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Abstract We propose a technique for localization of complex shapes in

images using a novel part–based deformable shape representation based

on finite element vibration modes. Here, our method gives an extension

for Finite Element Models to represent elastic co–variations of discrete

variable shapes. It avoids misregistration by resolving several drawbacks

inherent to standard shape–based approaches, which cannot detect struc-

tural variations and occlusions. Our algorithm uses a hierarchical shape

model, involving an evolutionary deformable shape search strategy. The

different levels of the shape hierarchy can influence each other, which

can be exploited in top–down part–based recognition. It overcomes draw-

backs of existing structural approaches, which cannot uniformly encode

shape variation and co–variation, or rely on exhaustive prior training.

We applied our method to two different example applications, which

include shape detection and discrimination, as well as localization of the

desired object under occlusions. Experimental results are promising and

show the good performance of our approach. It is robust to changes in

the values of parameters used and requires no prior training with regard

to shape variation and image characteristics. By utilizing a quality–of–

fit function the model explicitly recognizes missing discrete parts of a

complex shape, thus allowing for categorization between shape classes.

1 Introduction

Modeling global and local aspects of shape separately is useful for many image
processing tasks including object recognition, pose estimation, medical image
segmentation and motion tracking, as indicated by [1–4, 12, 14, 18, 25, 39, 41, 44,
50, 51, 54–56, 58, 61–64], among others. Studies on the human visual perception
also provide evidence that a representation suitable for object recognition should
include a structural decomposition of the object into parts and a description
of parts and relations between them [2, 13]. Such representation should cover
variations and irregularities in shape and structure due to image noise, object
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deformation and possibly change of view point, and should allow representation
of objects under occlusion.

The main contribution of this work is a novel representation of complex
variable objects that contain multiple parts. It is inspired by Biederman’s theory
of Recognition by Components [2], but uses the structural decomposition into
specific shapes in a top–down manner. Knowing the context of object topology
provides crucial information for matching, which makes our approach suitable
for model–based recognition, including object localization, segmentation and
classification (categorization).

Automatically computing part–based descriptions from a real image is dif-
ficult, because this requires object detection, segmentation and decomposition.
Our method follows a top–down strategy computing the most plausible expla-
nation of image content given a (set of) prior model(s) in terms of segmentation
with maximum quality. A major issue here is to abstract complex variable objects
into a simplified representation which alleviates comparison between shapes. In
our work, we choose a structural approach, which has the advantage of compo-
sitionality saving from an exponential increase in the number of single, linear
prototypes required to represent valid variation in a specific shape class. In con-
trast to, e.g. exemplar–based representations, it can represent qualitative and
discriminative features of objects. We propose a hierarchical model that also
provides a natural framework for multi–scale decomposition of shape into parts,
and parts into sub–parts. Using such hierarchy, interactions are more global,
which has the advantage that information can propagate faster between distant
shape parts.

This paper is structured as follows. Section 2 discusses related work in the
context of structural models and techniques for deformable shape search for lo-
cating object instances in images. In section 3 we introduce our shape model for
use in part–based recognition. Section 4 describes the algorithm for hierarchical
shape matching using dynamic Finite Element Models (FEM). In section 5 we
introduce our strategy for automating the shape search. Finally, we present two
case studies for applying our model to recognition and classification tasks and
discuss the results in section 6. At the present state, we do not attempt to esti-
mate locations for object parts in arbitrary poses, instead restricting ourselves
to cases in which the set of poses is limited (e.g., due to anatomical laws, stan-
dardized image acquisition, etc.). First, we provide results on the localization of
a specific cortical folding pattern in 2D flat maps of the cortical surface that we
recently presented in a short conference article [14]. It shows exemplarily how to
specify different spatial relationships of shape parts. It also provides an example
for representing shape parts with different level of detail, and further indicates
how to use the structural shape matching as a focus–of–attention technique for
shape detection (detecting the presence of a specific shape in an image). In the
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second application example, the model is applied to the recognition of ant species
from 2D color images from a database, which was also used by [4], and allows us
to compare our method directly with their results. In this application we analyze
insensitivity w.r.t. hidden object parts. Here, the model is also used for classifi-
cation by comparing segmentation quality under different class–specific models.
A conclusion is drawn in section 7 along with suggestions for further research.

2 Related Work

Variations in shape and in the structural relations between shape parts can
be described in different ways. Many existing structural approaches are data–
driven in that prior knowledge about the specific shape and the structural as-
pect of shape is not used for recovering the object parts. This often involves
fitting parametric shape models (e.g., geons [2], generalized cylinders [3] and su-
perquadrics [52]) to preprocessed data or images which are pre–segmented into
regions corresponding to parts, and comparing the obtained description, e.g.
with a database [2, 3, 39, 44, 50, 52, 58]. In many applications, however, specific
(classes of) shapes have to be detected in images. Structural models that do not
use prior knowledge about specific shapes, may then produce ambiguous results,
because generic templates can fit a large range of shapes. (Local) variation may
indicate both differences between class members and variation between shape
classes. Another problem is that some objects may not have a clear decomposi-
tion into shape primitives, while the extraction of generic parts from images in
a robust way remains elusive.

A majority of structural approaches use pre–defined combinatorial constraints
(e.g., by specifying attachment surfaces, articulations and joining angles) be-
tween simplified object parts to encode the compound shape, e.g. in a struc-
tural description graph [18,31,44,53,64], by a grammar [50], using coupled/split
shapes [22, 51, 61], a blending function [12], or an expert model [60]. These ap-
proaches either cannot describe structurally variable shapes, or they capture
only relatively weak structural properties of shape in their tree–structured mod-
els. This may not always be appropriate. If shape parts are constrained to have
certain spatial relationships with each other, this information should be used
in object detection, such that structural co–variations may induce deformations
of the sub–shapes. Several approaches use a statistical/trained model of shape
locations [6, 20, 41, 56], e.g., in terms of trained relations between prototypical
sub–shapes for generating expectation maps in a sequential recognition pro-
cess [4, 19, 54, 55]. Representing shape and structure by different models can be
a drawback of these methods, as it does not allow structural deformations to
directly influence morphological variation, and vice versa. This, however, may
be required because often the structural aspect of shape is not independent from



4 Karin Engel and Klaus Toennies

local shape variations. The ASSM approach by Al-Zubi et al. [1] combines both
statistical and structural a-priori knowledge about shape variation for 2D shape
matching. Their structural representation was shown to profit mainly from the
uniform description of co–variation and shape context based on a joint Gaussian
model. Similarly, Cristinacce and Cootes [6] use a set of appearance models in
a shape constrained local model search. These approaches outperform the origi-
nal ASM [8] and AAM search [10], respectively. However, they require intensive
training with labeled data of high reliability for separating valid from invalid
variation. Shape variation may alternatively be constrained a-priori by means
of physically based models, such as Finite Element Models (FEM) [40, 46], and
training the natural variation modes may not be required.

In this paper, we describe a novel method to present and segment complex
objects of specific classes from images. It resolves the addressed problems, in that
we adopted the ASSM approach by Al-Zubi et al. [1], and propose a hierarchical
Finite Element Model, which gives a uniform and multi–resolution description
of shape without the need for prior training. By using deformable shape models,
in contrast to simplified fixed templates for shape parts arranged according to a
tree–structure (e.g. [18]), we are able to model variations in shape, contour and
appearance. The shape hierarchy can capture long–range contextual information,
as opposed to appearance and localized structural information only. Compound
objects introduce many new issues related to the use of structural relationships
to effect model–based segmentation and shape description. We address these is-
sues through specific properties of the proposed model and matching algorithm.
The shape model is applied in a hierarchical fashion where contextual shape
information is used top–down to eliminate false interpretations of the data. It
extends the ability of FEM in the sense that it enables structural variability in
terms of elastic co–variations between specific deformable shapes. A significant
result of using finite element vibration modes in the shape–structure hierarchy is
that it combines noise robustness from deformable shape models and validation
of structure from structural models. This reduces the complexity of the distri-
bution function–which would be needed to model the spatial relations of parts
of the compound shapes statistically–while modeling valid variation under the
following assumptions. First, the desired object can be detected in an image and
is (at least partially) visible. Second, variation due to change of view point is
negligible, if the set of poses is limited. Finally, shape classes can be differen-
tiated for comparison of shapes based on their structural configuration and/or
morphology of the shape parts.

