Nr.: FIN-009-2008

Transforming Object-Oriented Design Pattern
Structures into Layers

Martin Kuhlemann

Arbeitsgruppe Datenbanken

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Nr.: FIN-009-2008

Transforming Object-Oriented Design Pattern
Structures into Layers

Martin Kuhlemann

Arbeitsgruppe Datenbanken

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 10 MDStV):

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Martin Kuhlemann

Postfach 4120

39016 Magdeburg

E-Mail: martin.kuhlemann@ovgu.de

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage: 61
Redaktionsschluss: 20.10.2008

Herstellung: Dezernat Allgemeine Angelegenheiten,
Sachgebiet Reproduktion

Bezug: Universitatsbibliothek/Hochschulschriften- und
Tauschstelle

Transforming Object-Oriented Design Pattern Structures
into Layers

Martin Kuhlemann

University of Magdeburg, Germany
kuhlemann@iti.cs.uni-magdeburg.de

Abstract

Design patterns improve desired properties of object-oriented soft-
ware. The Jak language implements layered designs that follow
similar goals as design patterns, like wrapping methods on de-
mand. In prior research we compared design pattern implementa-
tions coded in different languages, like Jak. We did not evaluate
the approaches of implementing a pattern but only used the im-
plementations for comparing languages. Therefore the compared
implementations were rather small and do not say whether the pro-
posals scale. In this study we transform and reimplement instances
of all Gang-of-Four design patterns in programs like JHotDraw
or Berkeley DB into Jak counterpart designs proposed carlier. We
show to what extend and under which conditions object-oriented
design patterns and Jak mechanisms correspond, e.g., for adding
methods to classes on-demand. Most of the problems we found
while transforming pattern implementations were related to diverse
implementation noances of the same pattern in different programs.
Second, some of the Jak approaches caused code replication or ad-
ditional effort for ensuring consistent Jak module composition. Fi-
nally, passing parameters to one method in different configurations
of Jak layers was more problematic than we expected before.

1. Introduction

Design patterns improve reusability for pattern-code, flexible com-
position of modules, maintainability, and other desired proper-
ties [6]. While design patterns can be reused as common designs
across applications, source code that implements a design pattern
possibly cannot. Several researchers addressed this lack of code
reuse and proposed modules that implement design patterns and
that can be reused [3, 13, 8, 1, 7]. In previous work [10], we an-
alyzed these implementations and transformed some of them [8]
into Jak counterparts. Our Jak implementations exposed several
benefits compared to their object-oriented original. We addition-
ally considered alternative pattern implementations that simplify
the pattern implementations for Jak [9].

In [10, 9], we compared languages — Aspect] and Jak — using
implementations of the Gang-of-Four (GoF) design patterns but
did not evaluate the implementation proposal itself. Therefore, sev-
eral questions remained unanswered: (1) can the Jak proposal im-
plementation modularize pattern implementations in existing pro-
grams? (2) Which problems occur when transforming an object-
oriented implementation of a design pattern into its Jak counterpart
to leverage from Jak’s benefits already shown? (3) Are the transfor-
mations revertible?

In this study, we transform pattern implementations for all 23
GoF design patterns in three programs using Jak mechanisms as
proposed in [10, 9]. JHotDraw' [4, 16] is a GUI framework and

!http://sourceforge.net/projects/jhotdraw/

is implemented using numerous design patterns; Berkeley DB? is
an embedded database engine for Java, and Expression Product
Line (EPL) [12] evaluates mathematical expressions. We concen-
trate on design properties that may prevent the transformation of
object-oriented patterns to Jak counterparts. Therefore, we tested
our layer composition results for type errors using a compiler.

In our study we found that only half of the pattern implementa-
tions could be transformed to the proposed Jak design — remaining
patterns demand for changes or extensions to their Jak implemen-
tation proposal. The main problems that occurred relate to provi-
dence of parameters, code replication, and consistency of Jak mod-
ule composition. Even though the intent of some patterns match Jak
mechanisms directly, like adding methods to classes on demand
or wrapping methods on demand, structural information got lost
during transformation into Jak. Among others these problems con-
tradicted and prevented our assumption of these transformations of
object-oriented pattern implementations into Jak pattern implemen-
tations being reversible.

