof] Contrc_)l € !
solutions Mechanism

Cangussu’s approach

Figure 2.12: Cangussu’s Approach of STP Models [Cangussu, 2002]
Now we briefly describe each of Cangussu’s approaches one by one.

e State Variable Model [Cangussu et al., 2000]
This model uses the theory of state variables to capture the dynamic behavior of
the software test process by focusing on time and effort required to debug the
software. It then applies feedback control for adjusting the variables such as work
force and quality of the test process to improve the test process performance, and
meeting the deadlines. This model has been validated with data from two large
industrial projects.

e A State Model [Cangussu et al., 2001a]
This model attempts to predict completion time and cost to perform software test
process. The model provides an automated method for parameter identification.
The closed-loop feedback mechanism consisting of determination (based on ad-
justment of different parameters) of minimum decay rate needed to meet man-
agement objectives guides the managers to correct deviations in the software test
process.

e Feedback Control Model [Cangussu et al., 2001b]
Feedback control model is quite similar to formal and state models discussed
above. It differs only in control variables which in this case are product reliability
and failure intensity. These variables are calculated at specific checkpoints within
the software test process and result is fed back to the controller to adjust model
parameters to meet desired process objectives.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.2 Test Process Definition & Modeling 23

e A Formal Model [[Cangussu et al., 2002]
Current formal model of the software test process is based on the theory of process
control. Estimations of the number of remaining errors and schedule slippage are
performed at specific checkpoints inside a feedback control structure which helps
meet the schedule and quality requirements.

e Stochastic Control Model [Cangussu, 2003]
The stochastic control model is a variation of state variable model and formal
model of the software test process discussed above. This model is designed to
account for foreseen and unforeseen disturbances and noise in the date collection
process. The model has been verified with some simulation results while still
needs validation with actual project data.

e A Quantitative Learning Model [Abu et al., 2005]]
This model is also derived from the formal model of the software test process
described above. This approach investigates the effect of learning behavior and
experience to improve the software test process. Prediction process is improved
by adjusting different model parameters such as initial knowledge and learning
rate. The model has been validated with two large industrial case studies.

Some general aspects of concern about such mathematical models are:

e Model Validation: Usually these kinds of models are validated through simulation
runs, analytical approaches, or empirical investigations and industrial case stud-
ies. The models outlined above have been validated through simulation and same
two case studies applied to each of these model evaluations. We still need more
empirical studies on these models to highlight any new aspects of model behavior
and effect of different model parameters.

e Prediction Quality: One of the criticisms of software engineering research is
that it ignores evaluation [Zelkowitz and Wallace, 1997]. An evaluation of above
mentioned mathematical models involves assessment of their prediction quality.
Apel [Apel, 2005] mentions some criteria to evaluate prediction quality of such
mathematical models.

— Prediction Accuracy answers the question how accurate is the prediction.
— Prediction Distance determines how far in future does the prediction lie.

The models mentioned above need to be evaluated in the light of these criteria.
The only related evaluation reported by authors in this regard is a sensitivity anal-
ysis [Cangussu et al., 2003b]] of the state variable model discussed above. This
analysis attempts to quantify effects of parameter variations on the behavior of
the model such as its performance.

e Practical Application/Industrial Acceptance: The mathematical complexity in-
volved in construction and application of such models may be difficult to be han-
dled by process managers who usually do not have enough background in such
areas. In this case, a tool encapsulating mathematical procedures may simplify
adoption of these models in industry.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

24 2 Test Processes: Basics & Maturities %/

2.2.4 Test Process Standardization

This section will present a summary of the works of international standards bodies in
the area of software testing. These standards define requirements, methods, processes
and practices relevant to the testing area covered by them. Most such standards partially
focus some element of the testing process such as some particular level or type of testing
with the exception of [iee, 1998a]] and [iee, 1998c] which consider a broader range of
testing activities at the level of the whole process. Following standards exist in this
context;

¢ IEEE Standard on Unit Testing [iee, 1987]: Aimed at providing a standard ap-
proach to unit testing, this standard defines inputs, tasks, and outputs to each of
the eight activities defined as part of the unit testing process.

e IEEE Standard on Software Reviews [iee, 1997]]: This standard contains de-
tailed procedures for the five types of reviews. For each review type, it defines
input/output, entry/exit criteria, and procedures.

e IEEE Standard for Software Verification and Validation [iee, 1998al]: This
standard covers a broader perspective of all V&V activities with reference to each
of the software life cycle processes as defined in [iee, 1998c]|. It defines all kinds
of V&V activities alongside details of inputs, outputs, and tasks.

e British Computer Society Standard for Software Component Test-
ing [bcs, 2001]]: It concerns with test case design and test measurement tech-
niques, and procedures for testing software components. The standard also ad-
dresses evaluation of these techniques.

e ISO/IEC Standard for Information Technology-Software life cycle pro-
cesses [iee, 1998c]: Although this standard mainly covers complete life cycle
process for software development, it also refers to verification, validation, review,
and audit process as supporting life cycle processes and defines activities for each
of these processes.

2.3 Test Process Evaluation & Improvement

Evaluation theory [Ares et al., 1998] (figure 2.13)) defines six primary elements of any
process evaluation approach. These elements are target, criteria, reference standard,
assessment techniques, synthesis techniques, and evaluation process. The relationships
among these elements are mentioned in figure Existing software process and the
test process evaluation approaches can be framed inside this structure for comparison
and purpose of identifying missing elements.

Evaluation and improvement of software test process bears many similarities with
and borrows common concepts from that of the software process. A huge num-
ber of assessment and measurement techniques for generic software processes have
been developed over the years. Few examples involving explicit process measure-
ment are [Dumke et al., 2004]][Schmietendorf and Dumke, 2005]]. Therefore, prior to

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

\%/ 2.3 Test Process Evaluation & Improvement 25

Evaluation Theory

Reference Assessment Synthesis Evaluation
Standard Techniques Techniques Process

Target Criteria

Figure 2.13: Components of Evaluation Theory

Evaluation
Criteria

Evaluation
Process

Synthesis
Techniques

Gathering
Techniques

Figure 2.14: Components of Software Process Evaluation and Interrelationships

discussing individual test process evaluation, we should present a broad picture of these
available approaches in comparison to existing software process quality evaluation and
improvement models. Surveys of current software process quality models have been
given in [Tate, 2003]] [Komi-Sirvio, 2004, Ch. 3] while some future research direc-
tions in test process evaluation and improvement have been discussed by Farooq and
Dumke [[Farooq and Dumke, 2007b]]. Table [2.1] compares existing test process evalua-
tion approaches in comparison with those for generic software processes.

2.3.1 Qualitative Approaches

Most test process evaluation approaches have been qualitative in nature. The first well
known model of this kind is Testing Maturity Model (TMM) which was introduced in
1996. It was followed by Test Process Improvement (TPI) Model and Test Improve-
ment Model (TIM) both in 1997. Two later approaches were Metrics-based Verifica-
tion & Validation Maturity Model (M B — V2M?) and Test Process Assessment Model
(TPAM). The latest development in this direction is the Test Maturity Model Integrated
(TMM;). Figure 2.15]summarizes time-line of these test process evaluation models.
TIM [Ericson et al., 1998], and M B — V?M? [Jacobs and Trienekens, 2002 appear
to have vanished from literature probably due to their insignificance or incompleteness.
These two models along with TPAM [Chernak, 2004]] will be ignored here from fur-

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

26 2 Test Processes: Basics & Maturities %/

Table 2.1: Software Process vs. Test Process Research

Model Type Software Process Test Process
Management Deming’s Cycle TMap
QIP
IDEAL Model
ISO 15504 Part 7
Best Practices CMMI TMM
Bootstrap TPI
SPICE TMMi
ISO 9000-3 IEEE Std. V&V
IEEE Std. Unit
Testing
Measurement SPC Cangussu’s
GQM Mathematical Models
PSP
Product Quality ISO/IEC 25000 -
IEEE Std. 1061
Knowledge Management | Experience Factory (EF) | -

1993 1996 1997 2002 2004 2006 2008

TMMi

TPI TPAM / V 1.0

TMM

-\V/2M2
V10 TIM MB-V2M

Figure 2.15: History of Test Process Assessment Models & Dependencies

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Test Process Evaluation & Improvement 27

Table 2.2: Comparison of Test Process Assessment Models

Model Dependency | Approach | Scope

TMM

Testing Maturity Model CMM Implicit General

TPI

Test Process Improvement TMap Implicit Structured Testing
TMMi

Test Maturity Model Integrated | CMMI Implicit General

ther discussion. Below we present an overview of three [iving test process assessment
frameworks.

2.3.1.1 Testing Maturity Model (TMM)

Testing Maturity Model (TMM) was developed by Ilene Burnstein [Burnstein, 2003] to
assist and guide organizations focusing on test process assessment and improvement.
Since release of its first Version 1.0 in 1996 no further release has appeared. The prin-
cipal inputs to TMM were Capability Maturity Model (CMM) V 1.1, Gerlperin and
Hetzel’s Evolutionary Testing Model [Gelperin and Hetzel, 1988]], survey of industrial
testing practices by Durant [Durant, 1993|] and Beizer’s Progressive Phases of a Tester’s
Mental Model [Beizer, 1990]. It is perhaps the most comprehensive test process assess-
ment and improvement model to date.

TMM derives most of its concepts, terminology, and model structure from CMM.
This model consists of a set of maturity levels, a set of maturity goals and sub-goals
and associated activities, tasks and responsibilities (ATRs), and an assessment model.
The model description follows a staged architecture for process improvement models.
Relationships between its model elements have been summarized in figure [2.16]

TMM contains five maturity levels which define evolutionary path to test process
improvement. The contents of each level are described in terms of testing capability
organizational goals, and roles/responsibilities for the key players in the testing process,
the managers, developers/testers, and users/clients. Level 1 contains no goals and there-
fore every organization is at least at level 1 of test process maturity. The maturity goals
at each level of the TMM are shown in figure [2.17

A comparison of TMM with other test process improvement has been performed by
Swinkels [Swinkels, 2000]. He concludes that TMM and other test process improve-
ment models of its era appear to complement each other. Another detailed criticism
of TMM can be found in [Farooq et al., 2007b] which suggests some improvements to
model structure, an update to its assessment model, and an expansion of its process
areas.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

28 2 Test Processes: Basics & Maturities

indicaf%
Maturity goals

Testing
supported by

capability
Maturity subgoals

achieved by

Activities/Tasks/Responsibilities

addrizy organized by
Implementation and

organizational adaptation

Figure 2.16: Structure of Testing Maturity Model [Burnstein, 2003]

5: Optimization/Defect Prevention & Quality Control
- Test process optimization

- Quality control

- Application of process data for defect prevention

4: Management & Measurement

- Software quality evaluation

- Establish a test measurement program

- Establish an organizationwide review program

3: Integration

- Control and monitor testing process

- Integrate testing into software life cycle
- Establish a technical training program
- Establish a software test organization

2: Phase Definition

- Institutionalize basic testing techniques & methods
- Initiate a test planning process

- Develop testing and debugging goals

1: Initial

Figure 2.17: TMM Maturity Levels

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Test Process Evaluation & Improvement 29

Key Areas
(20)
‘ ‘ Test

Maturity
Matrix

Levels
(A, B, C, D)

Improvement

Checkpoints Suggestions

Figure 2.18: Structure of Test Process Improvement (TPIl) Model

2.3.1.2 Testing Process Improvement Model (TPI)

Test Process Improvement (TPI) E][Koomen and Pol, 1999 model is an industrial initia-
tive to provide test process improvement guidelines based on the knowledge and experi-
ences of a large number of professional testers. The first release of this model appeared
in 1997. The model has been designed in the context of structured high level testing.
It is strongly linked with the Test Management Approach (TMap) [Pol et al., 2002] test
methodology.

The model elements include several key areas, each with different levels of maturity.
A maturity matrix describes the levels of all key areas. Several checkpoints have been
defined corresponding to each maturity level; questions that need to be answered posi-
tively in order to classify for that level. Improvement suggestions, which help to reach
a desired level, are also part of the model.

The 20 key areas within TPI are organized by means of the four cornerstones of
structured testing as defined by TMap: life cycle, organization, infrastructure and tech-
niques. Level of achievement relevant to these key areas is defined through maturity
levels. There can be three to four maturity levels for each key area. Each level consists
of certain requirements (defined in terms of checkpoints) for the key area. Relationships
among TPI model elements are summarized in figure 2.18§]

Two world-wide surveys on adoption of TPI by software industry have been reported
in [Koomen, 2002][[Koomen, 2004]. These surveys reported positive improvements and
better control of the testing process by the organizations applying the TPI model. Criti-
cal review and comparisons of TPI with other test process improvement models can be
found in [Swinkels, 2000][Goslin et al., 2008, p. 70].

2.3.1.3 Test Maturity Model Integrated (TMM/)

TMM: is being developed by a non-profit organization called TMMi Foundation.
This framework is intended to complement Capability Maturity Model Integration
(CMMI) with a special focus on testing activities and test process improvement in

http://www.sogeti.nl/Home/Expertise/Testen/TPLjsp

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

http://www.tmmifoundation.org/

30 2 Test Processes: Basics & Maturities \%

both the systems engineering and software engineering discipline. An initial version
1.0 [Goslin et al., 2008]] of this framework has been released in February 2008. The
current version follows staged representation and provides information only up to ma-
turity level 2 out of the five proposed levels. The assessment framework itself is not part
of TMM: and has not been released yet.