As any deformable model, the resulting shape model relies on the initial es-
timate. Our framework for shape search (i.e. localization of the shape within
the image) is different from other object recognition approaches (e.g. [43, 63])
that guide the search for good object configurations in a bottom–up fashion.
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These methods have the disadvantage that false negatives in the feature detec-
tion step can prevent parts from being properly localized. In order to deal with
the complexity due to variations in pose, shape and appearance of compound ob-
jects, in [48] a brute force search is adopted. Felzenszwalb and Huttenlocher [18]
developed an efficient method for matching tree–structured models that con-
sider a small number of simple parts connected in a deformable configuration.
Their pictorial structure matching provides a global search method [17–19] based
on dynamic programming, which was also used in [11]. Their approach has the
drawback that it uses pairwise constraints instead of a “full” shape model, where
every sub–shape may be related to every other sub–shape. This usually requires
a triangulated template of low resolution which is transformed to a small fixed
number (e.g. 60 × 60) of possible locations in the image. Although an opti-
mal non–rigid transformation of the template can be found in polynomial time
(w.r.t. sampling density) [19]–which is better than an exhaustive search–such
matching algorithm may practically still be ineffective unless being combined,
e.g. with an oversegmentation of the image [38,42]. Moreover, since their energy
function is a sum of costs per triangle, relationships between distant parts of
an object cannot be captured explicitly and the search is inherently a sequen-
tial process [19]. Again, false negatives in the part detection can prevent the
shape (parts) from being properly localized. In contrast, our shape search uses
an evolutionary strategy, which is inspired by the genetic algorithm Hill and
Taylor employed for model–based segmentation of medical data [24]. It com-
bines aspects from [4, 8, 23, 35] in that our local search procedure also uses a
top–down, knowledge–driven model–fitting strategy. The main contribution of
our approach is twofold. First, training regarding data input, shape (context)
and appearance is not required, although this may improve the recognition rate.
Second, in contrast to sequential search methods, our method uses a top–down
method for hierarchical initialization and validation of the local searches with
specific sub–shapes, which is combined with the bottom–up flow of information
derived from the data. This integrates a focus–of–attention like search strategy
and the segmentation of the desired objects into the object recognition process.

3 Hierarchical Shape Model

As in our case a structural description of the image cannot be derived automati-
cally, the prototypical shape templates are generated from a manually segmented
example image. A class-specific prototype is here represented as a hierarchy of
Finite Elements Models to account for variability in relationships between the
shape parts (which also refer to morphological components, sub–shapes or lo-
cal shapes) and local shape deformation. This allows to specify the model from
domain knowledge by first deciding on the decomposition into simpler compo-
nents, e.g. convex shapes, which may represent (functional) shape units, e.g.
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body parts. Secondly, it allows combination of components by a higher level
FEM (the structural, or global model) whose decomposition describes the de-
sired structural constraints between local shapes. Finally, the finite element de-
composition supports an efficient simulation of deformation.

A hierarchical shape model TX =
⋃
{l,j} T

(l)
j represents the structural de-

composition of a complex shape of class X into multiple discrete shapes {T (l)
j },

which contribute to different hierarchy levels l, and are represented as triangular
finite element meshes. The shape parts at each level l− 1 are coupled to form a
higher level l of the hierarchical shape model, while any T (l−1)

j may represent a
compound shape on its own. Such a hierarchical model deforms into an object
instance supported by image features. It should be able to localize instances of an
object class based on the amount of structural and morphological deformation
necessary to fit the features. We assume that it sufficiently separates informa-
tion about variation within an object class and between different object classes
in order to differentiate between shapes based on deformation parameters. The
former is mainly determined by sub–shape deformation and their co–variation,
while the latter is given by the decomposition into sub–shapes and structural
variation parameters. This hypothesis allows for a certain amount of ambiguity,
but we believe that this separation of within–class and between–class variation is
sufficient for localizing and classifying objects within the same representational
framework.

Under these hypotheses, morphological and structural aspects can be repre-
sented by a shape–structure hierarchy of FEM which refers to a 2–level FEM.
In this case, the first level represents local shape variations, while the top level
represents a-priori information about the co–variations, i.e. class–specific config-
uration and spatial relationships of the morphological FEM, T (1)

j , in terms of a

structural FEM, T (2)
X . Although we restrict our discussion to a shape–structure

hierarchy of two levels, the decomposition may continue through additional levels
yielding a hierarchy of shapes, structures, super–structures, etc.

The spatial configuration of such system is described by its degrees of free-
dom (DOF). The finite element nodes on each level represent object details, and
are mapped to “sensors” which extract object–specific image features at the lo-
cation of the node (sect. 4.2). The a-priori information is used for hierarchically
combining object features to a more complex object (figure 1), as the shape
model deforms according to sensor input (sect. 4.3). Thereby, characteristic fea-
tures are hierarchically derived from the image. Their significance and semantics
increase from the bottom to the top level.

The global structure of the compound object is embedded into the shape
hierarchy such that the boundaries of the structural finite elements approxi-
mate elastic co–variations (i.e. relative positions) of “high–level image features”
which represent a correlation with sub–shapes. Each node x(l)

j of the structural



Hierarchical Vibrations for Part–based Recognition of Complex Objects 7

Hierarchical Shape

Model TX =
S
{l,j} T

(l)
j

//
Structural Fit

l >= 2
(sect. 4.3)

��
Shape Fit

l = 1
(sect. 4.1)

across–level
spring forces

(eq. 6)

XX

��
Data

(sect. 6)

Gaussian
potential forces

(eq. 2)

VV

Figure 1: Algorithm overview. In the bottom–up flow of information specific fea-
tures are extracted from the data. These are combined to more complex objects
in a top–down manner using a hierarchy of shape models. An example of such
model is depicted on the left. Here, the shapes T (l)

j of level l = 1 (solid lines) and

the top–level model, T (l)
X , l = 2 (dotted lines), contribute to a shape–structure

hierarchy, or 2–level FEM. The shapes are coupled across different levels l us-
ing virtual springs between specific link nodes. Note that the kind of coupling
determines the form of co–deformation between sub–shapes.

FEM T (l)
X is therefore mapped to a high–level sensor representing a particular

sub–shape T (l−1)
j , which is likewise implemented as dynamic FEM. Each x(l)

j is

related to the specific morphological FEM through a (set of) link node(s), x(l−1)
j ,

by a virtual spring of zero length (figure 1). The structural model T (l)
X defines

the (initial) placement of the morphological FEM on the hierarchy level l − 1,
whose deformation will cause the sub–shapes to fit local image features. In the
bottom–up flow of information, the input for the finite element nodes of level
l > 1 does not stem directly from the underlying image, but from the output
of level l − 1 of the hierarchy of FEM, i.e. only sub–shapes of level l = 1 have
direct access to the image. Here, as usual, external model forces subject to (s.t.)
the nodes at level l = 1 are defined via Gaussian potentials based on the image
data. The different levels influence each other during hierarchical shape fit, but
in contrast to, e.g. [51], shapes on consecutive levels are not coupled directly.
We introduce “high–level external model forces” in terms of across–level spring
forces s.t. pairs of link nodes for applying constraints on the relative positions
and dependent deformation of shape parts at the lower levels (sect. 4.2). Sub–
shape displacements will thus cause deformation of the structural FEM, which
will then again effect morphological FEM by propagating the displacement of
top–level link nodes x(l)

j to the lower level link nodes x(l−1)
j . Thus it is possi-

ble to separately analyze the deformation behavior of the sub–shapes and their
structural relations. In contrast to [51], this yields a hierarchy of FEM, whose
nodes are subject to external model forces which are derived from the image in a
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bottom–up fashion, and by employing the deformable model paradigm. Thereby,
our model is capable of representing local and structural variability of shapes
within a uniform framework.