2. Background

In this section we review design patterns and Jak.

Design patterns. Design patterns are suggestions for solving
recurring and diverse programming tasks [6]. Patterns propose
classes to play dedicated roles of the pattern where each role origi-
nates similar code for these classes across applications. For exam-
ple, the Observer pattern relates two sets of objects where Subject
objects modify Observer objects on change. To implement the role
of a subject (that is observed) or observer (that observes) according
classes implement pattern related interfaces with methods. In case
of the Observer pattern, all Subject classes (in every application)
are meant to provide an observer-access method (that may manip-
ulate a list field which references observers) and Observer classes
are meant to implement a uniform notify method to allow a subject
object to trigger its events to any type of observer uniformly [6].

Different researchers proposed design patterns [5, 17, 18, 11,
18] — in this work we concentrate on the Gang-of-Four (GoF)
design patterns [6] because they are widely known and domain
independent.

Jak A collaboration is a set of objects and a protocol that de-
termines how the objects interact [15, 14]. Collaborations in Jak
superimpose interacting classes with sets of interacting class re-
finements [2]. Class refinements add new fields and methods to su-
perimposed classes or wrap methods of the base classes.

In Figure 1, the class refinement of the Jak collaboration in
Figure 1b contains a class refinement Point (refinements are ex-
posed using refines keyword, e.g., Line 12) which adds a field color

2 http://www.oracle.com/database/berkeley-db/je/

public class Point {
private int x;
private int y;
public void setX(int newX){
this.x=newX;
}
public void setY(int newY){
this.y=newY;
}
¥

(@)

refines class Point {
private Color color;
public void setColor(Color newC){
color=newC;
}
public void setY(int newY){
Super.setY (newY);
color = Color.RED;
}
}

‘ DeleteCommand }—0{ Undoab\eAdapler‘ DeleteCommand
I | I] — —
[Ferecute | [Fundo

< DeleteCommand
DeleteCommand_UndoActivity| W
#myCommand H

+undo

‘ ConnectedTextTool_DeleteUndoActivity ‘
I |
[+undo |

Figure 2. Sample transformation of object-oriented Adapter to Jak
counterpart.

DeleteCommand cmd = new DeleteCommand("Delete",
editor ());

return new ConnectedTextTool_DeleteUndoActivity(cmd,
getConnectedFigure ());

@

(b)

Figure 1. Jak concepts used in that paper.

(Line 13) and a method setColor (Lines 14-16) to the class Point of
Figure 1a. Wrapping methods to add statements is done by overrid-
ing these methods in class refinements. Method setY of class Point
in Figure 1b refines method setY of the original class Point (Fig. 1a)
by overriding. This overriding method calls the refined method us-
ing Super (Fig. 1b, Line 18) and adds statements (Line 19). In the
remaining paper, we use mainly graphical UML-like representa-
tions of these classes instead of code.

3. Case Study

Jak and design patterns partly aim at common goals; both apply
certain properties to a base structure of classes, e.g., design pat-
terns as well as Jak add methods to objects of classes without edit-
ing these classes permanently (e.g., with the Visitor pattern or Jak
refinements), design patterns as well as Jak concepts also add state-
ments to methods on demand. While the object-oriented concepts
used in design pattern implementations (inheritance and delega-
tion) allow different variants at runtime, classes composed using
Jak refinements do not vary at runtime — we call Jak variation that
is based on composing refinements to be static and its implemen-
tation static too. In contrast, pattern variation is dynamic because
object properties may be attached and vary at runtime. To prove
the conjecture that certain patterns are equivalent to static counter-
implementations in Jak, we — additionally to [10] — evaluated static
pattern-implementations proposals [9] to modularize pattern code
in this study.

3.1 Transformation Examples

In this section we describe in detail three patterns with represen-
tative implementations of our study — Adapter, Template Method,
and Visitor. For them we describe observations when implement-
ing and transforming their pattern structure into static and dynamic
Jak variants. Note that these three patterns implement Jak mecha-
nisms of on-demand addition of methods to classes or on demand
wrapping of methods.