TMMi borrows its main principles and structure from Capability Matu-
rity Model Integration (CMMI), Gelperin and Hetzel’s Evolution of Testing
Model [|Gelperin and Hetzel, 1988]], Beizer’s testing model [Beizer, 1990], IEEE Stan-
dard for Software Test Documentation [iee, 1998b]], and ISTQB’ Standard Glossary of
terms used in Software Testing [ist, 2006]. Similar to CMMI, this framework defines
three types of components.

e Required: These components describe what an organization must achieve to sat-
isfy a process area. Specific and generic goals make up required component of
TMMi.

e Expected: These components describe what an organization will typically im-
plement to achieve a required component. Expected components include both
specific and generic practices.

e Informative: These components provide details that help organizations get
started in thinking about how to approach the required and expected components.
Sub-practices, typical work products, notes, examples, and references are all in-
formative model components.

The TMM:i model required, expected, and informative components can be summa-
rized to illustrate their relationship as in figure 2.19] To each maturity level several
process areas are associated which in turn involve several generic and specific goals and
generic and specific practices. Informative components such as typical work products,
notes, and examples describe other components.

TMMi defines five maturity levels. A maturity level within this framework indicates
the quality of organizational test process. To reach a particular maturity level, an organi-
zation must satisfy all of the appropriate goals (both specific and generic) of the process
areas at the specific level and also those at earlier maturity levels. All organizations
possess a minimum of TMMi level 1, since this level does not contain any goals that
must be satisfied. Figure [2.20 summarizes the maturity levels of this framework.

Test Maturity Model Integrated is no doubt a long awaited enhancement to its prede-
cessor Testing Maturity Model. Below we present some critical observations of TMM.i.

e The model description is yet incomplete since the currently available document
only provides information up to maturity level 2.

e The assessment framework for TMM:i is also not part of current release and is not
yet publicly available.

e The current release of TMMi provides only a staged model representation. This
same limitation was also observed for TMM [Farooq et al., 2007b]. A continu-
ous representation on the other hand lets an organization to select a process area

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Test Process Evaluation & Improvement 31

Scope
Definition

Purpose
Process Area Statement

Introductory
Notes

Maturity Level

Generic Goals Specific Goals

Generic
Practices

Specific
Practices

. . Typical Work
Elaborations Subpractices yp
Products

Figure 2.19: Structure of Test Maturity Model Integrated (TMM/)

(or group of process areas) and improve processes related to it. While staged
and continuous representations have respective pros and cons, the availability
of both representations provides maximum flexibility to organizations to address
their particular needs at various steps in their improvement programs.

e TMM: is designed to be a complementary model to CMMI. The model descrip-
tion [Goslin et al., 2008, p. 6] states that "in many cases a given TMMi level
needs specific support from process areas at its corresponding CMMI level or
from lower CMMI levels. Process areas and practices that are elaborated within
the CMMI are mostly not repeated within TMMj; they are only referenced". Now
there are organizations which offer independent software testing services. Such
or other organizations may solely want to concentrate on improvement of their
testing process only. Strong coupling and references between TMMi and CMMI
may limit independent adoption of this framework without implementing a CMMI
process improvement model.

After reading through the above mentioned model descriptions, the reader might
be interested in a more systematic and deeper analysis and comparison among these
models. Two comparison frameworks applicable in this context are worth mention-
ing here. First is a generic taxonomy [Halvorsen and Conradi, 2001]] to compare soft-
ware process improvement (SPI) frameworks which can also be applied to compare
test process improvement models. The second is a specialized evaluation frame-

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

32 2 Test Processes: Basics & Maturities

5: Optimization

- Defect Prevention

- Test Process Optimization
- Quality Control

4: Management and Measurement
- Test Measurement

- Software Quality Evaluation

- Advanced Peer Reviews

3: Defined

- Test Organization

- Test Training Program

- Test Life Cycle and Integration
- Non-functional Testing

- Peer Reviews

2: Managed

- Test Policy and Strategy

- Test Planning

- Test Monitoring and Control
- Test Design and Execution
- Test Environment

1: Initial

Figure 2.20: TMM/ Maturity Levels

work [Farooq and Dumke, 2007a]] for comparing test process improvement approaches.
The later also compares characteristics of some of the above mentioned test maturity
models.

2.3.2 Quantitative Approaches

Quantitative approaches to process management work by evaluating one or more of
its attributes through measurement. The measurement information so obtained reflects
some key characteristics of measured process such as size, involved effort, efficiency,
and maintainability etc. The objectivity of the information provides possibility of pre-
cise and unbiased evaluation as compared to that obtained through assessments. Al-
though several measurement tools and frameworks exist for the generic software process
and can possibly be tailored to test process with minor or major changes, but very few
have been developed solely for the test process. Measurement techniques for software
test process exist broadly in the form of metrics for the test process. The next section
analyzes available metrics in this area.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

2.3 Test Process Evaluation & Improvement 33

Table 2.3: Existing Test Metrics Resources

Reference Test Aspect Covered
[Hutcheson, 2003, Ch. 5] Some fundamental test metrics
[Rajan, 2006][Harris, 2006] test cases, coverage, failure

[Whalen et al., 2006][Verma et al., 2005]]
[Sneed, 2005][Peng and Wallace, 1994]

[Burnstein, 2003} p. 266][[Chen et al., 2004]] testing status, tester productivity
test effectiveness

[Nagappan et al., 2005]][[Kan et al., 2001]] in-process metrics
[Chaar et al., 1993]|[Kan, 2002, Ch. 10]

[Liggesmeyer, 1995]] test complexity
[Suwannasart and Srichaivattana, 1999]

[Burnstein, 2003, p. 372] test process metrics
[Pusala, 2006][Sneed, 2007 miscellaneous

[Abran et al., 2004, p. 5-7][Perry, 2006, Ch. 13]

2.3.2.1 Test Process Metrics

Like other knowledge areas within software engineering, testing related measures are
very helpful to managers to understand, track, control, and improve the testing process.
For example, metrics of testing costs, test effectiveness, tester productivity, testability,
test cases, coverage, defects and faults and other similar aspects can give us very valu-
able insight about many different aspects of software testing. Realizing necessity of
such measurements, a number of test process metrics have been proposed and reported
in literature. However, with few exceptions, test metrics definitions found in literature
do not explicitly state if a metric is related to test process or some other aspect of soft-
ware testing. The table [2.3| provides a non-comprehensive list of test metrics definitions.
Nonetheless, we can distinguish several of these metrics which are meaningful at the
process level only, for example few maturity level metrics and process progress and ef-
fectivity metrics. Availability of so many metrics may sometimes confuse practitioners
rather than help them. A well organized list of these metrics may help a test manager
better understand metrics available at hand and to select them according to particular
situations and needs. Feeling this need, Farooq et al. [Farooq et al., 2008] presented a
classification of test metrics considering various test contexts. The authors also reviewed
available test related metrics and existing test metrics classifications. Figure [3.1| shows
Farooq’s [Farooq et al., 2008] classification of test metrics. Another related approach to
classify software process metrics was presented by Dumke et al. [Dumke et al., 2006b].
An examination of literature on test related metrics has revealed that research in this
context is as yet immature. Each of set existing test metrics have been defined only in a
confined context, serving the need of some particular analysis problem of a given testing
aspect. We still lack widely known common set of test metrics. Moreover, existing test
metrics remain poorly validated both from theoretical and empirical point of view.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

34 2 Test Processes: Basics & Maturities

Example Metrics Classes Process Phases/

Maturity Level
A
Test cost estimation (time, effort) \ completion—{—
Testability (unit, system) execution——
N < §\6
- & &
Testing status (coverage, test cases) specification—— &6& @‘Q (;\\“Q’ ,6@
) & Y < >
planning & control—{— $ "\‘ “’sfi\ ‘é\
Tester productivity T I I I >
thigs used Process Goals
Test efficiency (errors, faults, failures) activity elements
things consumed

Test completion (milestones, adequacy) thigs held
hings produced

Process Entities

Figure 2.21: Classification of test process metrics [Farooq et al., 20073]

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

3 Test Techniques: Fundamentals
& Efficiencies

There are many reasons why the evaluation of testing techniques should be carried out.
Issue of technique selection is one reason. We need to assess fault finding capability
of candidate testing techniques. This kind of information is useful before we have im-
plemented a given technique, but the same information is also useful (as a post mortem
analysis) when we are finished with testing. This post-implementation assessment and
analysis is needed for subsequent improvement of the technique to increase its effec-
tiveness. This chapter surveys testing techniques, empirical knowledge about them, and
existing ways for assessing them from different quality perspectives.

Before diving into a review and analysis of testing techniques lets first try to under-
stand some overlapping terms in this context such as testing, verification, validation,
static, and dynamic techniques. Following the traditional definition of V&V and testing
given by IEEE [iee, 19901, testing refers to those techniques which involve execution of
software code. However, a contemporary resource of testing related glossary provided
by International Software Testing Qualification Board [ist, 2000] defines static testing
and dynamic testing uniquely which closely overlap with commonly known definitions
of verification and validation respectively. We will follow this later definitions of test-
ing.

Software testing literature contains rich source of several books and articles ex-
plaining various kinds of testing techniques. Some well known resources include
Beizer [Beizer, 1990], Perry [Perry, 2006, Ch. 17], Liggesmeyer [Liggesmeyer, 2002],
Tian [Tian, 2005, Ch. 8-11], Pezze and Young [Pezze and Young, 2007]]. It seems
appropriate here to first draw a wide picture of available techniques by present-
ing their classification. = Some classes of testing techniques have been given
in [Abran et al., 2004]][Harkonen, 2004, p. 26][Juristo et al., 2004al][Tian, 2005]].
However we prefer classification of testing techniques given by Ligges-
meyer [Liggesmeyer, 2002, p. 34] which seems to be quite comprehensive in
covering available techniques. The testing techniques reviewed in this chapter have
been organized based on this classification. Figure |3.1| is a modified version of his
classification.

3.1 Static techniques

Static testing techniques are usually applied at the initial steps in software testing. These
are verification techniques which do not employ actual execution of code/program.
These techniques attempt to ensure that organizational standards and guidelines for cod-
ing and design are being followed. Formal verification, inspection, reviews, and mea-

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

36 3 Test Techniques: Fundamentals & Efficiencies

Formal Verification

— Verification

Symbolic Verification

Static Techniques —

Test Measures

] Analysis

Reviews

0
% Control-flow Oriented
g — Structure Oriented
% Data-flow Oriented
(¢)]
[
(@)
c Functional Equivalence Classes
o
8 — Function Oriented
—
Decision Tables based Testing
Regression Tests
Dynamic Techniques — | Diversifying

Mutation Tests

Path Range Testing

—— Domain Testing

e e e T e

Partition Analysis

— Statistical Testing

— Miscellaneous Error Guessing

— Limit Value Analysis

Figure 3.1: Liggesmeyer’s classification of testing techniques

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 3.1 Static techniques 37

surement are main types of static techniques. Table [3.1] presents an abridged summary
of static testing techniques.

Table 3.1: Summary of Static Testing Techniques

Category Technique Description

Verification Formal Verification Analyzes correctness of software systems based
on their formal specification.
Symbolic Verification Program is executed by replacing symbolic
values in place of original program variables
to provide general characterization of program

behavior.
Analysis Measurement Provides quantitative view of various

attributes of testing artifacts.

Review A work product is examined for defects by
individuals other than the producer.

Inspection Disciplined engineering practice for detecting
and correcting defects in software artifacts

Walk-through The producer describes the product and asks
for comments from the participants.

Audit An independent examination of work products

to assess compliance with specifications,
standards, or other criteria.

Slicing Technique for simplifying programs by focusing
on selected aspects of semantics for debugging.

3.1.1 Verifying

Formal specifications is a way to precisely describe customer requirements, environ-
mental constraints, and design intentions to reduce the chances of common specification
errors. Verifying techniques check the conformance of software design or code to such
formal specifications of the software under test. Verifying techniques are mainly fo-
cused on investigating functional requirements and aspects such as completeness, clar-
ity, and consistency. Only a few of some well known techniques of this type will be
discussed below. Verification techniques for several kinds of software programs are
given in [Francez, 1992].

3.1.1.1 Formal verification

Formal verification is the use of mathematical techniques to ensure that a de-
sign conforms to some precisely expressed notion of functional correctness. Soft-
ware testing alone cannot prove that a system does not have a certain defect, nei-
ther can it prove that it does have a certain property. The process of formal
verification can prove that a system does not have a certain defect or does have

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

38 3 Test Techniques: Fundamentals & Efficiencies

intx,y; — x=1,y=0 x=Ay=B
if (x>y) { 4 1>20 A>?B
X=X+Y; ————> x=1+0=1 —> [[A<=B]END [A>B]x=A+B
A
y=X-Y; — y=1-0=1 [A>B]y=A+B-B=A
X=X-Y; — x=1-1=0 [A>B]x=A+B-B=A
A
if(x-y>0) —————~ 0-1>?0 [A>B]B-A>?0
assert (false); [A>B,B—A<=0]END [A>B,B—A>0]END
}

Figure 3.2: An Example of Symbolic Execution

a certain property. Formal verification offers rich toolbox of mathematical tech-
niques such as temporal-logic model checking, constraint solving and theorem prov-
ing [Liittgen, 2006]. Clarke [Clarke and Wing, 1996]] mentions two well established ap-
proaches to verification: model checking and theorem proving. Two general approaches
to model checking are temporal model checking in which specifications are expressed
in a temporal logic and systems are modeled as finite state transition systems while
in second approach the specification is given as an automaton then the system, also
modeled as an automaton, is compared to the specification to determine whether or not
its behavior conforms to that of the specification [Clarke and Wing, 1996]. One of the
most important advances in verification has been in decision procedures, algorithms
which can decide automatically whether a formula containing Boolean expressions, lin-
ear arithmetic, enumerated types, etc. is satisfiable [Heitmeyer, 2005].