Depending on the number and location of the sub–shapes link nodes dif-
ferent structural attributes of the compound shape can be represented by the
related global model, including high–order relations, such as parallelism (figure
2). We employ the following rules for building such hierarchical model based
on an example segmentation: First, the sample is decomposed by outlining the
parts which are subdivided into geometrically simpler finite elements, e.g. us-
ing Constrained Delauny triangulation and Blum’s medial axis transform. Next,
the shape parts are mapped to nodes x(2)

j of the structural model, i.e. com-
pact shapes are mapped to a single top–level node (using a single (internal) link
node) (figs. 2b–2d), while more elongated shapes might be constrained by at
least two top–level nodes (using at least two link nodes) (figs. 2a, 2c). Finally,
the structural model is also triangulated.

4 Multi–Resolution Shape Fit using a Hierarchy of

Vibrations

By (hierarchically) linking a set of sub–shapes with a structural model, shape
matching can be performed on a global and local context iteratively and fully au-
tomatically. The dependent deformations between the morphological and struc-
tural FEM are realized through virtual links which provide for boundary condi-
tions (BC) for the particular linear equations of motion.

(a) (b) (c) (d)

Figure 2: Examples of hierarchical FEM. Different structural attributes of the
compound shape, e.g. the spatial configuration of the sub–shapes, are explicitly
defined by the top–level model (dotted lines). In comparison to tree–structured
models, such as [4,18], and interconnected/coupled shapes, e.g. [51], distant rela-
tions (c,d), parallelism (a) and curved shapes (d) can be represented. Additional
desired constraints, e.g. regarding relative orientations, will require the definition
of additional link nodes, yielding more complex structural models.
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4.1 Dynamic Finite Element Model

Each local shape fit is achieved by deformations which are described by employ-
ing finite element vibration modes of the model [36,40,46]1,

q̈(t) + Ĉq̇(t) + Λq(t) = Ψ(t), (1)

with modal damping matrix Ĉ = αI + βΛ, α, β ∈ R, identity I and modal
loads Ψ(t) = ΦT f(t). Given a 2D FEM with finite element nodes at positions
xi(t) = (xi, yi), i = 1, ..., N , the modal frequencies 0 ≤ ω2

1 ≤ . . . ≤ ω2
n ∈

Λn×n, n = 2N , determine the amount of variation with regard to the modal
vectors Φ = (φ1 φ2 . . . φn). Together with the values ω2

k, the vibration modes
φk, k = 1, . . . , n, are solutions to the generalized eigenproblem KΦ = ΛMΦ. The
2N × 1–composite vectors q(t) and f(t) denote modal displacements and nodal
loads at time t, respectively.

A low dimensional displacement field can be obtained by neglecting the
high–frequent vibration modes using u(t) ≈ Φ̄q(t), Φ̄ = (φ1 φ2 . . . φm),m � n,

and interpolating displacements ue over the e = 1, ...,M finite elements, i.e.
u(x, y) =

∑
eH

eue. In our case, He contains linear finite element approxima-
tion functions. See [46] for details. To simulate the deformation of the template,
the finite element equations are integrated over time until minimum change in
nodal displacements. Note that the coordinates of a point originally located at
x0

i are xi(t) = x0
i + ui(t) in the deformed body.

4.2 External Model Forces

In our case, external model forces f(t) shall attract the nodes to object features
in the image. Such dynamic loads are created by sensors at the finite element
nodes, which sample normalized feature maps IN .

For the low–level nodes x(l)
i , l = 1, the features are derived from the image

I by spatial filtering. The corresponding external forces, or Gaussian potential
forces, are defined based on the gradient of feature intensity at the current nodal
position x(1)

i (t), i = 1, . . . , N, i.e.

f(1)i (t) = κ∇IN (x(1)
i (t)),

f(1)i (t) = κ(∇IN (x(1)
i (t)) · ni)ni, (2)

where IN ∈ [0, 1] and κ is a constant weight. The second formulation allows to
restrict deformations according to the actual orientation of the shape bound-
ary [32, 59], by using only the locally radial component of the forces, where ni

1 For clarity of presentation, we will omit the upper index l, given the method applies

to shape models of any hierarchy level l.
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is the unit normal in x(1)
i (t). Usually, two types of low–level sensors are of in-

terest for segmentation of objects. Intensity sensors sample a Gaussian low pass
filtered version INσ = Gσ ∗ I of the image2, and are typically assigned to nodes
representing the homogenous object interior. The corresponding intensity forces
are then computed using IN = INσ , with κ > 0 in cases of high intensities in
the interior and low intensities in the background. The contour sensors typically
sample gradient magnitude maps, i.e. we let IN = IN∇ = |∇INσ |2, and κ > 0 in
equation 2.

The input for the high–level sensors, x(l)
j , l > 1, of the structural FEM de-

pends on the behavior of the underlying morphological FEM T (l−1)
j . More specif-

ically, their deformation and correspondence with low–level features is used to
set up the high–level external forces that are described in sect. 4.3.

For using the hierarchical model in a search for the desired object, the quality
of a model instance placed within the image and deformed according to external
model forces, has to be evaluated. Our quality–of–fit (QOF) function for a model
instance T (l) combines a measure of deformation, Q(l)

def , with the correlation with

the data, Q(l)
s , for estimating overall energy,

Q(l) = ζQ
(l)
def + (1− ζ)Q(l)

s , ζ ∈ [0, 1]. (3)

In our case, the strain energy which is associated with the nodes of model in-
stance T (l) is adapted from [46], such that

Q
(l)
def = (1 + µ

({
1
2
(q(l)

i )2(ω(l)
i )2

})
)−1 ∈ [0, 1], (4)

estimates the energy needed to match model and data. The mean value of the
sensor inputs,

Q(l)
s = µ(

{
γiI

N (x(l)
i )

}
) ∈ [0, 1], (5)

indicates the amount of correspondence of model and data. The weights γi ∈
[0, 1] allow emphasizing nodes which represent significant object details. Given
appropriate feature maps IN , the QOF–function estimates segmentation quality
for a shape model of arbitrary complexity in terms of deformation cost and
correspondence with the chosen image features. In our case, high–level feature
maps which are input to the matching of a shape model of level l > 1 represent
the Q(l−1)

Tj
–values of the associated sub–shapes.

4.3 Hierarchical Shape Matching

Each shape fit is achieved by deformations which are determined by a set of
constraints corresponding to finite element vibration modes, as described in sect.
2 σ denotes the standard deviation of the Gauss kernel.
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4.1. This concept for local optimization is extended such that our matching
algorithm fits the structural model instances to the data in a hierarchical manner.
Algorithm 1 summarizes the fit of a 2–level FEM. However, it can be easily
extended to hierarchically match any shape hierarchy with l > 2 levels.

Let TX =
⋃
{l={1,2},j} T

(l)
j denote a given 2–level FEM. The global shape

model T (2)
X restricts parametrization of the morphological FEM T (1)

j according
to the displacements of the j = 1, ..., NT (2)

X
structural nodes. More specifically,

after initializing an instance of the global model T (2)
X , the instances of the local

models are aligned to it by propagating the displacements of the link nodes
x(2)

j in the global model T (2)
X to the low–level link nodes x(1)

i of the sub–shapes

T (1)
j (figure 3a). In this case, the displacement u(2)

j directly affects the degree of

freedom (DOF) associated with link node x(1)
i , and is imposed as displacement

boundary condition on the particular equations 1.
The first two steps of the iterative hierarchical shape matching algorithm

account for the bottom–up flow of information between the two levels of the
model. It is implemented using the hierarchy of forces derived from the particular
feature maps described in sect. 4.2. Deformation of a FEM at level l = 1 uses
external model forces computed by spatial filtering (step M1 in algorithm 1), and
for l ≥ 2 it uses across–level spring forces between pairs of link nodes of levels
l− 1 and l (M2). The final step (M3) defines the top–down flow of information,
which is realized through essential (displacement) boundary conditions (BC) for
the particular linear equations 1.