Adapter. The design pattern Adapter changes the interface of a
class such that the class implements an interface of a reusing appli-
cation [6, p.139]. Using design patterns, objects of an adapter class
wrap objects of the adaptee class and forward method requests to

return new
ConnectedTextTool_DeleteUndoActivity (editor (),
"Delete", getConnectedFigure());

(b)

Figure 3. Inlined adaptee instantiation.

the adaptee objects. Forwarding methods are named as in the de-
sired reusing-application’s interface. Conceptually, adapter classes
introduce new methods into an adaptee class such that the class
implements a desired interface.

In prior work, we examined two Jak implementation variants for
the adapter pattern [9] where the adapting methods are introduced
into an existing adapter class or into the adaptee class.

Inserting adapter methods into an existing adapter class of JHot-
Draw was straightforward after extracting it from there; in the
stripped adapter class no method was left. However, if no adapter
refinement is applied and thus no methods are added to the empty
adapter class, it remains empty and method calls to the adapter class
cause compiler errors. Furthermore, in JHotDraw, the adapter class
is part of a hierarchy; if no method is added to this adapter class
it may inherit inappropriate adapter methods; thus, subclasses must
be ensured to not inappropriately extend the inherited methods.

Inserting adapter methods into adaptee classes via refine-
ments is more complex. To transform an adapter class into an
adaptee refinement, we (1) pushed the adapter class into a re-
fining collaboration, (2) moved the adapter class to the package
of the adaptee class, and (3) applied type changes to the adapter
class (define the class to refine the adaptee class, redirect calls
to the former adaptee object). In Figure 2 the adapter subclass
ConnectedlextTool DeleteUndoActivity turns into a refinement of
the adaptee class DeleteCommand it wraps.

In JHotDraw, adapter classes inherit in deep inheritance hier-
archies but when turned into an adaptee refinement these adapter
refinements are no longer allowed to inherit classes.’ Both solu-
tions we considered have pros and cons. First, adapter-subclasses
can inline all their superclasses (collapsing the hierarchy) before
the adapter class is transformed into a refinement — this causes
code replication for different adapter classes inlining the same su-
perclass and precludes back-transformation. Second, all classes
of the adapter hierarchy could be transformed into distinct re-
finements of the adaptee class; these additional refinements then
must be applied when the transformed adapter class is applied

3In Jak, refinements generally cannot inherit from additional classes to
avoid multiple inheritance.

and — when applied — the refinement from a former superclass
of the transformed inheritance hierarchy must be applied before
its former subclasses (i.e., the refinement created from the top-
most hierarchy class must be applied first and hierarhy leaf-classes
last). For Adapter, we decided to inline the superclasses, i.e., in
Figure 2 classes UndoableAdapter, DeleteCommand UndoActivity,
and ConnectedTextTool DeleteUndoActivity compose to one refine-
ment DeleteCommand (We show an example of the alternative ap-
proach for Template Method.).

Calls or references (e.g., static types of variables) to the adapter
class were manipulated to call or reference respectively the (re-
fined) adaptee class. Among others we updated instantiations of
adapter classes; these instantiations now instantiate an adaptee
class and provide adaptee instantiation parameters. They do no
longer provide an adaptee object because now the transformed
adapter constructor is added to the adaptee class with refinements.
In Figure 3a, different values are passed to instantiate the delegatee
DeleteCommand (Line 1) which is then passed to instantiate the
adapter ConnectedTextTool DeleteUndoActivity object (Line 2);
when transforming the adapter class into an adaptee refinement,
the constructor of the refined class takes all (former adaptee and
adapter) parameters (Fig. 3b). Finally, we changed several package
and import statements because the adapter class has been moved
and renamed.

Template Method. In prior work we analyzed two variants for
implementing Template Method in Jak [9]. The first variant is
a Jak counterpart of another study’s Aspect] implementation [8]
and detaches the algorithm method from the template class, a
method that defines a common schedule for variant sets of primitive
operations (defined in subclasses). The second proposal is static
in that different sets of primitive operations are inserted into the
template class using refinements, i.e., the algorithm together with
one set of primitive operations are composed to one class and this
composition cannot vary at runtime.