3.1.1.2 Symbolic testing

Symbolic testing [King, 1976][Pezze and Young, 2007, Ch. 19] or symbolic execution
is a program analysis technique in which a program is executed by replacing symbolic
values in place of original program variables. This kind of testing is usually applied
to selected execution paths as against formal program verification. Symbolic execution
gives us a general characterization of program behavior which can help us in design-
ing smarter unit tests [Tillmann and Schulte, 2006]] or in generating path-oriented test
data [Zhang et al., 2004]. Figure [3.2] gives an example of symbolic execution. Although
this technique was developed more than three decades before, it has only recently be-
come practical with hardware improvements and automatic reasoning algorithms.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 3.1 Static techniques 39

3.1.2 Analyzing

Analyzing techniques attempt to find errors in software without executing it. However
these techniques are not just limited to checking software entities but also involve re-
viewing designs and relevant documents. The main premise behind these techniques
is that an earlier detection of bugs in software is less expensive than finding and fixing
them at later development stages. These techniques analyze requirements, specifica-
tions, designs, algorithms, code, and documents. Examples of these techniques are;

e test measurements e walk-throughs
e inspections e audits
® reviews

3.1.2.1 Test measures

Measurement is a static analysis technique which can give us valuable information even
before actually executing dynamic tests. Size, effort, complexity, and coverage like
information can readily be obtained with the help of numerous test metrics. A detailed
review of test related metrics has already appeared in this text in chapter 1 (under the
section ’test process metrics’).

3.1.2.2 Software reviews, inspections and walk-throughs

Software reviews [Hollocker, 1990] as defined by IEEE [iee, 1990] is a process or meet-
ing during which a work product, or set of work products, is presented to project per-
sonnel, managers, users, customers, or other interested parties for comment or approval.
IEEE standard [iee, 1997]] which defines requirements for software reviews describes
five types of reviews as management reviews, technical reviews, inspections, walk-
throughs, and audits. Slightly different opinions over review types have been main-
tained by Ebenau et al. [Ebenau and Strauss, 1994] and Galin [Galin, 2004]].

Reviews are usually performed for code, design, formal qualification, requirements,
and test readiness etc. Since it is virtually impossible to perform full software testing,
reviews are used as an essential quality control technique. A review increases the quality
of the software product, reduces rework and ambiguous efforts, reduces testing and
defines test parameters, and is a repeatable and predictable process [Lewis, 2004].

3.1.2.3 Fagan Inspections

Fagan inspection refers to a structured process of trying to find defects in development
documents such as programming code, specifications, designs and others during various
phases of the software development process. In a typical Fagan inspection the inspection
process consists of the operations shown in figure 3.3

Surveys, state-of-the-art studies, and future research directions within software
reviews and inspections have been given by Aurum et al. [Aurum et al., 2002],
Laitenberger [Laitenberger, 2002], and Ciolkowski [Ciolkowski et al., 2002]]. An-
other very recent industrial practice survey of software reviews was performed by

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

40 3 Test Techniques: Fundamentals & Efficiencies

A 4

A 4
A 4

Rework

A

Meeting

A

Planning > Overview Preparation Followup

Figure 3.3: Fagan inspection basic model [Fagan, 1986]

Ciolkowski [Ciolkowski et al., 2003]]. The authors concluded that "companies conduct
reviews regularly but often unsystematically and full potential of reviews for defect re-
duction and quality control is often not exploited adequately".

A recent case study to judge effectiveness of software development technical re-
views (SDTR) [Sauer et al., 2000]] has concluded that the most important factor in de-
termining the effectiveness of SDTRs is the level of expertise of the individual re-
viewers. Additionally, this study highlights three ways of improving performance:
selection of reviewers who are expert at defect detection; training to improve indi-
viduals’ expertise; and establishing group size at the limit of performance. Another
study [Laitenberger et al., 1999] reported similar results rates preparation effort as the
most important factor influencing defect detection capability of reviews.

3.2 Evaluation of Static Techniques

3.2.1 Evaluation criteria & methods

As observed in literature, the evaluation criteria for static testing techniques has largely
been their ability for detecting defects, costs incurred, or expended time and effort.
Lamsweerde [van Lamsweerde, 2000] mentions few qualitative criterion for evaluating
specification techniques, namely constructibility, manageability, evolvability, usability,
and communicability. Some of these attributes are applicable to other static techniques
as well. For determining return on investment (ROI) for software inspection process,
Rico [Rico, 2004]] specifies several methodologies to determine benefit, benefit/cost ra-
tio, return on investment percentage, and net present value of software inspections. Wu
et al. [Wu et al., 2005]] incorporate number of remaining faults in a Bayesian network
model of the inspection process to measure its effectiveness. Another example of simi-
lar a model-based approach in this direction is [Freimut and Vollei, 2005]]. An empirical
technique for comparing inspection and testing has been worked out by Andersson et
al [Andersson et al., 2003]]. One of the very few approaches for evaluating formal ver-
ification techniques is [Wang et al., 1998]] which involves an experiment for measuring
effectiveness of design validation techniques based on automatic design error injection
and simulation.

3.2.2 Evaluation results

Summarizing studies conducted by various researchers to evaluate the effectiveness of
inspections as compared to testing , Eickelmann et al. [Eickelmann et al., 2002] men-
tion that inspections are two times more effective than tests to identify errors, cause

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 3.3 Dynamic techniques 41

four times less effort than tests and are 7.4 times more productive than tests. However
a recent case study [[Chatzigeorgiou and Antoniadis, 2003]] has identified that project
planning methodologies, as currently applied in software project management, do not
account for the inherent difficulties in planning software inspections and their related
activities and as a result, inspection meetings accumulate at specific periods towards the
project deadlines, possibly causing spikes in the project effort, overtime costs, quality
degradation and difficulties in meeting milestones.

Finally, our analysis of literature on software reviews and inspections has revealed
that current research in this area is now not focusing much on developing new inspection
or review techniques. Rather, the modern (and some past) research effort is now being
devoted mainly to studying factors that influence success and efficiency of reviews and
inspections and to evaluating (relative) effectiveness of these techniques in comparison
to other testing and related techniques.

3.3 Dynamic techniques

Dynamic testing techniques involve tests which employ system operation or code ex-
ecution. Two broad categories of such dynamic methods exist, structural-based and
functional-based. Dynamic techniques that exploit the internal structure of the code are
known as structural, white-box, glass-box or coverage based tests. In contrast, those that
do not involve the internal structure of the code are known as functional, black-box, be-
havioral or requirement-based tests. We will discuss these kinds of testing in the coming
sections. Table[3.2]presents a very short summary of dynamic testing techniques.

3.3.1 Structure oriented

Types of testing techniques under this category exploit structural information about the
software to derive test cases as well as determining coverage and adequacy of these test
cases. In this context, data element and control element are two main elements in any
computation or information processing task that are grouped through some implemented
algorithms. Structural testing techniques [Pezze and Young, 2007, Ch. 12] are mainly
based on this control-flow and data-flow information about our code design.

3.3.1.1 Control-flow oriented

Control-flow testing focuses on the complete paths and the decisions as well as interac-
tions along these execution paths. Control flow elements that may be examined are state-
ments, branches, conditions, and paths. These elements are also generally considered
for coverage criteria. For most computation intensive applications, which cover most
of the traditional software systems, mere state and link coverage would not be enough
because of the interconnected dynamic decisions along execution paths [Tian, 2005].
Therefore, control-flow testing is generally a necessary step among the variety of test-
ing techniques for such systems.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

42 3 Test Techniques: Fundamentals & Efficiencies
Table 3.2: Summary of Dynamic Testing Techniques
Category Technique Description
Structured Data-flow Select test cases based on program path to
oriented oriented explore sequences of events related to the
data state.

Control-flow Select test cases using information on

oriented complete paths and the decisions as well
as interactions along these execution paths

Function Functional equivalence Input domain of the software under test is
oriented classes partitioned into classes to generate one
test case for each class.

Decision tables Select test cases exploiting information
on complex logical relationships between
input data.

Cause-and-effect Causes and effects in specifications are

graphs drawn to derive test cases.

Syntax testing Test cases are based on format specification
obtained from component inputs.

Diversifying Regression testing Selective retesting of a system to verify

Domain Testing

Miscellaneous

Mutation testing

Back-to-back testing

Partition analysis

Statistical testing

Error guessing

that modifications have not caused
unintended effects.

Works by modifying certain statements in
source code and checking if test code

is able to find the errors.

For software subject to parallel
implementation, it executes tests on similar
implementations and compares the results.

Compares a procedure’s implementation
to its specification to verify consistency
between the two and to derive test data.

It selects test cases based on usage model
of the software under test.

Generate test cases based on tester’s
knowledge, experience, and intuition of
possible bugs in the software under test.

FIN-1VS, Otto-von-Guericke-University of Magdeburg

Ayaz Farooq

%/ 3.3 Dynamic techniques 43

3.3.1.2 Data-flow oriented

Data-flow testing [Pezze and Young, 2007, Ch. 13][Beizer, 1990, Ch. 5] is based on
principle of selecting paths through the program’s control flow in order to explore se-
quences of events related to the status of data objects, for example, pick enough paths
to assure that every data object has been initialized prior to use or that all defined ob-
jects have been used for something. It attempts to test correct handling of data depen-
dencies during program execution. Program execution typically follows a sequential
execution model, so we can view the data dependencies as embedded in the data flow,
where the data flow is the mechanism that data are carried along during program ex-
ecution [Tian, 2005]. Data flow test adequacy criteria improve over pure control flow
criteria by selecting paths based on how one syntactic element can affect the computa-
tion of another.

3.3.2 Function oriented

IEEE [iee, 1990] defines function oriented testing or black-box testing as:

e Testing that ignores the internal mechanism of a system or component and fo-
cuses solely on the outputs generated in response to selected inputs and execution
conditions.

e Testing conducted to evaluate the compliance of a system or component with
specified functional requirements.

This type of testing does not exploit any knowledge about inner structure of the
software. It can be applied towards testing of modules, member functions, object
clusters, subsystems or complete software systems. The only system knowledge used in
this approach comes from requirement documents, specifications, domain knowledge or
defect analysis data. This approach is specifically useful for identifying requirements or
specifications defects. Several kinds of functional test approaches are in practice such as

e decision tables e boundary value testing

e functional equivalence classes e database integrity testing
e domain testing e cause-effect analysis

e transaction-flow based testing e orthogonal array testing
e array and table testing e exception testing

e limit testing e random testing

Out of these, only a few commonly used techniques will be discussed in the coming
sections.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

44 3 Test Techniques: Fundamentals & Efficiencies %/

3.3.2.1 Functional equivalence classes

This technique is used for minimizing the test cases that need to be performed in order
to adequately test a given system. It produces a partitioning of the input domain of the
software under test. The finite number of equivalence classes that are produced allow the
tester to select a given member of an equivalence class as a representative of that class
and the system is expected to act the same way for all tests of that equivalence class. A
more formal description of equivalence classes has been given by Beizer [Beizer, 1993].
While Burnstein [Burnstein, 2003]] regards derivation of input or output equivalence
classes mainly a heuristic process, Meyers [Myers, 2004] suggests some more specific
conditions as guidelines for selecting input equivalence classes.

3.3.2.2 Cause-and-effect graphing analysis

Equivalence class partitioning does not allow combining conditions. Cause-and-effect
graphs can be used to combine conditions and derive an effective set of test cases that
may disclose inconsistencies in a specification. Based on some empirical studies, Parad-
kar [Paradkar, 1994] relates some experiences of using cause-effect graphs for software
specification and test generation. He found it very useful in reducing the cardinal-
ity of the required test suite and in identifying the ambiguities and missing parts in
the specification. Nursimulu and Probert [Nursimulu and Probert, 1995]] and Adler and
Gray [Adler and Gray, 1983|] pointed out ambiguities and some known drawbacks to
cause-effect graphing analysis. Tai and Paradkar [Tai et al., 1993]] developed a fault-
based approach to test generation for cause-effect graphs, called BOR (Boolean opera-
tor) testing, which is based on the detection of boolean operator faults.

3.3.2.3 Syntax testing

Syntax testing [Beizer, 1995]|][Liggesmeyer, 2002], also called grammar-based testing,
is a testing technique for testing applications where the input data can be described for-
mally. Some example domains where syntax testing is applicable are GUI applications,
XML/HTML applications, command-driven software, scripting languages, database
query languages and compilers. According to Beizer [Beizer, 1995], syntax testing be-
gins with defining the syntax using a formal meta-language such as Backus-Naur form
(BNF) which is used to express context-free grammars and is a formal way to describe
formal languages is the most popular. Once the BNF has been specified, generating a
set of tests that covers the syntax graph is a straightforward matter.

The main advantage with syntax testing is that it can be automated, easily making
this process easier, reliable and faster. Tools exist that support syntax testing. Tal et
al. [Tal et al., 2004]] performed a syntax-based vulnerability testing of frame-based net-
work protocols. Marquis et al. [Marquis et al., 2005] explain a language called SCL
(structure and context-sensitive) that can describe the syntax and the semantic con-
straints of a given protocol, and constraints that pertain to the testing of network ap-
plication security. Their method reduces the manual effort needed when testing imple-
mentations of new (and old) protocols.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 3.3 Dynamic techniques 45

3.3.3 Diversifying

The diversifying test techniques pursue quite different goals. Diversifying test tech-
niques do not serve in contrast to the structure-oriented or function-oriented test tech-
niques. A goal of the diversifying test techniques is to sometimes avoid the often hardly
possible evaluation of the correctness of the test results against the specification. Differ-
ent types of diversifying techniques are back-to-back test, mutation test, and regression
tests [Liggesmeyer, 2002]. Only regression testing, being probably the most widely
researched technique in this category, will be discussed next.