(a) (b) (c) (d) (e) (f)

Figure 3: Hierarchical Shape Matching. Shape interactions during the hierar-
chical shape fit are exemplarily depicted for a detail of a shape (solid lines)–
structure (dotted lines) hierarchy (a). (b) Result of the morphological shape fit
(step M1 in algorithm 1) for a sub–shape T (1)

j (initial configurations are shown

in light gray). (c) The resulting across–level spring force s.t. top–level node x(2)
j

(equation 6) is depicted by the red arrow. (d) The respective second–level nodal
displacement determines a displacement boundary condition (black arrow) for
the particular first–level link node x(1)

i (M3), which yields a deformation of the
sub–shape T (1)

j (e). (f) Result after one iteration of the hierarchical matching
including steps M1–M3 (sect. 4.3).



12 Karin Engel and Klaus Toennies

Algorithm 1 Hierarchical Shape Fit

1: Initialize the FEM for TX = {T (2)
X , T (1)

j }, j = 1, ..., NT (2)
X

.

2: Specify a fixed time step of the simulation 4t,
let t = 0, and initial values q(0) = q0, q̇(0) = q̇0 for problem 1.

3: repeat {t = (t+ 1)4t}

4: Select m(t), σ(t).

5: (M1) Morphological Shape Fit.

Each morphological FEM instance T (1)
j , j = 1, ..., NT (2)

X
, of the 2–level FEM

deforms independently under low–level image forces f
(1)
i , i = 1, . . . , NT (1)

j

, dy-

namically derived from the image according to equation 2.

The shape fit is iterated until minimum change in nodal displacements. It results

in sparse high–level feature maps representing the QOF–values Q(1)
Tj

(t) ∈ [0, 1]

of the morphological FEM instances after local optimization (Note that local

optimization according to equation 1 should maximize Q(1)
Tj

.). This output is

used to set up suitable forces for the structural search (figure 3b).

6: (M2) Structural Shape Fit.

The deformation of the instances of the j = 1, ..., NT (2)
X

morphological FEM is

used to define the across–level spring forces in terms of high–level dynamic loads

for the associated second–level nodes x
(2)
j :

f
(2)
j (t) = κs∆Q(1)

Tj
(x

(1)
i (t)− x

(2)
j (t− 1)), κs > 0, (6)

where x
(1)
i (t), i ∈ {1, . . . , NT (1)

j

}, denotes the displacement of the first–level

link node of morphological FEM T (1)
j after step (M1) and x

(2)
j (t − 1) denotes

the second–level nodal displacement computed in the previous iteration of the

hierarchical matching algorithm. We let κs = κ|x(1)
i (t) − x

(2)
j (t − 1)|−2, κ > 0,

while ∆Q(1)
Tj

= Q(1)
Tj

(t)−Q(1)
Tj

(t− 1) is the change in quality (“quality gradient”)

for sub–shape T (1)
j . The dynamic load is imposed on the vector f(2) as a natural

BC for the particular linear equations 1 (figure 3c).

7: (M3) Computation of the First–level Nodal Displacements due to

Structural Deformation.

The resulting second–level nodal displacements u
(2)
j (t) (figure 3d) determine the

final displacement of the first–level link nodes x
(1)
i of the related morphological

FEM instances T (1)
j , j = 1, ..., N

(2)
TX . More specifically, u

(2)
j (t) define essential BC

that directly affect the DOF associated with the first–level link nodes x
(1)
i of

sub–shapes T (1)
j (figs. 3e, 3f). Essential BC are imposed directly on the nodal

displacements in equation 1.

8: until a stopping criterion is fulfilled.
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This hierarchical shape fit continues until minimum change in nodal displace-
ments of the global model instance. With this scheme it is possible to separately
analyze the deformation behavior of the sub–shapes and their structural rela-
tions, while the shapes at different levels can influence each other.

A computationally efficient coarse–to–fine implementation of our matching
algorithm fits the structural model instances in a hierarchical manner to the
data. In our case, it uses feature maps of different scales of resolution. Low–level
feature maps are computed from a Gaussian low pass filtered version of the image
using dynamically decreasing values for σ. The high–level features are computed
using a dynamically increasing number of m ≤ n vibration modes of the elastic
shape templates at any level l, e.g. starting with the rigid–body modes. Values
for σ and m are updated after each step of the matching.

5 Evolutionary Shape Search

Our algorithm computes the most plausible explanation of image content given a
(set of) prior model(s) in terms of segmentation with maximum quality. The best
fitting shape instance extracts the desired object from the image and classifies it.
For automating the search for the best fitting shape instance(s) within an image,
the hierarchical shape matching is directly integrated into an evolutionary search
which is inspired by [4,8,23,24]. In contrast to [23], where a highly application-
specific segmentation plan is carried out by a single “self–aware” deformable
agent, it initializes and optimizes multiple model instances in parallel by using
the quality–of–fit (QOF) function introduced in sect. 4.2.

Model instances are initialized by transformation of the prototype TX =⋃
{l,j} T

(l)
j from the model coordinate frame to the image coordinate frame. Here,

we only consider the transformations translation, rotation and scaling, although
it is straightforward to use other sets of transformations. The Euclidean trans-
formations are characterized by the set of parameters position c = (cx, cy),
orientation ψ w.r.t. a predefined axis, and (isotropic) scaling s = (sx, sy), of the
model instance in the image3. The parameters ξ ∈ X = {cx, cy, s, ψ} might be
considered as variates with a presumed Gaussian4 distribution ξ ∼ N(µ, ς), and
random samples are computed according to

x = µ̂(ξ) + z
√
ς̂(ξ), z ∼ N(0, 1). (7)

This random initialization replaces the initial global (rigid) matching used
in [8] to determine a single best first guess which is then deformed to locally
3 We use the angle with the principle axis of a shape to define ψ and the standard

deviation in nodal positions to estimate s.
4 Gaussian sampling might be illposed. The desired function must conform with the

data, e.g. acquisition parameters.
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adapt to the image features. Because the correlation with a rigid template is
likely to provide less significant estimates for promising object locations, we use
a quality–of–fit function for deformable templates which includes local optimiza-
tion. Compared with the sequential search in [4, 19, 55], each model instance is
randomized w.r.t. all its levels, and then fitted to the data in a hierarchical man-
ner. This will reduce the risk that false negatives in the feature detection step
prevent parts from being properly localized.

Our approach cannot guarantee to find the globally optimal parameter set.
This would require a recursive subdivision of the parameter space and analysis
of all possible matchings for transformations with parameters contained in the
respective region. Also, proper parametrization would require estimation of the
parameters µ̂ and ς̂ of the probability density functions (PDF). However, in our
case, samples in terms of parameter values of accepted solutions are not available.
Hence, we specify an initial region of parameter values we are interested in and
use pre–set tolerances ς̂ from the parameter values x′ of a single model instance
TX ,M generated from the representative manual segmentation, which serve as
estimates for µ̂ (see sect. 6 for settings we used in our experiments). Note that the
parameters for the particular PDF have to be estimated for any ξ(T ), T ⊆ TX ,
which is not constrained by the top–level model parametrization.

Each of the multiple model instances initiates an optimization process in or-
der to adapt to the local conditions in the data (sect. 4). When the hierarchical
matching converges, the structural QOF Q(l)

TX is computed according to equation
3. Since for l ≥ 2 the top–level model groups image features in terms of (a hierar-
chy of) sub–shape candidates (of level l−1, l−2, ..., 1), we let IN (x(l)

j ) = Q(l−1)
Tj

in equation 5 for extending the QOF–function to evaluate combined shapes. For
example, the QOF–function defined at the level l = 2 estimates the energy of
deformation and the degree of correlation between proposed part location and
image features.