The first variant of detaching the algorithm method from the
template class caused subtle problems in mixin layer implemen-
tations.* In JHotDraw the interface Figure of the abstract tem-
plate class AbstractFigure declares the method clone, a method
which then was implemented by the AbstractFigure subclass. Ab-
stractFigure defines this method which we therefore consider an
algorithm method. We moved all algorithm methods (and so the
clone method) into a refinement of the stripped class AbstractFig-
ure that then only contained declarations for primitive operation
methods. With mixin compilation this stripped class AbstractFigure
was transformed into an abstract class that is subtyped by classes
transformed out of its former class refinements; thus, the abstract
AbstractFigure class with the primitive operations did not define
the clone method — this raised an compiler error. To fix that error,
we noticed the algorithm method c/one in advance in the stripped
class with the primitive operations.” We needed advance notices
like this and others (like hooks methods) for several patterns to al-
low methods of a preceding refinement to call methods a succeed-
ing refinement introduces; we also needed advance notices (hooks)
to re-introduce statements into methods, statements that belonged
to a pattern implementation and were separated in a refinement (Jak

4 Mixin layers are a possible compilation result for Jak layers. Mixin layers
simulate class composition by transforming refinements into subclasses of
an automatically renamed base class.

> Note that the opposite decision of moving the primitive operation decla-
rations into a refinement of a class containing the algorithm method clone
causes similar problems. This is because in the mixin compilation the algo-
rithm methods of a superclass call primitive operation methods of the sub-
class while these primitive operation methods are undefined in the stripped
superclass.

cannot add a statement at arbitrary points into methods but can only
wrap them.).

Note, while noting in advance the algorithm method clone for
mixin layers is a very special observation, it shows the combina-
torical complexity that layer decomposition may introduce and a
developer has to keep track off; it also shows the need for hook
methods that overcome limitations of Jak’s join point model. In our
example, the developer has to foresee for all module compositions,
that once a c/one method is introduced into an interface, the refine-
ment that declares its composed class to implement this interface,
defines or inherits a method clone — this may need restructuring of
existing Jak modules.

The static implementation of the pattern Template Method adds
primitive operation methods directly into the template class. For
that, we transformed the primitive operation’s classes (subclasses
of the template class) into refinements of the template class® and
made the template class a concrete class.

We changed the static type of objects of the former primitive
operation classes into the type of the template class (that is now
refined to expose primitive operations) — this caused type errors.
In JHotDraw individual primitive operation classes expose unique
interfaces because each primitive operation class defines additional
methods. Thus, when we transformed these individual classes into
refinements of the template class, the set of methods provided by
the composed template class is unique to this configuration too.
This caused calls to individual methods (on objects that had the
static type of the according individual operation class before) to
fail for certain layer combinations. Constructive user intervention
is needed to delete these failing calls or to create stubs for the in-
dividual methods so that they are available in every layer combi-
nation. For the first option, all calling methods must be replicated
in every refinement layer to strip the calls to methods unavailable
if this particular layer applies; the second option proliferates the
design with additional methods (hooks) that may be unneeded for
most of the layer combinations.

In Template Method, we faced problems of parameter passing
when transforming the primitive operation classes into refinements.
In the original implementation of JHotDraw different primitive op-
eration classes were instantiated in different contexts and with dif-
ferent parameters; thus a unified way of instantiating the composed
template class was impossible, i.e., different instantiation calls lack
access to appropriate constructor parameters for different composi-
tions of refinements. If one refinement introduced more than one
constructor, instantiation calls that formerly instantiated another
class of primitive operations became ambiguous and required de-
veloper intervention.

In JHotDraw primitive operation classes implement new meth-
ods and new data types that are organized in a deep inheritance
hierarchy. Intermediate classes of that hierarchy are instantiable
on their own and thus their code is transformed into separate re-
finements anyway. This led us to the approach of organizing class
refinements according to their former relationships in the inheri-
tance hierarchy instead of inlining the superclasses (as described
for Adapter).

In the static implementation variant for Template Method of
JHotDraw assignments became unsound because the new com-
posed template class lacks to subtype interfaces in some config-
urations (certain subtype declarations for the template class were
declared only by some refinements — former subclasses). The de-
veloper again is needed to intervene.