3.3.3.1 Regression tests

Regression testing is defined by IEEE [iee, 1990] as selective retesting of a system or
component to verify that modifications have not caused unintended effects and that the
system or component still complies with its specified requirements. Regression tests
may apply at any level of testing such as unit tests etc to confirm no undesired changes
have occurred during functional improvements or repairs.

The main issues in regression testing include;

e Removal of redundant and obsolete test cases
e Test case selection to reduce cost and time of retesting

The new version of software involve structural or other changes to modules which
renders some of the previous test cases non-executable. Redundant test cases are those
that are still executable but are irrelevant with rest to testing criteria. Re-executing all
test cases other than obsolete and redundant affects regression testing complexity, effort
and cost. We must select a suitable subset of these test cases. A number of techniques
exist which attempt to reduce the test suite in this case. Some of these approaches are;

e Test case prioritization

e Test case selection

— Code based

Specification based

Control-flow based

Data-flow based

Random sampling

Several regression testing techniques exist for specific problem situation. Muc-
cini et al. [Muccini et al., 2005a] [Muccini et al., 2005bf] [Muccini et al., 2006] explore
how regression testing can be systematically applied at the software architecture level
in order to reduce the cost of retesting modified systems, and also to assess the re-
gression testability of the evolved system. Few other recently developed regression
testing techniques include a scenario-based functional regression testing [Paul, 2001],

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

46 3 Test Techniques: Fundamentals & Efficiencies %/

regression testing for web-applications based on slicing [Xu et al., 2003]], agile re-
gression testing using record & playback [Meszaros, 2003], and regression test-
ing technique for component-based software systems by enhancing change informa-
tion [Mao and Lu, 2005]).

Regression test selection and prioritization: Rothermel et
al. [Rothermel et al., 2001]] analyze few techniques for test case prioritization based on
test case’s code coverage and ability to reveal faults. Their analysis shows that each of
the prioritization techniques studied improved the rate of fault detection of test suites,
and this improvement occurred even with the least expensive of those techniques. Harry
Sneed [Sneed, 2004]] considers a problem which arises in the maintenance of large sys-
tems when the links between the specification based test cases and the code components
they test are lost. It is no longer possible to perform selective regression testing because
it is not known which test cases to run when a particular component is corrected or
altered. To solve this problem, he proposes applying static and dynamic analysis of
test cases. Other techniques include a new regression test selection technique for Java
programs that is claimed to be safe, precise, and yet scales to large systems presented by
Orso et al. [Orso et al., 2004], a regression test selection method for Aspect] program
by Zhao et al. [Zhao et al., 2006]], a regression test selection method for aspect-oriented
programs by Guoqing Xu [Xu, 2006]], a regression testing selection technique when
source code is not available by Jiang Zheng [Zheng, 2005]], and regression test selection
method for COTS-based applications by Zheng et al. [Zhao et al., 20006].

Analysis of regression test techniques: Several other research works have
performed cost-benefit or effectiveness analysis of regression test selection tech-
niques. These include Rothermel and Harrold [Rothermel and Harrold, 1994,
Harrold and Jones [[Harrold et al., 2001]], Graves and Harrold [Graves et al., 2001]],
Bible and Rothermel [Bible et al., 2001]], Malishevsky and Rother-
mel [Malishevsky et al., 2002]], Gittens and Lutfiyya [Gittens et al., 2002], and
Rothermel and Elbaum [Rothermel et al., 2004]. These studies reveal that very few
safety-based regression test selection techniques exist as compared to coverage-based
techniques. Although the safety-based techniques were most effective in detecting
faults, yet such techniques could not considerably reduce the test suite. The minimiza-
tion techniques produced smallest and least effective set suites while safe and data-flow
techniques had nearly equivalent behavior in terms of cost effectiveness.

3.3.4 Domain Testing

Selection of appropriate test data from input domain maximizing fault detection capa-
bility and minimizing costs is one major problem in black-box test design approach.
Domain testing [Liggesmeyer, 2002, p. 190] attempts to partition the input domain and
to select best representatives from these partitions to achieve these goals. Path analysis,
partition testing, and random testing are usually used to short-list test data in domain
testing.

Much research effort has been devoted to comparative analysis of these different do-
main testing approaches and varying opinions have been held by researchers. According
to Gutjahr [Gutjahr, 1999], "in comparison between random testing and partition test-
ing, deterministic assumptions on the failure rates systematically favor random testing,

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

%/ 3.4 Evaluation of Dynamic Techniques 47

and that this effect is especially strong, if a partition consists of few large and many
small sub-domains". He maintains that partition testing is better at detecting faults than
random testing. In a later work, Ntafos [Ntafos, 2001]] concluded that although partition
testing generally performs better than random testing, the result can be reversed with a
little addition in number of test cases.

3.4 Evaluation of Dynamic Techniques

A rich body of research work is available concerning evaluation of dynamic testing
techniques as compared to static techniques. This research work has mainly been trig-
gered by a need to select an appropriate technique among the many competing ones or
due to an interest in validating usefulness or effectiveness of a given technique. For a
given testing problem, there may exist several techniques of the same kind which differ
by the underlying mechanism. Several regression testing techniques are available, they
belong to same family, yet they follow a different way to solve the problem at hand.
Contrary to this are techniques which solve the same testing problem, but exploit totally
different set of information for the purpose. For example, the aim of control-flow and
data-flow techniques is to generate tests but both of them derive these test cases quite
differently. Following this distinction, Juristo et al. [Juristo et al., 2004a] identify two
classes of evaluation studies on dynamic techniques as inter-family, and intra-family,

e Intra-family studies
— Studies on data-flow testing techniques
— Studies on mutation testing techniques

— Studies on regression testing techniques

e Inter-family studies
— Comparisons between control-flow, data-flow and random techniques.
— Comparisons between functional and structural control-flow techniques.
— Comparisons between mutation and data-flow techniques.

— Comparisons between regression and improvement techniques.

We have already discussed inter-family analyses of individual techniques in respec-
tive sections. This section deals with wider range of intra-family studies over the state
of research covering all dynamic testing techniques.

3.4.1 Evaluation criteria & methods

Three directions of research have been found related to evaluation of dynamic tech-
niques,

1. Actual evaluations and comparisons of testing techniques based either on analyt-
ical or empirical methods

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

48 3 Test Techniques: Fundamentals & Efficiencies %/

2. Evaluation frameworks or methodologies for comparing and/or selecting testing
techniques

3. Surveys of empirical studies on testing techniques which have summarized avail-
able work and have highlighted future trends

During the past few decades, a large number of theoretical and empirical eval-
uations of numerous testing techniques have been executed. Morasca and Capiz-
zano [Morasca and Serra-Capizzano, 2004] presented an analytical technique that is
based on the comparison of the expected values of the number of failures caused by
the applications of testing techniques, based on the total ordering among the failure
rates of input sub-domains. They have also reviewed other approaches that compare
techniques using expected number of failures caused or the probability of causing at
least one failure.

The second stream of research in evaluation of dynamic technique is devel-
oping framework or guidelines for comparing and thus selecting an appropri-
ate testing technique for a given problem domain. Some such frameworks
are [Hierons, 2004]][Misra, 2005]][Eldh et al., 2006]. The most commonly considered
attributes of test techniques are their efficiency, effectiveness, and applicability in de-
tecting errors in programs. However, the major problems with these comparison frame-
works are that they treat all types of faults and the underlying programs on which these
techniques are to be evaluated as equal which can affect validity of such comparison
results.

3.4.2 Evaluation results

Juristo [Juristo et al., 2002][Juristo et al., 2004a]|[Juristo et al., 2004b|] performed very
comprehensive analysis of several years of empirical work over testing techniques. She
has highlighted following issues with current studies namely,

e Informality of the results analysis (many studies are based solely on qualitative
graph analysis)

e Limited usefulness of the response variables examined in practice, as is the case
of the probability of detecting at least one fault

e Non-representativeness of the programs chosen, either because of size or the num-
ber of faults introduced

e Non-representativeness of the faults introduced in the programs

An analysis of the maturity of empirical studies of various testing techniques has
been given in [Juristo et al., 2004bl]. Figure has been adapted from the summary
given therein. Additionally, Briand and Labiche [Briand and Labiche, 2004]] discussed
issues facing empirical studies of testing techniques. Criteria to quantify fault-detection
ability of a technique is one such issue, while threats to validity arising out of the exper-
imental setting (be it academic or industrial) is another. They suggest using (common)
benchmark systems for such empirical experiments and standardizing the evaluation
procedures.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

49

3.4 Evaluation of Dynamic Techniques

Jns1aloRIBYD BY) 193U JoU Saop Apnis [eouidwg

onsuaioeIeYd 8yl s1eaw Ajrensed Apnis [eouidw3

onsuaorIRYD By} s19aw Ajny Apnis reauidwg .

aouanbas uoneuswiladxa
Ul JuswadueApe [ealbojopoylain

Bulureys juswadx3y

pawJuol 1o
1e P9 00| 8q 03 Bulurewsa. saidoy ou ale alay L

JUNOJJe 0JUl UdXE)
S| JuswuolIAua uoljeadljdde anbiuyoa) eay

sJsuonnoeid 0y 1sa1a1Ul JO Sa|geleA asuodsay

MO|}-]011U0D
"SA [eUOIOUNS

Auress
VIN Jo anneluasaldal syneyswelbold Jo asn
sisAjeue aJaw puokaq sbuipul
Inobu sisAfeue ereqg
Inobu ubisap reuswiiadxgy
_mojy-ereq _ moy-ereq Bunsal Bunsal onsisveIRyD
SA uoneIN SA MO[}-]0J1U0D uoneInp mojj-eredg

Figure 3.4: Study Maturity by Families

FIN-1VS, Otto-von-Guericke-University of Magdeburg

Ayaz Farooq

50 3 Test Techniques: Fundamentals & Efficiencies

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

51

4 Capabilities of Test Tools

With the growth in size, maturity of practices, and increased workload, software organi-
zations begin to feel a need for automating (some of the) testing procedures. A test tool
is defined to be an automated resource that offers support to one or more test activities,
such as planning and control, specification, constructing initial test files, execution of
tests, and analysis [Pol et al., 2002, p. 429]. Supporting the testing process with tools
can possibly increase the efficiency of test activities, reduce the effort required for ex-
ecuting routine test activities, improve the quality of software and the test process, and
provide certain economic benefits. In summary, test tools automate manual testing ac-
tivities thereby enabling efficient management of the testing activities and processes.
But the level of test automation depends upon many factors such as type of application
under development, testing process, and type of development and target environment.
One hundred percent automatic testing has been regarded as a dream of modern testing
research by Bertolino [Bertolino, 2007].

Evaluation of testing tools is important for many reasons. Due to an overwhelming
number of testing tools available in the market, the decision to select the best tool re-
mains elusive. We need subjective and objective evidence about candidate tools before
we can arrive at a final choice for one of them. Only systematic guidelines and precise
criteria to compare and evaluate tools is the befitting solution to this problem. This kind
of quality evaluation, when at hand, establishes our confidence in the capability of the
tool in solving our testing issues. This chapter deals with existing research work which
has focused on developing procedures and criteria for testing tools evaluation.

4.1 Fundamentals

The first thought that should concern us while considering a tool implementation is
determining whether it is really inevitable that a tool should be used. If the answer is
positive, we must then look around for resources where we can find some appropriate
tools. With the advancement of research and technology we expect to come across lot
of tools of different kinds. At this stage we will be interested to organize this list in
some fashion which could facilitate us in grasping an overview of available tools. These
fundamental topics about test tools will be discussed shortly in the coming sections.

4.1.1 Is a Test Tool Inevitable?

Despite the long list of possible benefits expected of test tools, it is not wise to in-
stantly start using a tool in all kinds of testing problems. The decision to use a test
tool warrants careful cost-benefit analysis. Some testing tools may be very expen-
sive in terms of money and effort involved and an organization may even be doing

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

52 4 Capabilities of Test Tools \%

well without application of a sophisticated tool. Different sets of circumstances ex-
ist which may encourage or discourage adopting a testing tool. Ramler and Wolf-
maier [Ramler and Wolfmaier, 2006] analyze trade-off between automated and manual
testing and present a cost model based on opportunity cost to help decide when tests
should be automated. Some situations that motivate organizations in automating testing
tasks include,

e Test practices are mature
e Large size of the software
e Large number of tests required

e Time crunch

Some circumstances where using a testing tools may not be a wise choice in-
clude [Lewis, 2004, p. 321],

Lack of a testing process

Ad hoc testing

Education and training of testers e Cost

Technical difficulties with tool Time crunch

Organizational issues

Organizational culture

4.1.2 Tool Resources

Once an organization decides that it will use a test tool, it comes across an immense
variety of tools. These range from those supporting test planning to test design, gen-
erating and executing test cases, tracking defects, test documentation, logging and re-
porting software errors, and performance and load testing. Hundreds of testing tools of
different capabilities are available both commercially and as open source software. A
comprehensive or even partial survey of these tools is out of the scope of the current
work. Instead, below we mention few resources which list some well known test tools.

e http://www.aptest.com/resources.html

http://www.opensourcetesting.org/

http://www.testingfaqgs.org/

SourceForge.net Project Repository

Tool listing by Lewis [Lewis, 2004, p. 313-320]

Tool listing by Farrell-Vinay [Keyes, 2003, p. 457-465]

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

http://www.aptest.com/resources.html
http://www.opensourcetesting.org/
http://www.testingfaqs.org/
http://sourceforge.net/

IR
\%/ 4.2 Evaluation of Testing Tools 53

Table 4.1: Classifications of Testing Tools

Classification Perspective Resource

Functionality http://www.opensourcetesting.org/,
http://www.testingfaqgs.org/,
Lewis [Lewis, 2004, Ch. 29],
Perry [Perry, 2006, Ch. 4],
Farrell-Vinay [Keyes, 2003, appndx. D]

Testing Technique Liggesmeyer [Liggesmeyer, 2002, Ch. 11],
Perry [Perry, 2006, Ch. 4]
Testing/Process Level Lewis [[Lewis, 2004, Ch. 29],

Pol [Pol et al., 2002, Ch. 27]
Process Maturity Level Burnstein [[Burnstein, 2003, Ch. 14]

Out of this vast variety of candidate test tools, selecting an appropriate tool to satisfy
an organization’s goals and constraints is undoubtedly a great challenge. To cope with
such issues and to manage and understand these numerous test tools, few classifications
and evaluation and selection criteria have been proposed. In the next sections we discuss
these two issues.