We can now organize the search by employing a priority queue of regions
within the search space, where we use the quality–of–fit of the current model
instances as the priority. Solutions with high energy (i.e. quality–of–fit, Q(l)

TX )
are selected by applying a threshold τQ, and further evolved until the overall
quality of the current model instances, q(T (l)

X ), converges. New shape generations
are generated based on parametrization of the regionally best fitting shapes.
In our case, each selected model instance is randomized w.r.t. all its levels.
More specifically, for each shape T ⊆ TX that contributes to an instance of
the compound shape with high energy, we use in equation 7, µ̂(ξ) = x′ and
ς̂(ξ) ∈ [0, 1], where x′ is the actual value for ξ(T ). Shape model instances TX with
low energy are replaced by new instances based on the initial settings accordingly.
Misleading shape searches due to an insufficient parametrization as well as an
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exponential increase in the number of solutions can thus be avoided, while the
additional “new” trials keep the search independent of known solutions.5

For determining q(T (l)
X ) and τQ, clusters of model instances with high en-

ergy are built using a regular grid of bins over the image. Since the exact
relation of the desired object and background is not known in advance, we
choose the grid size g according to the parametrization of current model in-
stances of the lowest level, l = 1, i.e. g < min{j}(sx(T (1)

j ), sy(T (1)
j )). Each

instance is assigned to the according bin b(g) = 1, . . . , g2, by means of the
geometric mean of its node positions. The overall QOF is then defined by the
mean QOF–value of the best rated current model instances over all clusters, i.e.
q(T (l)

X ) = µb(g)

(
max(Q(l)

TX : T (l)
X ∈ b(g))

)
, and we let τQ = q(T (l)

X ) − 1
10 . The

multi–resolution shape search continues until the overall QOF converges, such
that the desired shape is finally represented as the best rated structural configu-
ration of sub–shapes in the current image. (Depending on the desired precision,
the search may also be terminated if a solution can be reported with a QOF–
value above a pre–defined threshold, τ ′.) Note that our algorithm can determine
the k > 1 best matches, which is useful, if the number of instances of the desired
object within the image is not known. If the QOF–value of the best match is
below a pre–defined threshold, the specific object could not be detected in the
given image.

Model–based approaches that use prior knowledge about specific shapes offer
a complete characterization of the fitted shapes and imply classification. Each
object is identified under a given model TX with a probability depending on
the structural quality–of–fit Q(l)

TX of the best fitting instance of this prototype.
Hence, the competitive use of different class–specific shape models allows for
classification of objects within the image by comparing Q(l)

TX –values for the dif-
ferent prototypes TX ,X = A, . . . ,Z.

5 In order to avoid repetitive computations one may use a match list of known solu-

tions, and modify/discard parametrizations in case of close proximity.
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6 Localization and Discrimination of Complex Objects

within 2D Images

We selected two specific examples, where it is relatively easy to quantify success
or failure, in order to explore a number of different trade–offs, such as the role
of low–level versus high–level features, or cues, the role of (valid) decomposition
of shapes, and the appropriateness of a-priori constrained prototypical “zero–
order” models of shape variation. In both examples, the desired object can be
identified based on the class–specific configuration of specific shape parts. In
contrast to the classical geon approach [2], identification and combination of
the shape parts is in our case governed by general assumptions on structural
interpretation of the object anatomy. Hence, a sub–shape may not necessarily
represent a geometrical unit, but a functional part of the compound shape. This
kind of assumptions on the structural decomposition may be introduced by a
human expert, but can often also be derived from inspection of the images and
example segmentations.

In the first example application, a specific gyrus which contributes to the
auditory cortical folding pattern is localized in 2D flat maps of the cortical
surface (first results have been presented in [14]). It shows exemplarily how to
specify different spatial relationships on the top level of the shape hierarchy. It
also provides an example for demonstrating the use of hierarchical deformable
template matching as a means to detect and discriminate the desired object
from similar shapes within the image. The automatic delineation of regions of
interest is a basis for the accurate functional parcellation of the human cortex
using neuroimaging [5]. Here, our approach can provide a means to overcome
problems inherent to the gross inter–subject variability in brain anatomy by the
top–down utilization of structural a–priori knowledge [15,16].

In the second case study, our model is applied to the recognition of ant species
from 2D color images from a database. This specific application is well–suited
for a number of different reasons. First, such image databases are becoming an
increasingly powerful tool for a wide range of applications, including entomology,
biology and longitudinal studies using medical imaging. Since these databases
are constantly extended, it is desirable to have tools which automate and sup-
port classification. Second, in this application we can analyze insensitivity w.r.t.
hidden object parts. Third, it allows us to compare our results with the results
presented in [4], who used statistical color–classification for sensor input, and
a statistical structural model in a sequential search to recognize ants from the
same database. In contrast, no prior training is required in our approach.
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(a) (b) (c)

Figure 4: Auditory folds on a cortical flat map. (b) Trimmed patch of the flat
map (a) containing the Sylvian fissure, Sulcus temporalis superior and transverse
temporal gyri (Heschl’s gyri). (c) The morphology of (the first) Heschl’s gyrus, its
size, orientation and absolute position within a reference space vary dramatically
between different cortices.

6.1 Case Study 1: Automated Labeling of Cortical Folds

For the identification of Heschl’s gyrus6, which contributes to the auditory cor-
tical folding pattern, our algorithm utilizes the properties of the cortical surface,
e.g. 2D flat maps. Such flat maps are in our case derived [21] from the recon-
structed cortical white matter [57] using BrainVoyager7. It represents the mean
curvature pattern of the cortical surface (figure 4a, gyri are indicated by high
intensities, sulci by low, non–zero intensities). Locating Heschl’s gyrus includes
discriminating the desired object from several similar shapes within the flat
map. This requires the use of a–priori information regarding its relations with
anatomical landmarks for restricting the search space.

A Shape–Structure Hierarchy for the Representation of the Auditory
Cortical Folds. As depicted in figure 4b, the auditory cortical folding pattern
can be described as a variable configuration of single deformable folds. Heschl’s
gyrus (HG) is located in Sylvian fissure (SF) and is restricted laterally by Sulcus
temporalis superior (STS). We use a 2–level FEM, whose second level represents
a–priori information about the co–variations, i.e. structural relations, of the au-
ditory folds. The morphological FEM T (1)

hg , T
(1)

sf and T (1)
sts , which represent HG,

SF and STS, contribute to the first level of the shape model. Since Heschl’s gyrus
6 The transverse temporal gyri (Heschl’s gyri) contribute to the superior temporal

gyrus of the human brain and extend mediolaterally into the Sylvian fissure. As their

number varies between brains and hemispheres, we will refer to the first transverse

temporal gyrus as Heschl’s gyrus.
7 http://brainvoyager.com
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(a) TH+

(b) TH

Figure 5: 2–level FEM of the auditory cortical folding pattern. The morpho-
logical components (solid lines) are related to each other as determined by the
structural FEM (dotted lines) of the two class–specific models TH+ and TH. In
both cases, a central top–level node is mapped to the morphological FEM of HG.
In the TH–model it is related to all other morphological components through a
single (internal) link node (b). The TH+–model consists of one additional internal
second–level node, which is mapped to the morphological FEM of SI (a). SF and
STS are represented by pairs of top–level boundary nodes, whose interconnection
defines the parallel arrangement of SF and STS.

may or may not show a Sulcus intermedius (SI), two class–specific models (TH+

and TH) are defined accordingly (figs. 4c, 5b, 5a).
For reasons of simplicity the flat maps V = {ϕi} are mapped to image ma-

trices, IN , by averaging the curvature values over vertices ϕi which are assigned
to pixels of resolution 1mm2 based on their position in the flat map coordinate
system [21], and mapping the resulting values to [0, 1] (figure 6). The low–level
feature maps can then be computed by spatially filtering the images (sect. 4.2).

The internal nodes of the morphological FEM T (1)
hg represent the positive

curvature pattern of Heschl’s gyrus. The corresponding sensors are mapped to
intensity images, INσ , and in equation 2 we let κ > 0. Since all nodes of the re-
maining sub–shapes T (1)

sf , T (1)
sts and the internal node of T (1)

si represent negative
mean curvature indicating concave folds, i.e. sulci, we let in these cases κ < 0.
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The boundary nodes of T (1)
hg and T (1)

si represent borders between areas of posi-
tive and negative curvature. The relating sensors are thus mapped to gradient
magnitude maps, IN∇ .