© We moved the primitive operation class into a refinement layer and into the
template class’ package. We then made the former subclass a refinement of
the template class.

p +visitDeleteFrom’

1
<<interface>> <<interface>> <<interface>> <<interface>>
<<visited>> FigureVisitor 1 Figure FigureVisitor
] Flgure +visitFigure +visitinsertinto’
+visit 1 | +visitDeleteFrom’ !
Z} - InsertintoDrawingVisitor 1 - InsertintoDrawingVisitor
I i I -
AbstractFigure 1 | *visitFigure ") |AbstractFigure s +getlnsertedFigures
visit | +get|nsert.edF|gures A visitinsertinto’ | i | -myDrwaing
| | -myDrwaing i
| L
I

1 DeleteFromDrawingVisitor

void visit(FigureVisitor v){

| DeleteFromDrawingVisitor | .

v.visitFigure(this); +visitFigure
] +getDeletedFigures

} —-myDrwaing

(@)

- -

+getDeletedFigures
—myDrwaing

(b)

Figure 5. Decomposed Visitor remain as parameter object.

+draw 1 +draw 1 {+araw

1 D 1
AbstractFigure i AttributeFigure N {1 =| AbstractFigure
+draw +draw oS +draw
—attributes 1 —attributes .- W[~attributes

1 N |
i I -~ "= AbstractFigure
+draw 1 ‘ EllipseFigure ImageFigure 1 +draw

1 \+draw +draw 1 +imageUpdate

k +imageUpdate —attributes

AbstractFigure [s-f._ _ — 1
+draw T
+imageUpdate 1 1

[[

(a) (b)

Figure 4. Deep inheritance hierarchy to Jak refinements.

In Figure 4 we show an example from JHotDraw. To transform
the primitive operation classes EllipseFigure and ImageFigure into
refinements of the template class AbstractFigure we had two op-
tions: (1) we could transform intermediate classes like Attribute-
Figure into their own refinements (Fig. 4a), or (2) we could inline
these intermediate classes into each subclass before transforming
each subclass into a refinement (Fig. 4b; done before for Adapter).
The first variant needs to organize the refinements from the individ-
ual classes in order and presence according to their position in the
former hierarchy, e.g., the AttributeFigure refinement must be ap-
plied whenever the EllipseFigure or ImageFigure refinement is ap-
plied and then must precede these refinements.” The second variant
(Fig. 4b) replicates code in the transformation result and precludes
back-transformation because methods are mixed and inlined. In ei-
ther case, objects were retyped to the template class AbstractFigure
which (1) disallowed calls to individual methods like imageUpdate
for configurations without the method defining layer /mageFigure,
and (2) caused problems of parameter passing because class /mage-
Figure takes an additional parameter for its constructor, this param-
eter now must be provided everywhere the lifted class AbstractFig-
ure is instantiated (even there where EllipseFigure was instantiated
before) — this was impossible.

Visitor. For Visitor we also analyzed two approaches of imple-
mentations that use Jak mechanisms. The Visitor pattern aims at
adding methods to classes without editing these classes’ definitions.
The pattern uses double dispatch where a uniform accept method
of the visited class to extend calls a specific method of its visitor
parameter. The called visitor method corresponds to the dynamic

"Note, the composition could also compile without layer AttributeFigure
or with reordered layers but this is not equivalent to the former inheritance
hierarchy.

type of the visited object — the visited object’s type is extended vir-
tually.?

The Jak implementation [9] separates all pattern related code
fragments into refinements, like the accepr method, the visitor
classes, or subtype declarations toward pattern-related interfaces. A
static way to implement the Visitor pattern’s aim is to move meth-
ods (that were virtually introduced into classes) from the visitor
classes into the hosting classes with class refinements.

We tried to reuse code from the former study for the Visitor
implementation in JHotDraw but we encountered naming conflicts
for methods.” Thus, we applied the concept of separating methods
and classes to JHotDraw instead of reusing existing classes from
our former study. We detached accept methods, visitor classes, and
interfaces into refinements.

In [9], accept methods were added to the visited class by adding
a subtype declaration toward a method defining class; however,
this was not possible for JHotDraw. Visited classes in JHotDraw
(that should define accept) already subtype classes and — due to the
single inheritance constraint of underlying Java — cannot subtype
additional classes. Therefore, we inserted the accept methods into
the visited classes using Jak refinements. Since we only detached
them from there before this was no big deal.