4.1.3 Testing Tool Classifications

Test tool classifications help us understand state of research in tool development and
the role of tools themselves in supporting test process activities. As for the classifica-
tion of the testing tools, variety and very large number of test tools makes is difficult
if not impossible at all to derive a single appropriate categorization of test tools. Som-
merville [Sommerville, 2007, p. 86] presents three perspectives on classifying CASE
(computer-aided software engineering) tools as functional, process, and integration per-
spective. In a similar way, many classification aspects of test tools are also possible
in this context. Table gives an overview of these aspects along with the literature
resources which have based their classification of tools on these perspectives.

The classification given by Liggesmeyer [Liggesmeyer, 2002, Ch. 11] seems quite
comprehensive in covering possible types of test tools. His technique is based on in-
volved testing technique supported by a tool. Figure[4.1|shows his categorization of test
tools.

4.2 Evaluation of Testing Tools

Evaluation of a testing tool is aimed at determining its functionality and quality. This
evaluation may be meaningful at three different stages in development and test pro-
cess. First and perhaps the most important stage is when we feel that we need a tool to
automate our testing tasks, we have several candidate tools available at hand, and we
want to make a judicious choice of selecting and implementing the most relevant tool

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

http://www.opensourcetesting.org/
http://www.testingfaqs.org/

54

4 Capabilities of Test Tools

Testing Tool Categories

Tools for Structure
Oriented Testing

Tools for Dynamic
Testing

Tools for Function
Oriented Testing

Tools for Regression
Testing

Tools for Stress Testing

Measurement Tools

Style Analyzers

Tools for Static Testing

Slicing Tools

Data Flow Analysis
Tools

Tools for Graphs and
Tables

Tools for Formal
Verification

Symbolic Model
Checking Tools

FMECA Tools

Modeling and Analysis
Tools

Fault Tree Analysis
Tools

Markov Model Tools

Figure 4.1: Liggesmeyer’s classification of testing tools

FIN-1VS, Otto-von-Guericke-University of Magdeburg

Ayaz Farooq

IR
\%/ 4.2 Evaluation of Testing Tools 55

matching our needs and constraints. This is the pre-implementation stage. Second is
the in-process stage. It is when we are in the middle of our test process and we want
to track and control progress of our testing tasks. At this state it would be interesting
to see number of test cases run in comparison to time, number of faults detected etc. A
quite similar and third level of evaluation will be helpful when we are finished with a
project and we want to assess what we have spent for a tool and what have we gained.
If a tool is found to do well according to our cost benefit analysis, it will likely be re-
implemented for next projects or otherwise. This third point of tool evaluation is a kind
of post-implementation evaluation.

4.2.1 Pre-Implementation Analysis/ Tool Selection

Most test tool evaluation approaches belong to the type of pre-implementation analysis
which involves assessing a tool based on certain criteria. The assessment results are
used by a subsequent tool selection process. IEEE Standard 1209 [iee, 1992] distin-
guishes between evaluation and selection as, "evaluation is a process of measurement,
while selection is a process of applying thresholds and weights to evaluation results and
arriving at decisions".

A short discussion of some well known such evaluation techniques is given below.

e IEEE Standard 1209, Recommended Practice for the Evaluation and Selec-
tion of CASE Tools [iee, 1992]]: This standard comprises three main sections;
evaluation process, selection process, and criteria. The evaluation process pro-
vides guidelines on determining functionality and quality of CASE tools. The
selection process chapter contains guidelines on identifying and prioritizing se-
lection criteria and using it in conjunction with evaluation process to make a de-
cision about a tool. The third section of the standard is criteria which is actually
used by evaluation and selection process. It presents a framework of tool’s quality
attributes based on ISO 9126-1 standard.

e Lewis’ Methodology to Evaluate Automated Testing Tools [Lewis, 2004, Ch.
30]: Lewis provides step-by-step guidelines for identifying tool objectives, con-
ducting selection activities, and procuring, implementing, and analyzing the tool.

e Task Oriented Evaluation of Illes et al. [Illes et al., 2005]:They have defined
functional and quality criteria for tools. Quality criteria has been specified us-
ing set of several quality attributes and sub-attributes influenced from ISO 9126-1
standard. The functional criteria are based on a task oriented view the test pro-
cess and tools required for each test process phase are described. Their approach
attempts to avoid laboratory test by forming the criteria which can be analyzed
based on tool vendor’s provided instructions.

e Miscellaneous: Some un-structured guidelines in this regard have been pre-
sented by Fewster and Graham [Fewster and Graham, 1999, Ch. 10], Spill-
ner [Spillner et al., 2007, Ch. 12] et al. and Perry [Perry, 2006, Ch. 4].

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

56 4 Capabilities of Test Tools %/

The authors have discussed various implications involved with selecting, eval-
uating, and implementing test tools. Perry suggests considering develop-
ment life cycle, tester’s skill level, and cost comparisons for tools. An-
other similar example is Schulmeyer and Mackenzie’s test tool reference
guide [Schulmeyer and MacKenzie, 2000, p. 65].

4.2.2 In-Process & Post-Implementation Analysis

No specific method for an in-process evaluation of test tools exists. However, a quanti-
tative criteria presented by Michael et al. [Michael et al., 2002]] can be used both during
the test process and also as a post-implementation analysis. They proposed several met-
rics for the purpose which are named below.

e Tool Management User Control

e Human Interface Design e Ease of Use

e Maturity & Customer Base e Tool Support

e Maximum Number of Parameters e Response Time
e Test Case Generation e Reliability

e Estimated Return on Investment

Features Support

e Maximum Number of Classes

4.2.3 Summary

Many different subjective and objective criteria have been suggested in tool evaluation
techniques. For the evaluations at all three different stages mentioned above, here we
provide a combined list of various evaluation criteria which could contribute to a tool’s
evaluation or affect its selection.

e Quality attributes

Reliability

Usability

Efficiency

Functionality

Maintainability

Portability

e Vendor qualifications
— Profile

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

4.2 Evaluation of Testing Tools 57

— Support

— Licensing

e Cost
— Purchasing & installation

— Training
e Organizational constraints

e Environmental constraints
— Lifecycle compatibility
— Hardware compatibility

— Software compatibility

In contrast to many evaluation works over testing techniques, our search into existing
literature resources over evaluation of test tools returned very few results. It seems that
the development of new testing tools has been given far more attention than analysis,
measurement, and comparison among existing tools. Summarizing the above discussion
we observe that systematic test tool selection and evaluation involves several steps, these
include;

1. Principal decision to use a tool

2. Understanding concerned testing tools
3. Identification of tool requirements

4. Pre-evaluation

5. Selection

6. Post-evaluation

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

58 4 Capabilities of Test Tools

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

59

5 Summary & Future Work

The report has attempted to review status of evaluation in the field of software testing.
Three core elements of the software testing have been identified as process, techniques,
and tools. These elements have been variably exposed to evaluation works right from
the beginning of testing research. This summary recounts purpose or motivation of
evaluation, the technique used for the purpose (assessment, or direct measurement), the
level of the evaluation (whether it provided an overall picture or only a partial reflection
of the attribute of evaluation), and the evaluation type (relative, or an isolated analysis).
The synopsis of the scientific disquisition contained in this report follows next. Table[5.]]
further presents an abridged version of this summary.

The evaluation of testing tools has been motivated by a need for selection of an appro-
priate tool. Several descriptive guidelines exist for this purpose which discuss how to
compare different testing tools. Measurement of some quality attributes of tools based
on metrics has also been suggested in some works.

The evaluation of testing techniques has also been induced by questions of technique
selection and effectiveness or efficiency determination. In most cases a comparative
analysis enabled by empirical analysis has provided the answer. Additionally, partial
measurements of some quality attribute have also been performed in isolation.

Finally, the quest for test process improvement led to its evaluation from different
perspectives. Majority of approaches have targeted maturity or capability assessments
spanning the whole range of testing activities and thus building a complete picture of
process quality. Nevertheless, few other works concentrated on fragmentary measure-
ment of quality attributes by exploiting sets of process metrics for the purpose.

5.1 Future Work

e Explicit and Lightweight Measurement of Test Process: Existing test process
evaluation and improvement models are implicit in nature and either resource and
cost intensive or are capable of only partial process measurements. Lightweight
and explicit process measurement enabled by comprehensive test metrics can pro-
vide remedy to current deficiencies in this context.

o Test Process for SOA-based Systems: Numerous software application domains
warrant their own testing challenges. Testing of service-oriented applications is
different than testing of ordinary programs. Keeping in mind the relevant business
processes and specialized testing strategies, test process for SOA-based systems
needs to be reformed.

e Test Process for Small and Medium Enterprises: Rigorous process improve-
ment and assessment models such as CMMI and SPICE require exhaustive pro-

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

A0

60 5 Summary & Future Work

cedures to ensure a well managed process. While this may work well for large
organizations involved in development of large software projects, the same may
be difficult to implement in small IT organizations. Although small software com-
panies face similar quality requirements yet they have limited resources. A cus-
tomized, simplified, and less resource-intensive test process improvement model
needs to be considered keeping in mind the constraints of the small software or-
ganizations.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

booueq zeAy

3mqapSv Jo £3184241U7)-2Y0149ND-U0A-011() ‘SAI-NIA

Table 5.1: Summary of Evaluation in Software Testing

Purpose Technique Used Evaluation Level Evaluation Type o
Tools Selection, Descriptive Guidelines, Partial Quality Attributes Comparative, -
Quality Determination Measurement Solitary g
c
@
Techniques Selection, Empirical Analysis, Partial Quality Attributes Comparative, s
. . . o
Quality Evaluation Measurement Solitary =3

Process Process Improvement ~ Maturity Assessment, Complete, Solitary

Measurement Partial Quality Attributes

@

62 5 Summary & Future Work

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

63

List of Tables

(1.1 ~ Research Issues in Software Testing| 5
2.1 Software Process vs. Test Process Researchl 26
[2.2 Comparison of Test Process Assessment Models|. 27
[2.3 Existing Test Metrics Resources| 33
(3.1 Summary of Static Testing Techniques| 37
[3.2 Summary of Dynamic Testing Techniques| 42
@.1 Classifications of Testing Tools| 53
[5.1 Summary of Evaluation 1n Software Testing| 61

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

64 List of Tables

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

65

List of Figures

(1. Relationships among evaluation, assessment, and measurement| 2
(1.2 Software Quality Elements [Kenett and Baker, 1999] 3
(1.3 Software Testing Elements of Interest| 4
[2.1 ~ Generic Structure of Testing Process [Tian, 2005] 3|
[2.2 Some Context Descriptions of Software Testing| 9
[2.3 Software Engineering Dimensions| 10
[2.4 V-Diagram for Seven Step ‘lest Process [Perry, 2006] 12|
[2.5 Test Management Approach-TMap|. 13
| gram [Drabick, 2003 14|
| gram [Drabick, 2003] oo L. 13|
[2.8 Test-driven Development Cycle|. 16
2.9 TEmb:Test Process for Embedded Sys- |
| tems [Broekman and Notenboom, 2003 18|
[2.10 Model-based Testing Process| 20
[2.11 Scope of Model-based Testing [Utting and Legeard, 2006] 21|
[2.12 Cangussu’s Approach of STP Models [[Cangussu, 2002] 22|
[2.13 Components of Evaluation Theory| 25
[2.14 Components of Software Process Evaluation and Interrelationships| . . . 25
[2.15 History of Test Process Assessment Models & Dependencies| 26
[2.16 Structure of Testing Maturity Model [Burnstein, 2003] 28|
217 TMM Maturity Levels] 28
[2.18 Structure of Test Process Improvement (TPI) Model| 29
[2.19 Structure of Test Maturity Model Integrated (TMMi)[. 31
[2.20 TMM: Maturity Levels| 32
[2.21 Classification of test process metrics [Farooq et al., 2007a] 34|

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

66 List of Figures

[3.1 Liggesmeyer’s classification of testing techniques| 36
[3.2 An Example of Symbolic Execution|00 .. 38
(3.3 Fagan inspection basic model [Fagan, 1986] 40)
[3.4 Study Maturity by Families| 49
4.1 Liggesmeyer’s classification of testing tools| 54

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

67

Bibliography

[iee, 1987] (1987). ANSI/IEEE Std 1008-1987:1EEE standard for software unit testing.

[iee, 1990] (1990). IEEE Std 610.12-1990:1EEE standard glossary of software engineering ter-
minology.