The sub–shapes T (1)
sf , T (1)

sts and T (1)
si are modeled with low detail because the

exact representation of the highly variable shape of these sulci is not essential
w.r.t. the recognition task. We used medial–axis shape representations for all sin-
gle folds in order to account for the expected high variability in morphology (figs.
4c, 5a, 5b). The class–specific configuration of the morphological components is
determined by the second level of the 2–level FEM. (Note that the two models
TH and TH+ share the morphological prototypes.) The elongated shapes T (1)

sf and

T (1)
sts have two link nodes each. The corresponding boundary nodes x(2)

j , j = 2, 3

and j = 4, 5, of the structural model T (2)
X ,X = H,H+, are connected in order to

enforce the near parallelism between SF and STS. The morphological FEM T (1)
hg

has a single link node whose corresponding second level node x(2)
1 is connected

to the boundary nodes of T (2)
X in order to make HG be positioned between SF

and STS (figure 5b). Thereby, only the relative position of HG is restricted by
the top–level model, since it would otherwise erroneously imply significant co–
variations in size and orientation, e.g. of HG and SF. The model T (2)

H+ has an
additional internal node x(2)

6 for relating T (1)
si to all other shapes (figure 5a).

Localization of Heschl’s gyrus in 2D Cortical Flat Maps. We used 80 flat
maps of left and right hemispheres created from high resolution anatomical MRI
data in order to test the ability of the 2–level FEM for automatic identification
of Heschl’s gyrus. A successful shape search required the correct solution–which
was confirmed by a neuroscientist expert–to be the best–rated in the ordered list
of solutions (priority queue) according sect. 5. On a pixel to pixel comparison
the segmentations overlap by > 90% with the manual segmentations.

(a) (b)

Figure 6: For segmentation, each flat map (a) is mapped to an image matrix as
illustrated in (b) for a flat map patch of 10 × 10mm2 size. Depending on the
amount of distortion due to flattening of the cortical surface, the image pixels
represent the curvature pattern integrated over about 1− 4 flat map vertices.
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All experiments have been done with the same set of empirically chosen
material parameters8, E = 0.85 · 109[Pa], ν = 0.19, ρ = 1[ g

cm3 ], ζ = 1
2 , γi =

1, ∀x(l)
i , l = 1, 2, as parameter values for the QOF–function (equations 3, 5),

and m(1) = 4, σ(1) = 10 for shape matching (sect. 4.3). For the search we used
the following initial set of parameter values, µ̂(ξ) = x′, where x′ is known for
ξ ∈ X of all components T of the model instances TX ,M generated from the
manual segmentations (sect. 5). We further let ς̂(ψ) = 10◦ for {T (2)

X , T (1)
hg , T

(1)
si },

ς̂(cx) = ς̂(cy) = 10mm for T (2)
X ,X = H,H+, and ς̂(s) = 1

10s
′(T ) for T =

T (2)
X , T (1)

j , j = hg, si.9

We then analyzed the performance and robustness in parametrization of the
2–level FEM in comparison with the morphological FEM of HG used in isolation.
Using the morphological FEM, T (1)

hg , for localizing Heschl’s gyrus was successful
in 54% of all cases, indicating that matched model instances not necessarily rep-
resent correct solutions independent of their initial placement. Adding structural
knowledge using the 2–level FEM significantly increased the recognition rate to
68%. The representation of structural attributes of the auditory folding pattern
provided additional information which restricts the search space for HG to a
region well–defined by SF and STS (figure 7). In all other cases the user had to
select the correct solution from the priority queue. Here, with a probability of
76% the correct solution was included within the top 2% system solutions (i.e.
at average at first to third position in the queue).

The structural attributes are not independent of the morphological variation
of the auditory cortical folds, while the structure itself is variable. This results in
a large number of variation modes mainly caused by non–linear displacements.
Consequently, a 1–level FEM which includes HG (SI), SF and STS was likely to
be less adequate for representing the configuration of the auditory cortical folds.
We constructed such model for both classes (T (1∗)

X ,X = H,H+)10. A recognition
rate of 58% showed that these linear models did not provide extra knowledge
compared with T (1)

hg . An ideal shape fit, i.e. a correct match, yielded a low overall

energy Q(1∗)
X , and vice versa. The parameters ζ and γi of the QOF–function had

to be explicitly fine–tuned in order to increase the significance11 of the 1–level

8 To build the finite element model (sect. 4.1), stiffness (K) and mass (M) matrices

have to be computed. In our case, M is a constant function of material density, ρ. K

is a function of the material constitutive law, and is related to the material–specific

Young’s modulus E and Poisson’s ratio ν.
9 Note that scaling of T (1)

sf and T (1)
sts is restricted by the scaling of T (2)

X .
10 Here, based on the manual example segmentations, the auditory cortical folding

pattern was subdivided into finite elements in a single decomposition step, yielding

a set of nodes of level l = 1, which contribute to SF, STS, HG (and SI).
11 We formally defined the probability of the correct solution being provided within

the top 2% of the priority queue as the significance of a model and associated QOF.
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FEM. In contrast we found that for the 2–level FEM any ζ < 3
10 decreased

its significance, while it did not change for a large range of values ζ ∈ [ 3
10 ,

7
10 ].

This leads us to the assumption that the differentiation between the influence of
model and data is less clear for the 1–level FEM compared with the hierarchy of
FEM. Another example is the more adequate representation of the parallelism
between SF and STS by the 2–level FEM (figs. 5a, 5b). Here, deformation of
the coarsely structured global FEM due to a rotation, for example of the line–
shaped model T (1)

sf , will enforce an equivalent rotation of the STS–model, while
not affecting the rotation of the HG–model.

Another result of the high anatomical variability is that a prior model which
is constructed based on a single data set might be insufficient to cover all possible
variations. Similar to the construction of an ASM [8], we used known solutions

(a) (b) (c) (d)

(e) Q(2∗)
TH = 89.2% (f) Q(2∗)

TH+
= 88.4% (g) Q(2∗)

TH = 61.7% (h) Q(2∗)
TH+

= 75.1%

Figure 7: Results on the localization and classification of Heschl’s gyrus in flat
maps. Typical segmentation results using the appropriate 2–level FEM, TX ,X =
H,H+, are shown in (a)–(d). The bottom row shows the best–rated instances
of the two different improved class–specific prototypes T (2∗)

X ,X = H,H+ in two
different flat maps (sect. 6.1). In (e) Heschl’s gyrus is correctly localized using
the H–model, while TH+ erroneously classifies two transverse temporal gyri in
the same data set (f). In this example, the QOF does not allow for a positive
classification. In the second example, Heschl’s gyrus shows a Sulcus intermedius,
and the data set was classified correctly with probability Q(2∗)

TH+
> Q(2∗)

TH (h).
Here, a low deformation energy (equation 4) due to the large displacement of
HG and SF indicated a mismatch of the improved H–model, T (2∗)

H (g).
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on a subset of 40 data sets to compute new global (“zero–order”) prototypes
T (2∗)
X based on the samples mean nodal displacements. Both, the default and

the adapted templates were then applied simultaneously for localizing Heschl’s
gyrus. In addition to that, given K samples x′ for each transformation parameter
ξ(T ) ∈ X (sect. 5) and T ⊆ TX , we estimated the parameters of the PDF
by µ̂ = k−1

∑
s≤K hsx

′
s, ς̂ = (K − 1)−1

∑
s≤K hs(x′s − x̄′)2, where hs denotes

frequency of occurrence of realization x′s.
Inclusion of information from statistical analysis led to an increase of the

significance of the 2–level FEM (from 76% to 98%), and in recognition rate (from
68% to 80%). As the top level of the 2–level FEM specifies linearly correlated
shapes, after adapting the structural variation parameters false positive solutions
could be rejected because of a lower structural QOF. For instance, with the initial
global prototypes, T (2)

X , a transverse temporal gyrus–but not the first Heschl’s
gyrus–was labeled in most cases of a failure. The displacement of the 2nd–level
nodes x(2)

j , j = 1 (and j = 1, 6 for X = H+, resp.) and x(2)
2 represents the spatial

relation of HG (+SI) and the anterior12 part of SF. It turned out to be much
smaller and of smaller variance compared with the displacement of 2nd–level
nodes x(2)

j , j = 1 (and j = 1, 6, resp.) and x(2)
i , i = 3, 4, 5. Consequently, large

deformations of the improved prototypes T (2∗)
X would yield a low overall energy

(figs. 7g, 7h).

Our results show convergence after 8.3± 1.9 iterations13 of the shape search.
The total number of 2-level FEM instances initialized varied from 550 to 1280
due to the evolutionary strategy and combinatorial problems inherent to struc-
tural models14. However, even in the experiments with the isomorph structural
prototypes, T (2)

X and T (2∗)
X , the search was more effective compared with the

morphological FEM, T (1)
hg , and 1–level FEM, T (1∗)

X . (Here, the number of paral-
lel shape searches was about two times higher.)