In the static implementation we moved the visitor methods
into refinements of the classes that each visitor method virtually
extended'’; thus we extended according classes individually with
Jak refinements instead of extending them virtually in a visitor
object. Finally, we transformed visitor triggering statements to call
the new methods instead.

In case the visitor class only includes methods virtually added
to classes, the visitor class becomes empty and may be deleted.
In JHotDraw some fields and methods are used within the visitor
only and not added virtually to classes — to comprise these methods
and fields we kept some visitor classes. Therefore, visitor classes
are still passed to the new visited classes’ methods as parameter
container but they are not longer used for double dispatch.

In Figure 5, we exemplify our transformation for the Visitor pat-
tern using JHotDraw. In Figure Sa the visited class AbstractFigure

8 Calling the accept method of object 4 with a visitor parameter is equiva-
lent to calling an added method on the object 4.

1In JHotDraw, visitor methods were named according to the class they
virtually extend instead of simply being called visit as in [9], e.g., visi-
tor method visitFigure virtually extends the Figure class; double dispatch
methods of the visitor class where named visif instead of accept. In the fol-
lowing we name double dispatch methods of the visited classes accept and
virtually added visitor methods visit.

10Tn object-orientation the double dispatch method of the visited class,
forwards its self-reference as an argument to an overloaded method of the
visitor. Thus, the visitor method’s argument type is the type this method is
virtually added to.

S<decoratee>> DecoratorFigure| - :
TextFigure | | —myDecFigure ' || TextFigure <1 NodeFigure
+draw +draw E +draw [<— +draw
L2 T :
H
NodeFigure BorderDecorator| + || TextFigure NodeFigure
+draw +draw v | [*draw +draw
. i =
f =
(a) (b)

Figure 6. Doubled application of a feature.

accepts visitor objects for its visit method and calls the appropri-
ate visitor method visitFigure with its self-identity as an argument.
We inlined the visitFigure of every visitor class into the double
dispatch method visit (that we duplicated and renamed before) of
the visited class. The two visitor classes InsertIntoDrawingVisitor
and DeleteFromDrawingVisitor, therefore, produce two methods
(visitInsertInto and visitDeleteFrom; Fig. 5b) added to all visited
classes.'" The moved methods access fields and methods of their
visitor class, members that cannot be moved to a certain class, like
method getlnsertedFigures. Instead of moving these members, still
the visitor classes /nsertIntoDrawingVisitor and DeleteFromDraw-
ingVisitor encapsulate these members and thus became argument
containers for visitInsertinto and visitDeleteFrom respectively.

3.2 Study Results

In the preceding section we exemplified the most common prob-
lems encountered when transforming object-oriented pattern im-
plementations into Jak counterparts. In this section we summarize
the whole case study and just shortly show interesting problems we
found. We had no problems transforming the implementations for
Abstract Factory, Command, Facade, Factory Method, Flyweight,
Interpreter, Iterator into the Jak counterparts.

The static Bridge implementation (concrete-implementor-classes
become refinements of the abstraction class) needed us to in-
line deep inheritance hierarchies of the concrete-implementor-
classes. Additional parameters for the abstraction class’s construc-
tors caused problems of parameter passing.

For the static Builder implementation an extra preceding layer
defines subclass relationships. This layer also avoids advance no-
tices.

The Chain of Responsibility proposal exposed problems when
the chain classes participate a deep inheritance hierarchy. Chain
methods looked very diverse, e.g., they defined statements or con-
ditionals before forwarding requests to their successor in the chain.
We had to decompose chain methods to execute the decomposed
methods of different chain classes homogeneously before and after
forwarding the event to the successor inside their refinement.

Generally the implementation proposal of Composite was ap-
plicable to JHotDraw. Instead of organizing children of composite
objects in hashmaps, we used vectors because orderings of children
was important.