[iee, 1992] (1992). IEEE Std 1209-1992:1EEE recommended practice for evaluation and selec-
tion of CASE tools.

[iee, 1997] (1997). IEEE std 1028-1997:1EEE standard for software reviews.

[iee, 1998a] (1998a). IEEE Std 1012-1998:1EEE standard for software verification and valida-
tion.

[iee, 1998b] (1998b). IEEE Std 829-1998 IEEE standard for software test documentation.

[iee, 1998c] (1998c). IEEE/EIA 12207.0-1996 standard for information technology-software
life cycle processes.

[bes, 2001] (2001). BCS SIGiST standard for software component testing.
[ist, 2006] (2006). ISTQB standard glossary of terms used in software testing.

[iso, 2007] (2007). ISO/IEC 15939:2007: Systems and software engineering — measurement
process.

[Abran et al., 2004] Abran, A., Bourque, P., Dupuis, R., and Moore, J. W., editors (2004). Guide
to the Software Engineering Body of Knowledge - SWEBOK. 1EEE Press, Piscataway, NJ,
USA.

[Abu et al., 2005] Abu, G., Cangussu, J. W., and Turi, J. (2005). A quantitative learning model
for software test process. In HICSS ’05: Proceedings of the 38th Annual Hawaii International
Conference on System Sciences - Track 3, page 78.2, Washington, DC, USA. IEEE Computer
Society.

[Acuiia et al., 2001] Acuiia, S. T., Antonio, A. D., Ferré, X., Lopez, M., , and Maté, L. (2001).
The software process: Modelling, evaluation and improvement. Handbook of Software Engi-
neering and Knowledge Engineering, pages 193-237.

[Adler and Gray, 1983] Adler, M. and Gray, M. A. (1983). A formalization of Myers cause-
effect graphs for unit testing. SIGSOFT Softw. Eng. Notes, 8(5):24-32.

[Andersson et al., 2003] Andersson, C., Thelin, T., Runeson, P., and Dzamashvili, N. (2003).
An experimental evaluation of inspection and testing for detection of design faults. In ISESE
'03: Proceedings of the 2003 International Symposium on Empirical Software Engineering,
page 174, Washington, DC, USA. IEEE Computer Society.

[Apel, 2005] Apel, S. (2005). Software reliability growth prediction-state of the art. Technical
report, IESE-Report No. 034.05/E Fraunhofer Institute of Experimental Software Engineer-
ing.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

68 Bibliography

[Ares et al., 1998] Ares, J., Dieste, O., Garcia, R., Lopez, M., and Rodriguez, S. (1998). For-
malising the software evaluation process. In SCCC '98: Proceedings of the XVIII Interna-
tional Conference of the Chilean Computer Science Society, page 15, Washington, DC, USA.
IEEE Computer Society.

[Arthur et al., 1999] Arthur, J. D., Groner, M. K., Hayhurst, K. J., and Holloway, C. M.
(1999). Evaluating the effectiveness of independent verification and validation. Computer,
32(10):79-83.

[Arthur and Nance, 1996] Arthur, J. D. and Nance, R. E. (1996). Independent verification and
validation: a missing link in simulation methodology? In WSC ’96: Proceedings of the 28th
conference on Winter simulation, pages 230-236, Washington, DC, USA. IEEE Computer
Society.

[Astels, 2003] Astels, D. (2003). Test Driven development: A Practical Guide. Prentice Hall
Professional Technical Reference.

[Aurum et al., 2002] Aurum, A., Petersson, H., and Wohlin, C. (2002). State-of-the-art: soft-
ware inspections after 25 years. Softw. Test., Verif. Reliab., 12(3):133-154.

[Beck, 2002] Beck, K. (2002). Test Driven Development: By Example. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA.

[Beizer, 1990] Beizer, B. (1990). Software Testing Techniques. Van Nostrand Reinhold, New
York, USA.

[Beizer, 1995] Beizer, B. (1995). Black-box testing: techniques for functional testing of soft-
ware and systems. John Wiley & Sons, Inc., New York, NY, USA.

[Bertolino, 2007] Bertolino, A. (2007). Software testing research: Achievements, challenges,
dreams. In FOSE '07: 2007 Future of Software Engineering, pages 85—-103, Washington,
DC, USA. IEEE Computer Society.

[Bible et al., 2001] Bible, J., Rothermel, G., and Rosenblum, D. S. (2001). A comparative study
of coarse- and fine-grained safe regression test-selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):149-183.

[Briand and Labiche, 2004] Briand, L. and Labiche, Y. (2004). Empirical studies of software
testing techniques: challenges, practical strategies, and future research. SIGSOFT Softw. Eng.
Notes, 29(5):1-3.

[Broekman and Notenboom, 2003] Broekman, B. and Notenboom, E. (2003). Testing Embed-
ded Software. Addison-Wesley, Great Britain.

[Burnstein, 2003] Burnstein, 1. (2003). Practical Software Testing: A Process-oriented Ap-
proach. Springer Inc., New York, NY, USA.

[Canfora et al., 2006] Canfora, G., Cimitile, A., Garcia, F., Piattini, M., and Visaggio, C. A.
(2006). Evaluating advantages of test driven development: a controlled experiment with
professionals. In ISESE ’06: Proceedings of the 2006 ACM/IEEE international symposium
on Empirical software engineering, pages 364-371, New York, NY, USA. ACM.

[Cangussu, 2002] Cangussu, J. W. (2002). A Mathematical Foundation for Software Process
Control. PhD thesis, Purdue University, West Lafayette, IN, USA.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 69

[Cangussu, 2003] Cangussu, J. W. (2003). A stochastic control model of the software test pro-
cess. In ProSim’03: Proceedings of the Workshop on Software Process Simulation Modeling.

[Cangussu et al., 2000] Cangussu, J. W., DeCarlo, R., and Mathur, A. (2000). A state variable
model for the software test process. In Proceedings of 13th International Conference on
Software & Systems Engineering and their Applications, Paris-France.

[Cangussu et al., 2001a] Cangussu, J. W., DeCarlo, R., and Mathur, A. P. (2001a). A state
model for the software test process with automated parameter identification. 200! IEEE
International Conference on Systems, Man, and Cybernetics, 2:706-711.

[Cangussu et al., 2002] Cangussu, J. W., DeCarlo, R. A., and Mathur, A. P. (2002). A formal
model of the software test process. IEEE Trans. Softw. Eng., 28(8):782-796.

[Cangussu et al., 2003a] Cangussu, J. W., DeCarlo, R. A., and Mathur, A. P. (2003a). Moni-
toring the software test process using statistical process control: a logarithmic approach. In
ESEC/FSE-11: Proceedings of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations of software engineering,
pages 158-167, New York, NY, USA. ACM Press.

[Cangussu et al., 2003b] Cangussu, J. W., DeCarlo, R. A., and Mathur, A. P. (2003b). Using
sensitivity analysis to validate a state variable model of the software test process. IEEE Trans.
Softw. Eng., 29(5):430-443.

[Cangussu et al., 2001b] Cangussu, J. W., Mathur, A. P., and DeCarlo, R. A. (2001b). Feedback
control of the software test process through measurements of software reliability. In ISSRE
"01: Proceedings of the 12th International Symposium on Software Reliability Engineering,
page 232, Washington, DC, USA. IEEE Computer Society.

[Chaar et al., 1993] Chaar, J. K., Halliday, M. J., Bhandari, I. S., and Chillarege, R. (1993). In-
process evaluation for software inspection and test. /EEE Trans. Softw. Eng., 19(11):1055-
1070.

[Chatzigeorgiou and Antoniadis, 2003] Chatzigeorgiou, A. and Antoniadis, G. (2003). Effi-
cient management of inspections in software development projects. Information & Software
Technology, 45(10):671-680.

[Chen et al., 2004] Chen, Y., Probert, R. L., and Robeson, K. (2004). Effective test metrics for
test strategy evolution. In CASCON ’04: Proceedings of the 2004 conference of the Centre
for Advanced Studies on Collaborative research, pages 111-123. IBM Press.

[Chernak, 2004] Chernak, Y. (2004). Introducing TPAM: Test process assessment model.
Crosstalk-The Journal of Defense Software Engineering.

[Ciolkowski et al., 2003] Ciolkowski, M., Laitenberger, O., and Biffl, S. (2003). Software re-
views: The state of the practice. IEEE Software, 20(06):46-51.

[Ciolkowski et al., 2002] Ciolkowski, M., Laitenberger, O., Rombach, D., Shull, F., and Perry,
D. (2002). Software inspections, reviews & walkthroughs. In ICSE ’02: Proceedings of
the 24th International Conference on Software Engineering, pages 641-642, New York, NY,
USA. ACM.

[Clarke and Wing, 1996] Clarke, E. M. and Wing, J. M. (1996). Formal methods: state of the
art and future directions. ACM Comput. Surv., 28(4):626-643.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

70 Bibliography

[Drabick, 2003] Drabick, R. D. (2003). Best Practices for the Formal Software Testing Process:
A Menu of Testing Tasks. Dorset House.

[Dumke, 2005] Dumke, R. R. (2005). Software measurement frameworks. In Proceedings of
the 3rd World Congress on Software Quality, pages 72—-82, Erlangen, Germany. International
Software Quality Institute GmbH.

[Dumke et al., 2006a] Dumke, R. R., Braungarten, R., Blazey, M., Hegewald, H., Reitz, D., and
Richter, K. (2006a). Software process measurement and control - a measurement-based point
of view of software processes. Technical report, Dept. of Computer Science, University of
Magdeburg.

[Dumke et al., 2006b] Dumke, R. R., Braungarten, R., Blazey, M., Hegewald, H., Reitz, D.,
and Richter, K. (2006b). Structuring software process metrics. In IWSM/MetriKon 2006:
Proceedings of the 16th International Workshop on Software Metrics and DASMA Software
Metrik Kongress, pages 483-497, Aachen, Germany. Shaker Verlag.

[Dumke et al., 2004] Dumke, R. R., C6té, 1., and Andruschak, O. (2004). Statistical process
control (SPC) - a metric-based point of view of software processes achieving the CMMI level
four. Technical report, Dept. of Computer Science, University of Magdeburg.

[Dumke and Ebert, 2007] Dumke, R. R. and Ebert, C. (2007). Software Measurement: Estab-
lish Extract Evaluate Execute. Springer Verlag, Berlin, Germany.

[Dumke et al., 2005] Dumke, R. R., Schmietendorf, A., and Zuse, H. (2005). Formal descrip-
tions of software measurement and evaluation-a short overview and evaluation. Technical
report, Dept. of Computer Science, University of Magdeburg.

[Durant, 1993] Durant, J. (1993). Software testing practices survey report. Technical report,
Software Practices Research Center.

[Ebenau and Strauss, 1994] Ebenau, R. G. and Strauss, S. H. (1994). Software inspection pro-
cess. McGraw-Hill, Inc., New York, NY, USA.

[Ebert et al., 2004] Ebert, C., Dumke, R., Bundschuh, M., and Schmietendorf, A. (2004). Best
Practices in Software Measurement. Springer Verlag.

[Eickelmann et al., 2002] Eickelmann, N. S., Ruffolo, F., Baik, J., and Anant, A. (2002). An
empirical study of modifying the Fagan inspection process and the resulting main effects and
interaction effects among defects found, effort required, rate of preparation and inspection,
number of team members and product. In SEW’02: Proceedings of the 27th Annual NASA
Goddard Software Engineering Workshop, page 58, Washington, DC, USA. IEEE Computer
Society.

[El-Far and Whittaker, 2001] El-Far, I. K. and Whittaker, J. A. (2001). Model-based software
testing. Encyclopedia on Software Engineering.

[Eldh et al., 2006] Eldh, S., Hansson, H., Punnekkat, S., Pettersson, A., and Sundmark, D.
(2006). A framework for comparing efficiency, effectiveness and applicability of software
testing techniques. In TAIC-PART '06: Proceedings of the Testing: Academic & Industrial
Conference on Practice And Research Techniques, pages 159-170, Washington, DC, USA.
IEEE Computer Society.

[Ericson et al., 1998] Ericson, T., Subotic, A., and Ursing, S. (1998). TIM a test improvement
model. J. Softw. Test., Verif. Reliab., 7(4):229-246.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 71

[Everett et al., 2007] Everett, G. D., Raymond, and Jr., M. (2007). Software Testing: Testing
Across the Entire Software Development Life Cycle. Wiley InterScience, Hobokon, NJ, USA.

[Fagan, 1986] Fagan, M. E. (1986). Advances in software inspections. IEEE Trans. Softw. Eng.,
12(7):744-751.

[Farooq and Dumke, 2007a] Farooq, A. and Dumke, R. R. (2007a). Developing and applying
a consolidated evaluation framework to analyze test process improvement approaches. In
IWSM-MENSURA 2007: Proceedings of the International Conference on Software Process
and Product Measurement, volume 4895 of Lecture Notes in Computer Science, pages 114—
128. Springer.

[Farooq and Dumke, 2007b] Farooq, A. and Dumke, R. R. (2007b). Research directions in
verification & validation process improvement. SIGSOFT Softw. Eng. Notes, 32(4):3.

[Farooq et al., 2007a] Farooq, A., Dumke, R. R., Hegewald, H., and Wille, C. (2007a). Struc-
turing test process metrics. In MetriKon 2007: Proceedings of the DASMA Software Metrik
Kongress, pages 95-102, Aachen, Germany. Shaker Verlag.

[Farooq et al., 2008] Farooq, A., Dumke, R. R., Schmietendorf, A., and Hegewald, H. (2008).
A classification scheme for test process metrics. In SEETEST 2008: South East European
Software Testing Conference, Heidelberg, Germany. dpunkt.verlag.