Classification Based on the Anatomical Configuration. The 2–level FEM
was used for classification by competitively applying the class–specific models
to the data. We therefore merged the priority queues after the shape searches
using the two different models TX ,X = H,H+, and computed the index of the
correct solution, which was known from the expert’s classification.

In 90% of all cases the appropriate class–specific model TX exhibited a higher
structural QOF, Q(2)

TX (figs. 7e–7h). The difference in the QOF–values w.r.t. the
correct class was significant (p < 0.01, one–sided t–test). In contrast, the linear

12 The anterior–posterior axis corresponds to the x–axis of the flat map coordinate

system, which is flipped in the right hemisphere.
13 Expressions of this form denote mean value ± standard deviation from the mean.
14 A complete search took 224± 67 seconds on a 2.4GHz P4, unoptimized Matlab/C.
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model did not explicitly recognize missing discrete parts (here, the SI) of the
folding pattern. In only 30% of all cases the appropriate 1–level FEM T (1∗)

X
was indicated by the respective Q(1∗)

TX –values. The difference was not significant
(p > 0.4), which shows that it did not allow for distinguishing between placement
and structure error.

6.2 Case Study 2: Improved Recognition of Ants

In this section, we apply our hierarchical FEM to the automated recognition of
ants in 2D color images from an ant database. As due to standardized acquisition
of the images localization is less complicated compared with the first case study,
here we test our hypothesis that a hierarchical representation of shape by means
of vibration modes sufficiently captures variation within and between object
classes, such that all ant body parts can be located even in cases of occlusion.
Our particular database has been obtained from MCZ database of the Museum
of Comparative Zoology at Harvard University15 and AntWeb by the Californian
Academy of Sciences16.

Design of an “Ant Sensor”. The given database images show examples of
different ant species in standardized perspectives. We used 260 images from our
database including the genera Anochetus, Cerapachys and Pheidole17. We use
the lateral views which allow for shape–based recognition in 2D, and assume
that exactly one ant is displayed in each image, although parts of it may be
missing. For each of the different classes (Anochetus, Cerapachys and Pheidole)
a prototypical geometric template TX ,X = A, C,P, is generated based on a man-
ually segmented example image of the database. Morphological and structural
aspects are again represented by class–specific 2–level FEM. Each ant shape is
therefore subdivided into multiple sub–shapes T (1)

j , such as head, thorax, back,

et cetera. The top–level models T (2)
X constrain structural variation for anatomi-

cal reasons. Besides from the class–specific kind and number of ant body parts,
the standardized positioning of the ants, e.g. on wooden sticks, causes a curved
organization of the parts, which determines the subdivision of the shape domain
into the specific structural FEM. These assumptions yield coarsely structured
global prototypes T (2)

X , which account for certain anatomical variability within
the ant classes (figure 8).

To set up suitable external model forces according to sect. 4.2, we use inter-
nal and contour sensors for the sub–shapes. The internal first–level nodes ideally
15 http://mcz-28168.oeb.harvard.edu/mcztypedb.htm
16 http://www.antweb.org/
17 It was necessary to generalize among distinct genera because most databases provide

only very few examples for each species, which would not allow for a validation of

the proposed algorithm. Note that we used the same genera as Bergner et al. [4].
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(a) (b) (c)

(d) TA (e) TC (f) TP

Figure 8: 2–level FEM of ant genera. Class–specific shape models for the ant
genera Anochetus (d), Cerapachys (e) and Pheidole (f). Example species are
displayed in (a)–(c). (Note the high variability in shape and color of different
specimen in our test images.) The number and kind of morphological components
(solid lines) differ between the three prototypical structural FEM (dotted lines).

represent the typical color of the ant’s body parts. However, since we general-
ize among distinct ant genera, no discriminant variation in body color among
classes, but considerable within–class variation in color can be expected. We
assume that each ant can be extracted from the background by exploiting the
fact that due to the standardized acquisition most background in the images will
be homogeneously gray. The internal low–level sensors are therefore mapped to
“ant color” intensity images INΣ , which are computed by suppressing such image
regions:

INΣ = (|IN − I|2) ∗Gσ. (8)

Here IN is the (triplet–wise normalized) input image I, which is a 3D matrix
of values in rgb–color space, I is the 3D identity matrix and Gσ is a Gaussian
low pass filter. The contour nodes of the morphological FEM represent bor-
ders between ant and background. The relating sensors are mapped to gradient
magnitude maps IN∇ of the form |∇INσ |2 (sect. 4.2, figure 9).



Hierarchical Vibrations for Part–based Recognition of Complex Objects 25

(a) Input IN (b) “Ant color” INΣ (c) IN∇ (d)

Figure 9: Low–level feature maps. The “ant color” image (b) estimates the differ-
ence in color from homogeneously gray background (eq. 8). It is used here because
a statistical model of the ant color distribution is not available for color–based
classification (d), which was used in [4].

Automatic Recognition of Ants. Because of the properties of the modeled
objects, we could successfully apply the proposed multi–resolution shape search.
This means that under the appropriate model TX ,X = A, C,P, the ant was
successfully segmented in all cases of a subset of 120 test images. All experiments
have been done with the same set of empirically chosen material parameters,
E = 2 · 109[Pa], ν = 0.4, ρ = 1.1[ g

cm3 ]. We used as initial settings m(1) =
4, σ(1) = 10, ς̂(ψ) = 10◦ and ς̂(s′) = 2

10s(T ) for T = T (1)
j , T (2)

X ,∀j,X = A, C,P,
based on the parameter values ξ(T ), e.g. known scaling s′(T ), for T ⊆ TX ,M
(sect. 5). According to our working assumptions, we use the image center to set
up (µ̂(cx), µ̂(cy)) for T (2)

X ,X = A, C,P, while ς̂(cx) = ς̂(cy) is set to 1
5 of the

image size. We further let ζ = 1
2 , γi = 1, ∀x(l)

i , l = 1, 2, in equations 3 and 5.

Figures 10a–10d show typical segmentations. The search converged after 4±
1.4 iterations. Here, the total number of model instances initialized (i.e. the
number of parallel shape searches) varied from 290 to 62018.

The proposed QOF–function according to equation 3 was sufficient for evolv-
ing and selecting the correct solution from the priority queue (sect. 5). As in the
first case study (sect. 6.1), we could reproduce recognition rates of 95 − 100%
with the same experiment and ζ ∈ [ 3

10 ,
7
10 ].

18 A complete search took 129± 48 seconds.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 10: Results on the recognition of ants. Typical segmentation results are
shown in (a)–(d). Our algorithm utilizes shape information in a hierarchical
manner. This increases its robustness in cases of occlusion, such as depicted in (e)
and (f). Mismatches happen very rarely. In most cases they are due to variability
that cannot be captured by variation of the structural model parameters. (g)
shows an example which would require all structural nodes of the Anochetus–
model (figure 8d) to be aligned horizontally.

We further analyzed the robustness of our shape search in cases of manually
introduced occlusions (as depicted in figs. 10e, 10f) in a second subset of 30
images19. Recognition was still successful under occlusions of either part of the
ant and up to 30% of the ant shape (i.e. in some cases more than one part was
missing). This makes our method superior to the approach of Bergner et al. [4],
as their sequential shape search requires the “head” sub–shapes to be found, and
failed otherwise.

Here, our experiments were performed without any training. Results show
that, given an appropriate finite element decomposition, certain variability could
be covered by elastic deformation. Only in some cases, the shape constraints were
not adequate to guarantee accurate segmentation. For example, the misregistra-
tion shown in figure 10g was mainly due to our assumption of curved organi-
zation of the ant body parts in the images, which is not always valid. It could

19 Note that all subsets of images were chosen at random, i.e. we did not check for a

clear appearance, and did not exclude examples in case our working assumptions

were not met (e.g., regarding the supposed homogeneous background and curved

arrangement of the body parts).
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not be avoided by improving the prototypical templates T (2)
X based on training

data, but would require inclusion of additional statistical modes of shape varia-
tion (e.g. [9], [1]), which can describe natural variations. Our experiments with
improved prototypical templates and parametrization according to 6.1 showed
that the number of false positive solutions due to insufficient initialization can
be reduced and computation of a shape search can speed up by a factor of 2.
However, the recognition rate did not improve in this application.