The static Jak Decorator design does not deal with deep inher-
itance hierarchies for decorator and decorated classes. When turn-
ing decorators into refinements of the decorated class, we had to
replicate each decoration refinement (decorator class became re-
finements of all decorated classes) for different decorated classes.
Intermediate classes even caused problems of doubled application
of feature code possibly leading to inconsistencies. For illustration
we use JHotDraw; in Figure 6a the decorator BorderDecorator dec-
orates objects of the classes TextFigure and NodeFigure. However,

1'To show that these methods are introduced into the classes using class
refinements, we annotate them with a prime.

refining both classes with the decoration code (Fig. 6b) applies the
decoration twice accidentially for objects of type NodeFigure. This
is because NodeFigure inherits the already decorated TextFigure
methods.

Mediator implementations in JHotDraw do more than just for-
warding events to associated objects (as analyzed in [9]), e.g., they
construct control panels of a GUI. Separating the mediator classes
from the application raised issues of undefined parameter types and
undefined return types in the remaining code.

In JHotDraw different Memento objects may be created for an
object of a certain type, thus, a single memento-creating method
only receiving the originator object as a parameter was not suf-
ficient; also mapping one object to one memento object using a
hashmap was insufficient.

The Observer implementation of JHotDraw can be separated
as analyzed in [10]. However, reusing an abstract implementation
of this prior study was impossible because in JHotDraw observer
objects are passed parameters additionally. Worse, based on the
event passed, different parameter values are triggered. Therefore,
no single observer list together with a single update method suffices
as analyzed in [10].

In the Prototype implementation detaching the prototype field
from remaining code causes problems of parameter passing for
methods (e.g., constructors), that initialize objects and that accept
the prototype object as parameter. Factory methods returning a pro-
totype object may — without this pattern — return new objects each
time the factory methods are called (not instantiable prototype-
types, e.g., interfaces, may prevent that) but that needs user inter-
vention.

In contrast to the Proxy counterpart of [10], single proxy classes
in Berkeley DB wrap different classes while other methods of this
proxy class do not wrap anything. To wrap different classes by one
proxy, proxy classes’ methods are static and accept their delegatee
as a parameter — this complements the implementation of [10]
where one delegatee object for all methods of one proxy object
is referenced in a proxy’s field. Finally, methods of the proxy class
not forwarding anything had no class they wrap and that they could
have been moved to — thus, the proxy class remained comprising
these methods.

Applying the Singleton decomposition approach of [10] is pos-
sible but caused errors. Detaching the Singleton design pattern from
classes and apply it on demand, needs this class to be convertable,
i.e., the remaining software must not rely on getting the same object
everytime an object of this class is requested. In JHotDraw this was
not the case, remaining classes relied on this class being a singleton
class although the transformation caused no compiler errors.

Different classes that implement the design pattern State in
JHotDraw could not be transformed into static refinements of the
state-changing class, i.e., these classes cannot be inlined. First, state
classes comprise more than just the implementation of state and can
be instantiated and used independently of the state-changing class
— transforming a state class into a refinement of the state-changing
class would preclude this independence. Second, state classes in
JHotDraw reference other polymorph state classes making it im-
possible to inline respective classes (the recursive reference would
cause recursive and never-ending inlining).

The dynamic Jak design for Strategy does not pose a problem
but the static variant does. The static variant transforms every
strategy class into a refinement of the context class and establishes
static variability of strategies for the context class. In JHotDraw
strategy objects are not bound to one context class only and are
stored and managed in container classes like lists — the result
of list iterators cannot be calculated statically and so dependent
code — chosing the wrong dependent code statically may cause
inconsistent programs.

4. Insights

During this study we learned a lot about design patterns and several
myths. For instance, we learned that different implementations of’
one pattern may differ greatly in structure. We realized that com-
plex class hierarchies (e.g., with intermediate instantiable classes)
caused problems when transformed to Jak counterparts. In case of
Decorator the complex hierarchy of decorated classes even led to
a decoration applied twice for certain objects. In contrast to our
assumptions we found that our transformations of object-oriented
design patterns into Jak counterparts can hardly be reverted (espe-
cially when we transformed class associations into mapping rela-
tions of hashmaps following [10] or collapsed class hierarchies).

In our observation, static pattern implementations with Jak re-
finement chains were simpler (linear module organization) than
class hierarchies (module organization in two dimensions, inher-
itance and consultation). However, we could not always retrieve
these simple refinement chains when we transformed non-trivial
software like JHotDraw (about 30KLOC) or Berkeley DB (about
90KLOC). Major reasons for that were problems of parameter
passing and ambiguous instantiation calls.