[Farooq et al., 2007b] Farooq, A., Hegewald, H., and Dumke, R. R. (2007b). A critical analysis
of the Testing Maturity Model. Metrics News, Journal of Gl-Interest Group on Software
Metrics, 12(1):35-40.

[Fewster and Graham, 1999] Fewster, M. and Graham, D. (1999). Software test automation:
effective use of test execution tools. ACM Press/Addison-Wesley Publishing Co., New York,
NY, USA.

[Foos et al., 2008] Foos, R., Bunse, C., Hopfner, H., and Zimmermann, T. (2008). TML: an
XML-based test modeling language. SIGSOFT Softw. Eng. Notes, 33(2):1-6.

[Francez, 1992] Francez, N. (1992). Program Verification. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA.

[Freimut and Vollei, 2005] Freimut, B. and Vollei, F. (2005). Determining inspection cost-
effectiveness by combining project data and expert opinion. [EEE Trans. Softw. Eng.,
31(12):1074-1092.

[Galin, 2004] Galin, D. (2004). Software Quality Assurance: From Theory to Implementation.
Addison-Wesley, Harlow, England.

[Gelperin and Hetzel, 1988] Gelperin, D. and Hetzel, B. (1988). The growth of software testing.
Communications of the Association of Computing Machinery, 31(6):687-695.

[Gittens et al., 2002] Gittens, M., Lutfiyya, H., Bauer, M., Godwin, D., Kim, Y. W., and Gupta,
P. (2002). An empirical evaluation of system and regression testing. In CASCON ’02: Pro-
ceedings of the 2002 conference of the Centre for Advanced Studies on Collaborative re-
search, page 3. IBM Press.

[Glass, 1994] Glass, R. L. (1994). The software-research crisis. IEEE Software, 11(6):42—47.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

72 Bibliography

[Glass et al., 2004] Glass, R. L., Ramesh, V., and Vessey, 1. (2004). An analysis of research in
computing disciplines. Commun. ACM, 47(6):89-94.

[Goslin et al., 2008] Goslin, A., Olsen, K., O’Hara, F., Miller, M., Thomp-
son, G., and Wells, B. (2008). Test Maturity Model Integrated-TMMi
(http.://www.tmmifoundation.org/downloads/resources/TMMi%20Framework.pdf). =~ TMMi
Foundation.

[Graves et al., 2001] Graves, T. L., Harrold, M. J., Kim, J.-M., Porter, A., and Rothermel, G.
(2001). An empirical study of regression test selection techniques. ACM Trans. Softw. Eng.
Methodol., 10(2):184-208.

[Gutjahr, 1999] Gutjahr, W. J. (1999). Partition testing vs. random testing: The influence of
uncertainty. IEEE Trans. Softw. Eng., 25(5):661-674.

[Halvorsen and Conradi, 2001] Halvorsen, C. P. and Conradi, R. (2001). A taxonomy to com-
pare SPI frameworks. In EWSPT "01: Proceedings of the 8th European Workshop on Software
Process Technology, pages 217-235, London, UK. Springer-Verlag.

[Harkonen, 2004] Harkonen, J. (2004). Testing body of knowledge. Master’s thesis, Faculty of
Technology, University of Oulu, Oulu, Finland.

[Harris, 2006] Harris, I. G. (2006). A coverage metric for the validation of interacting processes.
In DATE ’06: Proceedings of the conference on Design, automation and test in Europe, pages
1019-1024, 3001 Leuven, Belgium, Belgium. European Design and Automation Association.

[Harrold, 2000] Harrold, M. J. (2000). Testing: a roadmap. In ICSE ’00: Proceedings of the
Conference on The Future of Software Engineering, pages 61-72, New York, NY, USA. ACM
Press.

[Harrold et al., 2001] Harrold, M. J., Jones, J. A., Li, T., Liang, D., Orso, A., Pennings, M.,
Sinha, S., Spoon, S. A., and Gujarathi, A. (2001). Regression test selection for java software.
In OOPSLA’01: Proceedings of the 16th ACM SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications, pages 312-326, New York, NY, USA. ACM
Press.

[Hartman et al., 2007] Hartman, A., Katara, M., and Olvovsky, S. (2007). Choosing a test mod-
eling language: A survey. In HVC 06: Second International Haifa Verification Conference,
volume 4383 of Lecture Notes in Computer Science, pages 204-218. Springer.

[Heitmeyer, 2005] Heitmeyer, C. (2005). A panacea or academic poppycock: Formal methods
revisited. HASE ’05: Proceedings of the Ninth IEEE International Symposium on High-
Assurance Systems Engineering, 0:3-7.

[Hofer and Tichy, 2007] Hofer, A. and Tichy, W. FE. (2007). Status of empirical research in
software engineering. In Empirical Software Engineering Issues, volume 4336/2007, pages
10-19. Springer.

[Hierons, 2004] Hierons, R. M. (2004). A flexible environment to evaluate state-based test
techniques. SIGSOFT Softw. Eng. Notes, 29(5):1-3.

[Hollocker, 1990] Hollocker, C. P. (1990). Software reviews and audits handbook. John Wiley
& Sons, Inc., New York, NY, USA.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 73

[Hutcheson, 2003] Hutcheson, M. L. (2003). Software Testing Fundamentals: Methods and
Metrics. John Wiley & Sons, Inc., New York, NY, USA.

[Illes et al., 2005] Illes, T., Herrmann, A., Paech, B., and Riickert, J. (2005). Criteria for soft-
ware testing tool evaluation-a task oriented view. In Proceedings of the 3rd World Congress
of Software Quality.

[Jacobs and Trienekens, 2002] Jacobs, J. C. and Trienekens, J. J. M. (2002). Towards a met-
rics based verification and validation maturity model. In STEP ’02: Proceedings of the 10th

International Workshop on Software Technology and Engineering Practice, page 123, Wash-
ington, DC, USA. IEEE Computer Society.

[Juristo et al., 2002] Juristo, N., Moreno, A. M., and Vegas, S. (2002). A survey on testing
technique empirical studies: How limited is our knowledge. In ISESE "02: Proceedings of the

2002 International Symposium on Empirical Software Engineering, page 161, Washington,
DC, USA. IEEE Computer Society.

[Juristo et al., 2004a] Juristo, N., Moreno, A. M., and Vegas, S. (2004a). Reviewing 25 years
of testing technique experiments. Empirical Softw. Engg., 9(1-2):7-44.

[Juristo et al., 2004b] Juristo, N., Moreno, A. M., and Vegas, S. (2004b). Towards building
a solid empirical body of knowledge in testing techniques. SIGSOFT Softw. Eng. Notes,
29(5):1-4.

[Kan, 2002] Kan, S. H. (2002). Metrics and Models in Software Quality Engineering. Addison-
Wesley Pub. Company, Inc.

[Kan et al., 2001] Kan, S. H., Parrish, J., and Manlove, D. (2001). In-process metrics for soft-
ware testing. IBM Systems Journal, 40(1):220-241.

[Kenett and Baker, 1999] Kenett, R. S. and Baker, E. R., editors (1999). Software Process Qual-
ity Management and Control. Marcel Dekker Inc., New York, NY, USA.

[Keyes, 2003] Keyes, J. (2003). Manage Engineering Handbook. Auerbach Publications,
Boston, MA, USA.

[King, 1976] King, J. C. (1976). Symbolic execution and program testing. Commun. ACM,
19(7):385-394.

[Komi-Sirvid, 2004] Komi-Sirvio, S. (2004). Development and Evaluation of Software Process
Improvement Methods. PhD thesis, Faculty of Science, University of Oulu, Oulu, Finland.

[Koomen, 2002] Koomen, T. (2002). Worldwide survey on Test Process Improvement. Tech-
nical report, Sogeti.

[Koomen, 2004] Koomen, T. (2004). Worldwide survey on Test Process Improvement. Tech-
nical report, Sogeti.

[Koomen and Pol, 1999] Koomen, T. and Pol, M. (1999). Test Process Improvement: a Practi-
cal Step-by-Step Guide to Structured Testing. Addison-Wesley, New York, NY, USA.

[Laitenberger, 2002] Laitenberger, O. (2002). A survey of software inspection technologies.
Handbook on Software Eng. and Knowledge Eng., 2:517-555.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

74 Bibliography

[Laitenberger et al., 1999] Laitenberger, O., Leszak, M., Stoll, D., and Emam, K. E. (1999).
Quantitative modeling of software reviews in an industrial setting. In METRICS ’99: Pro-

ceedings of the 6th International Symposium on Software Metrics, page 312, Washington,
DC, USA. IEEE Computer Society.

[Lewis, 2004] Lewis, W. E. (2004). Software Testing and Continuous Quality Improvement,
Second Edition. Auerbach Publications, Boca Raton, FL, USA.

[Liggesmeyer, 1995] Liggesmeyer, P. (1995). A set of complexity metrics for guiding the soft-
ware test process. Software Quality Journal, 4:257-273.

[Liggesmeyer, 2002] Liggesmeyer, P. (2002). Software-Qualitiit. Testen, Analysieren und Veri-
fizieren von Software. Spektrum Akademischer Verlag, Berlin, Germany.

[Liittgen, 2006] Liittgen, G. (2006). Formal verification & its role in testing. Technical Report
YCS-2006-400, Department of Computer Science, University of York, England.

[Lazaro and Marcos, 2005] Léazaro, M. and Marcos, E. (2005). Research in software engineer-
ing: Paradigms and methods. In CAiSE Workshops Vol. 2, Proceedings of the 17th Interna-
tional Conference, CAISE 2005, Porto, Portugal, pages 517-522. FEUP Edicdes, Porto.

[Malishevsky et al., 2002] Malishevsky, A., Rothermel, G., and Elbaum, S. (2002). Modeling
the cost-benefits tradeoffs for regression testing techniques. In ICSM °02: Proceedings of the
International Conference on Software Maintenance, page 204, Washington, DC, USA. IEEE
Computer Society.

[Mao and Lu, 2005] Mao, C. and Lu, Y. (2005). Regression testing for component-based soft-
ware systems by enhancing change information. APSEC’05: Proceedings of the 12th Asia-
Pacific Software Engineering Conference, 0:611-618.

[Marquis et al., 2005] Marquis, S., Dean, T. R., and Knight, S. (2005). Scl: a language for se-
curity testing of network applications. In CASCON °05: Proceedings of the 2005 conference
of the Centre for Advanced Studies on Collaborative research, pages 155-164. IBM Press.

[Meszaros, 2003] Meszaros, G. (2003). Agile regression testing using record & playback. In
OOPSLA’03: Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 353-360, New York, NY, USA.
ACM Press.

[Michael et al., 2002] Michael, J. B., Bossuyt, B. J., and Snyder, B. B. (2002). Metrics for
measuring the effectiveness of software-testing tools. In ISSRE ’02: Proceedings of the
13th International Symposium on Software Reliability Engineering (ISSRE’02), page 117,
Washington, DC, USA. IEEE Computer Society.

[Misra, 2005] Misra, S. (2005). An empirical framework for choosing an effective testing tech-
nique for software test process management. Journal of Information Technology Manage-
ment, 16(4):19-25.

[Morasca and Serra-Capizzano, 2004] Morasca, S. and Serra-Capizzano, S. (2004). On the an-
alytical comparison of testing techniques. In ISSTA ’04: Proceedings of the 2004 ACM
SIGSOFT international symposium on Software testing and analysis, pages 154—164, New
York, NY, USA. ACM.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 75

[Muccini et al., 2005a] Muccini, H., Dias, M. S., and Richardson, D. J. (2005a). Reasoning
about software architecture-based regression testing through a case study. COMPSAC’05:

Proceedings of the 29th Annual International Computer Software and Applications Confer-
ence, 02:189-195.

[Muccini et al., 2005b] Muccini, H., Dias, M. S., and Richardson, D. J. (2005b). Towards soft-
ware architecture-based regression testing. In WADS’05: Proceedings of the 2005 workshop
on Architecting dependable systems, pages 1-7, New York, NY, USA. ACM Press.

[Muccini et al., 2006] Muccini, H., Dias, M. S., and Richardson, D. J. (2006). Software
architecture-based regression testing. Journal of Systems and Software, 79:1379-1396.

[Munson, 2003] Munson, J. C. (2003). Software Engineering Measurement. CRC Press, Inc.,
Boca Raton, FL, USA.

[Myers, 2004] Myers, G. J. (2004). Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA.

[Nagappan et al., 2005] Nagappan, N., Williams, L., Vouk, M., and Osborne, J. (2005). Early
estimation of software quality using in-process testing metrics: a controlled case study. In
3-WoSQ: Proceedings of the third workshop on Software quality, pages 1-7, New York, NY,
USA. ACM Press.

[Neto et al., 2007] Neto, A. C. D., Subramanyan, R., Vieira, M., and Travassos, G. H.
(2007). Characterization of model-based software testing approaches. Technical report,
PESC/COPPE/UFRJ, Siemens Corporate Research.

[Ntafos, 2001] Ntafos, S. C. (2001). On comparisons of random, partition, and proportional
partition testing. IEEE Trans. Softw. Eng., 27(10):949-960.

[Nursimulu and Probert, 1995] Nursimulu, K. and Probert, R. L. (1995). Cause-effect graphing
analysis and validation of requirements. In CASCON ’95: Proceedings of the 1995 conference
of the Centre for Advanced Studies on Collaborative research, page 46. IBM Press.

[O’Brien et al., 2007] O’Brien, L., Merson, P., and Bass, L. (2007). Quality attributes for
service-oriented architectures. In SDSOA °07: Proceedings of the International Workshop
on Systems Development in SOA Environments, page 3, Washington, DC, USA. IEEE Com-
puter Society.

[Orso et al., 2004] Orso, A., Shi, N., and Harrold, M. J. (2004). Scaling regression testing to
large software systems. In SIGSOFT '04/FSE-12: Proceedings of the 12th ACM SIGSOFT
twelfth international symposium on Foundations of software engineering, pages 241-251,
New York, NY, USA. ACM Press.

[Paradkar, 1994] Paradkar, A. (1994). On the experience of using cause-effect graphs for soft-
ware specification and test generation. In CASCON ’94.: Proceedings of the 1994 conference
of the Centre for Advanced Studies on Collaborative research, page 51. IBM Press.

[Paul, 2001] Paul, R. (2001). End-to-end integration testing. In APAQS ’01: Proceedings of
the Second Asia-Pacific Conference on Quality Software, page 211, Washington, DC, USA.
IEEE Computer Society.

[Peng and Wallace, 1994] Peng, W. W. and Wallace, D. R. (1994). Software Error Analysis.
Silicon Press, Summit, NJ, USA.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

76 Bibliography

[Perry, 2006] Perry, W. E. (2006). Effective methods for software testing. Wiley Publishing
Inc., Indianapolis, IN, USA, third edition.

[Pezze and Young, 2007] Pezze, M. and Young, M. (2007). Software Testing and Analysis:
Process, Principles, and Techniques. John Wiley & Sons, Inc, Hobokon, NJ, USA.

[Pol et al., 2002] Pol, M., Teunissen, R., and van Veenendaal, E. (2002). Software Testing-A
Guide to the TMap Approach. Addison-Wesley, New York, NY, USA.

[Pusala, 2006] Pusala, R. (2006). Operational excellence through efficient software testing
metrics. InfoSys White Paper, (http://www.infosys.com/IT-services/independent-validation-
services/white-papers/operational-excellence.pdf).

[Rajan, 2006] Rajan, A. (2006). Coverage metrics to measure adequacy of black-box test suites.
In ASE ’06: Proceedings of the 21st IEEE International Conference on Automated Software
Engineering, pages 335-338, Washington, DC, USA. IEEE Computer Society.

[Ramler and Wolfmaier, 2006] Ramler, R. and Wolfmaier, K. (2006). Economic perspectives
in test automation: balancing automated and manual testing with opportunity cost. In AST

'06: Proceedings of the 2006 international workshop on Automation of software test, pages
85-91, New York, NY, USA. ACM Press.

[Rico, 2004] Rico, D. F. (2004). ROI of Software Process Improvement: Metrics for Project
Managers and Software Engineers. J. Ross Publishing, Inc.

[Rothermel et al., 2004] Rothermel, G., Elbaum, S., Malishevsky, A. G., Kallakuri, P., and Qiu,
X. (2004). On test suite composition and cost-effective regression testing. ACM Trans. Softw.
Eng. Methodol., 13(3):277-331.

[Rothermel and Harrold, 1994] Rothermel, G. and Harrold, M. J. (1994). A framework for
evaluating regression test selection techniques. In ICSE’94: Proceedings of the 16th interna-
tional conference on Software engineering, pages 201-210, Los Alamitos, CA, USA. IEEE
Computer Society Press.

[Rothermel et al., 2001] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J. (2001). Pri-
oritizing test cases for regression testing. IEEE Trans. Softw. Eng., 27(10):929-948.

[Sassenburg, 2005] Sassenburg, H. (2005). Design of a Methodology to Support Software Re-
lease Decisions: Do the Numbers Really Matter? PhD thesis, University of Groningen,
Netherlands.

[Sauer et al., 2000] Sauer, C., Jeffery, D. R., Land, L., and Yetton, P. (2000). The effectiveness
of software development technical reviews: A behaviorally motivated program of research.
IEEFE Trans. Softw. Eng., 26(1):1-14.

[Schmietendorf and Dumke, 2005] Schmietendorf, A. and Dumke, R. (2005). Complex eval-
uation of an industrial software development project. In IWSM 2005: Proceedings of the

15th International Workshop on Software Measurement, pages 267-280, Aachen, Germany.
Shaker Verlag.

[Schulmeyer and MacKenzie, 2000] Schulmeyer, G. G. and MacKenzie, G. R. (2000). Verifi-
cation and Validation of Modern Software Systems. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 77

[Siniaalto, 2006] Siniaalto, M. (2006). Test driven development: Empirical body of evidence.
Technical report, ITEA, Information Technology for European Advancement.

[Sneed, 2004] Sneed, H. M. (2004). Reverse engineering of test cases for selective regression
testing. CSMR’04: Proceedings of the Eighth Euromicro Working Conference on Software
Maintenance and Reengineering, 00:69.

[Sneed, 2005] Sneed, H. M. (2005). Measuring the effectiveness of software testing: converting
software testing from an art to a science. In Proceedings of MetriKon 2005: DASMA Software
Metrik Kongress, pages 145-170, Aachen, Germany. Shaker Verlag.

[Sneed, 2007] Sneed, H. M. (2007). Test metrics. Metrics News, Journal of GI-Interest Group
on Software Metrics, 12(1):41-51.

[Sommerville, 2007] Sommerville, 1. (2007). Software Engineering. Pearson Education Lim-
ited, Harlow, England, 8th edition.

[Spillner et al., 2007] Spillner, A., Rossner, T., Winter, M., and Linz, T. (2007). Software Test-
ing Practice: Test Management. Rocky Nook Inc., Santa Barbara, CA, USA.

[Suwannasart and Srichaivattana, 1999] Suwannasart, T. and Srichaivattana, P. (1999). A set of
measurements to improve software testing process. In NCSEC’99: Proceedings of the 3rd
National Computer Science and Engineering Conference.

[Swinkels, 2000] Swinkels, R. (2000). A comparison of TMM and other test process improve-
ment models. Technical report, Frits Philips Institute, Technische Universiteit Eindhoven,
Netherlands, (http://is.tm.tue.nl/research/v2m2/wp1/12-4-1-FPdef.pdf),.

[Tai et al., 1993] Tai, K.-C., Paradkar, A., Su, H.-K., and Vouk, M. A. (1993). Fault-based test
generation for cause-effect graphs. In CASCON ’93: Proceedings of the 1993 conference of
the Centre for Advanced Studies on Collaborative research, pages 495-504. IBM Press.

[Taipale et al., 2005] Taipale, O., Smolander, K., and Kilvidinen, H. (2005). Finding and rank-
ing research directions for software testing. In EuroSPI’2005: 12th European Conference on
Software Process Improvement, pages 39—48. Springer.

[Tal et al., 2004] Tal, O., Knight, S., and Dean, T. (2004). Syntax-based vulnerability testing of
frame-based network protocols. In Proceedings of the Second Annual Conference on Privacy,
Security and Trust, pages 155-160.

[Tassey, 2002] Tassey, G. (2002). The economic impacts of inadequate infrastructure for soft-
ware testing. Technical report, National Institute of Standards & Technology.

[Tate, 2003] Tate, J. (2003). Software process quality models: A comparative evaluation. Mas-
ter’s thesis, Department of Computer Science, University of Durham, Durham, UK.

[Tian, 2005] Tian, J. (2005). Software Quality Engineering: Testing, Quality Assurance, and
Quantifiable Improvement. Wiley-IEEE Computer Society Pres, Los Alamitos, CA, U.S.A.

[Tillmann and Schulte, 2006] Tillmann, N. and Schulte, W. (2006). Unit tests reloaded: Param-
eterized unit testing with symbolic execution. /IEEE Software, 23(04):38—47.

[Utting and Legeard, 2006] Utting, M. and Legeard, B. (2006). Practical Model-Based Testing:
A Tools Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

78 Bibliography

[van Lamsweerde, 2000] van Lamsweerde, A. (2000). Formal specification: a roadmap. In
ICSE ’00: Proceedings of the Conference on The Future of Software Engineering, pages
147-159, New York, NY, USA. ACM Press.

[van Veenendaal and Pol, 1997] van Veenendaal, E. and Pol, M. (1997). A test management
approach for structured testing. Achieving Software Product Quality.

[Verma et al., 2005] Verma, S., Ramineni, K., and Harris, I. G. (2005). An efficient control-
oriented coverage metric. In ASP-DAC ’05: Proceedings of the 2005 conference on Asia
South Pacific design automation, pages 317-322, New York, NY, USA. ACM Press.

[Wang et al., 1998] Wang, L.-C., Abadir, M. S., and Zeng, J. (1998). On measuring the ef-
fectiveness of various design validation approaches for powerpc microprocessor embedded
arrays. ACM Trans. Des. Autom. Electron. Syst., 3(4):524-532.

[Wang and King, 2000] Wang, Y. and King, G. (2000). Software engineering processes: prin-
ciples and applications. CRC Press, Inc., Boca Raton, FL, USA.

[Whalen et al., 2006] Whalen, M. W., Rajan, A., Heimdahl, M. P., and Miller, S. P. (2006).
Coverage metrics for requirements-based testing. In ISSTA ’06: Proceedings of the 2006

international symposium on Software testing and analysis, pages 25-36, New York, NY,
USA. ACM Press.

[Wuetal., 2005] Wu, Y. P, Hu, Q. P, Ng, S. H., and Xie, M. (2005). Bayesian networks
modeling for software inspection effectiveness. In PRDC ’05: Proceedings of the 11th Pacific
Rim International Symposium on Dependable Computing, pages 6574, Washington, DC,
USA. IEEE Computer Society.

[Xu, 2006] Xu, G. (2006). A regression tests selection technique for aspect-oriented programs.
In WTAOP 06: Proceedings of the 2nd workshop on Testing aspect-oriented programs, pages
15-20, New York, NY, USA. ACM Press.

[Xu et al., 2003] Xu, L., Xu, B., Chen, Z., Jiang, J., and Chen, H. (2003). Regression test-
ing for web applications based on slicing. COMPSAC’03: Proceedings of the 27th Annual
International Conference on Computer Software and Applications, 0:652.

[Zelkowitz and Wallace, 1997] Zelkowitz, M. and Wallace, D. (1997). Experimental validation
in software engineering. Information and Software Technology, 39(1):735-743.

[Zhang et al., 2004] Zhang, J., Xu, C., and Wang, X. (2004). Path-oriented test data generation
using symbolic execution and constraint solving techniques. In SEFM ’04: Proceedings

of the Software Engineering and Formal Methods, Second International Conference, pages
242-250, Washington, DC, USA. IEEE Computer Society.

[Zhao et al., 2006] Zhao, J., Xie, T., and Li, N. (2006). Towards regression test selection for
Aspect] programs. In WTAOP’06: Proceedings of the 2nd workshop on Testing aspect-
oriented programs, pages 21-26, New York, NY, USA. ACM Press.

[Zheng, 2005] Zheng, J. (2005). In regression testing selection when source code is not avail-
able. In ASE’05: Proceedings of the 20th IEEE/ACM international Conference on Automated
software engineering, pages 752-755, New York, NY, USA. ACM Press.

[Zhu, 2006] Zhu, H. (2006). A framework for service-oriented testing of web services. In
COMPSAC ’06: Proceedings of the 30th Annual International Computer Software and Ap-
plications Conference, pages 145150, Washington, DC, USA. IEEE Computer Society.

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

Bibliography 79

[Zuse, 1998] Zuse, H. (1998). A Framework of Software Measurement. Walter de Gruyter &
Co., Berlin, Germany.

Ayaz Farooq FIN-1VS, Otto-von-Guericke-University of Magdeburg

80 Bibliography

FIN-1VS, Otto-von-Guericke-University of Magdeburg Ayaz Farooq

	TechnicalReport-05
	Preprint_Farooq
	Introduction
	Evaluation Defined
	Evaluation in Software Engineering
	Evaluation in Software Testing
	Structure of the Report

	Test Processes: Basics & Maturities
	Test Process Fundamentals
	Test Process Contexts
	Research over Test Process

	Test Process Definition & Modeling
	Generic Test Process Descriptions
	Test Management Approach-TMap
	Drabick's Formal Testing Process
	Test Driven Development
	Independent Verification & Validation

	Domain Specific Test Processes
	Test Process for Embedded Software

	Formal Approaches
	Model based Testing
	Cangussu's Formal Models

	Test Process Standardization

	Test Process Evaluation & Improvement
	Qualitative Approaches
	Testing Maturity Model (TMM)
	Testing Process Improvement Model (TPI)
	Test Maturity Model Integrated (TMMi)

	Quantitative Approaches
	Test Process Metrics

	Test Techniques: Fundamentals & Efficiencies
	Static techniques
	Verifying
	Formal verification
	Symbolic testing

	Analyzing
	Test measures
	Software reviews, inspections and walk-throughs
	Fagan Inspections

	Evaluation of Static Techniques
	Evaluation criteria & methods
	Evaluation results

	Dynamic techniques
	Structure oriented
	Control-flow oriented
	Data-flow oriented

	Function oriented
	Functional equivalence classes
	Cause-and-effect graphing analysis
	Syntax testing

	Diversifying
	Regression tests

	Domain Testing

	Evaluation of Dynamic Techniques
	Evaluation criteria & methods
	Evaluation results

	Capabilities of Test Tools
	Fundamentals
	Is a Test Tool Inevitable?
	Tool Resources
	Testing Tool Classifications

	Evaluation of Testing Tools
	Pre-Implementation Analysis/ Tool Selection
	In-Process & Post-Implementation Analysis
	Summary

	Summary & Future Work
	Future Work

	List of Tables
	List of Figures
	Bibliography