Finally, we observed that our transformations (e.g., moving or
renaming methods and classes and respective calls) were very la-
borious and tedious. Therefore, we would benefit from a transfor-
mation language inside Jak that allows to change a legacy code
structure more flexibly. The result of every manual transformation
was very inflexible in that it can only be undone manually.

5. Conclusion

In prior research we analyzed design pattern implementations that
use advanced modularization mechanisms of Jak. In this work we
transformed design pattern implementations in programs of larger
scale (JHotDraw, Berkeley DB, and Expression Product Line) into
Jak counterparts. We found that we could not transform every pat-
tern implementation into a Jak counterpart due to three main rea-
sons. First, one design pattern was implemented differently even in
structure for different programs. Second, some of the design pat-
tern implementation approaches lost structural information of the
original classes which caused code replication or effort to ensure
consistent Jak module composition. Third, information needs ex-
pressed as method parameters had to be fulfilled by inappropriate
new callers when moving pattern methods from classes to refine-
ments of other classes.

We conjecture that manually transforming design patterns was
a very laborious task — when central classes of a software were af-
fected we had to restructure the whole architecture of the programs
under study, e.g., JHotDraw or Berkeley DB. Future work is to ex-
plore additional code transformation facilities for Jak.

Acknowledgments

We thank Don Batory and Maider Azanza for helpful comments
and fruitful discussions. Martin Kuhlemann is supported and par-
tially funded by the DAAD Doktorandenstipendium (No. D/07/45661).

References

[1] E. Agerbo and A. Cornils. How to preserve the benefits of design
patterns. ACM SIGPLAN Notices, 33(10):134—143, 1998.

[2] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. /EEE Transactions on Software Engineering, 30(6):355—
371, 2004.

[3] J. Bosch. Design patterns as language constructs. Journal of Object-
Oriented Programming, 11(2):18-32, 1998.

[4] H. B. Christensen. Frameworks: Putting design patterns into
perspective. ACM SIGCSE Bulletin, 36(3):142—-145, 2004.

[5] J. O. Coplien and D. C. Schmidt, editors. Pattern Languages of
Program Design. ACM Press/Addison-Wesley Publishing Co., 1995.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[7] O.Hachani and D. Bardou. On aspect-oriented technology and object-
oriented design patterns. In Workshop on Analysis of Aspect-Oriented
Software, 2003.

[8] J. Hannemann and G. Kiczales. Design Pattern Implementation in
Java and Aspect]. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 161-173, 2002.

[9] M. Kuhlemann. Design Patterns Revisited. Technical Report 2,
School of Computer Science, University of Magdeburg, 2007.

[10] M. Kuhlemann, S. Apel, M. Rosenmiiller, and R. E. Lopez-Herrejon.
A multiparadigm study of crosscutting modularity in design patterns.
In Proceedings of the International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS EUROPE), 2008.

[11] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Program-
ming. Manning Publications Co., 2003.

[12] R. E. Lopez-Herrejon, D. Batory, and W. R. Cook. Evaluating
Support for Features in Advanced Modularization Technologies.
In Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), pages 169—194, 2005.

[13] B. Meyer and K. Arnout. Componentization: The Visitor Example.
IEEE Computer, 39(7):23-30, 2006.

[14] C. Prehofer. Feature-Oriented Programming: A Fresh Look at
Objects. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), pages 419443, 1997.

[15] T. Reenskaug, E. Anderson, A. Berre, A. Hurlen, A. Landmark,
O. Lehne, E. Nordhagen, E. Ness-Ulseth, G. Oftedal, A. Skaar,
and P. Stenslet. OORASS: Seamless Support for the Creation and
Maintenance of Object-Oriented Systems. Journal of Object-Oriented
Programming, 5(6):27-41, 1992.

[16] D. Riehle. Framework Design — A Role Modeling Approach. PhD
thesis, Swiss Federal Institute of Technology Zurich, 2003.

[17] B. Woolf. Null object. In Pattern Languages of Program Design
(PLOPD), pages 518, 1997.

[18] W. Zimmer. Relationships between design patterns. In Pattern
Languages of Program Design (PLOPD), pages 345-364, 1995.