Model–based Classification of Ant Species. For classification we performed
the multi–resolution shape search with all three class-specific models on a subset
of 60 input images (we selected 20 images per class). Again, the ordered lists of
solutions of our algorithm were merged for shape searches using all three models
TX ,X = A, C,P, for the different classes. We computed the index of the correct
solution in the priority queue, which was known from the database classifica-
tion. In 93.3% of all cases the correct model TX exhibited a higher structural
QOF–value Q(2)

TX (figure 11). The difference in the QOF–values w.r.t. the correct
class was significant (p < 0.01, one–sided t–test). This indicates that ants can
be classified using our model–based segmentation given that kind, number and

(a) P. zelata,

Q(2)
TP = 85.6%

(b) A. madagascaren-

sis, Q(2)
TA = 87.2%

(c) C. gilesi, Q(2)
TC =

89.1%

(d) A. graeffei,

Q(2)
TP = 84.2%

(e) Q(2)
TA = 71.9% (f) Q(2)

TC = 76.0% (g) Q(2)
TP = 58.4% (h) Q(2)

TA = 81.6%

Figure 11: Classification results. The top row shows the best–rated model in-
stances (which is for (a)–(c) an instance of the correct class–specific model TX )
together with the structural QOF–value Q(2)

TX . The second row shows in each case
the best solution with a shape model of another class. For example, Pheidole ze-
lata was classified correctly with probability Q(2)

TP (a), which is higher than Q(2)
TA

for the best match with the Anochetus–model (e). (d) and (h) show Anochetus
graeffei, which was erroneously classified as Pheidole due to a higher Q(2)

TP .
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spatial configuration of the morphological components differ between classes20.
In our case, the shape models are sufficiently different w.r.t. morphology and
structure, i.e. TA, TC and TP consist of 3 − 5 class–specific sub–shapes (figure
8). In some cases the difference in the QOF–values did not allow for a positive
classification (figures 11d and 11h), although the correct solution was always
contained within the first 12 ± 7 positions in the priority queue. Classification
might improve by training a color–classifier for separating the desired object
from the background. However, our assumption of gray background was already
sufficient for reducing irrelevant input for the internal first–level sensors, while
avoiding misclassification due to poor response to low–level feature detectors,
such as reported in [4].

In a second classification experiment we used all test images and applied
only the Pheidole–model TP , in order to select all images of ants from this
genus. We computed 16.7% false positive solutions and 92.2% true positives.
Bergner et al. [4] reported 84% correct classifications using a much smaller set
of images which were preselected for clear appearance of exemplars from one
specific genus. This shows that in direct comparison restricting shape variation
to local vibration modes was adequate for this specific application, and superior
to their statistical approach.

7 Discussion and Outlook

We have presented an effective approach to extract the desired complex object
from an image by using a deformable shape hierarchy. For the first time it ex-
tends the ability of FEM to represent the structural decomposition of complex
shapes such that the different levels of the model hierarchy describe different as-
pects of shape. The resulting shape description allows to separately analyze the
deformation behavior of shapes and their structural relations, while the different
levels of the shape hierarchy can influence each other based on their uniform
representation.

We have shown that such hierarchical prototype provides useful context in-
formation for localizing complex shapes in images. Its application to the two
different tasks required minimal tuning of the parameters. In both applications
we used a similar set of parameters (e.g. similar FEM material properties and
parameters for the shape search), which were also found to be robust. In the
first case study, Heschl’s gyrus was localized in flat maps of the human cortex,
through the combination of global shape context (in terms of a structural model
of the auditory cortical folding pattern) with local (per fold) deformable sub–
shapes. Here, the top–level model estimates the fold locations, whose deforma-
tion is used for evaluating their characteristic structural configuration. Although
20 Some ant types are more similar to other ants the closer they are in the family tree.
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an automatic solution remains elusive because this task includes discriminating
the desired object from several similar shapes within the flat maps, we demon-
strated good results using the proposed focus–of–attention technique. A second
application to the automatic recognition of ant species in standardized 2D color
images was presented. Using a shape–structure hierarchy of two levels was shown
to produce localization and classification results superior in direct comparison
with a statistical structural model [4]. Detecting the head and back of an ant in
isolation is a difficult problem. A back is not a back unless it is connected to a
torso which is connected to a head. Unlike tree structures for use in a sequential
matching, our model can capture this type of long–range contextual information,
as shown in experiments with occlusions of the ant shapes.

Since our approach involves image and model features, it was possible to
integrate the segmentation step into a shape search. Our experiments indicate
that the hierarchical decomposition allows for different sources of shape varia-
tion, such that mislead shape searches can be analyzed in terms of placement
and structure error. Despite considering class–specific shape variation, the pro-
posed representation allows to classify shapes based on deformation parameters.
Variation between classes is characterized by structural differences, while mor-
phological variation mainly indicates variation between class members. Hence, we
believe that the proposed combination of structural knowledge and deformable
shapes is a very promising approach to shape search and will be of use in many
applications, for example content–based image retrieval, pose estimation and
tracking, medical image segmentation and model–based registration.

Assuming natural variation in shape is related to the geometry of the pro-
totypical estimates, complex anatomical variation can be adopted by decom-
position, and prior training can be avoided. This is essential, since from our
experience often a rough estimate on the variation parameters will be sufficient
due to the redundancy contained in model and data, while on the other hand in
many cases a sufficient set of training data is not available. At present stage it is
unclear how the method would deal in view of significant part articulation and
deformation. For example, a sequential arrangement for aligning all shape parts
in figure 2d horizontally cannot be represented with the triangular structural fi-
nite elements we used in our experiments. However, using spring/bar elements at
the top levels would allow introducing such (weaker) shape constraints. On the
other hand, significant “natural” deformations can be represented by statistical
variation modes. Here, our shape model has the advantage that morphological
and structural attributes can be optimized separately. As indicated by our results
in sect. 6.1, the structural decomposition allows for a substantial improvement
of the (co–)deformation parameters on the basis of small training sets.

The running time of the algorithm is largely determined by two factors. First,
the time necessary to determine the optimum parametrization is bounded by the
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dimensionality of the search space (which was fixed at four in our applications)
and the imposed accuracy constraints. If a more precise solution is needed, the
initial set of parameter values as well as the lower bound for the QOF–value
τ ′ (sect. 5) would increase accordingly (and possibly yield an exhaustive search
if a global optimum is desired). Second, the number of times the initial region
of parameter values is hierarchically decomposed for the local matches before a
solution is reported, is influenced by the number of hierarchy levels and number of
shapes at each of the levels. Note that by using lists of known solutions repeated
trials with the same set of parameters can be avoided, and the average number of
trials can be reduced. All other computations are dominated by the deformable
shape fit, which can be efficiently implemented, e.g. using [29], pre–computed
low–level feature maps, as well as the proposed coarse–to–fine strategy.

Although we restricted our discussion to 2D shape matching by using spe-
cific aspects of the shape, we think our approach can be easily extended to 3D,
and shape matching of a compound shape from different view points, respec-
tively. The latter would require different prototypes which represent multiple
2D views [37]. Results indicate that our approach provides for hierarchically im-
posing top–down expectations to disambiguate interpretations at lower levels.
Furthermore, the representation of different aspects of shape within a uniform
framework supports the separate improvement of (almost) independent defor-
mation parameters. We therefore believe that a “good” hierarchical prototype
would facilitate the search for the desired view by providing the context needed
to reliably detect the object parts in applications such as human pose estimation
and tracking. Here, it will be necessary to further evaluate the adequacy of the
proposed quality–of–fit measure to distinguish between false positive solutions
and largely occluded object instances in cluttered scenes.

In general the number of object details, level of detail and kind of rela-
tions is not known exactly. This may restrict the applicability of (top–down)
model–based methods. Since our model provides the direct comparison of differ-
ent structural interpretations, i.e. categorization, we will focus on the automatic
adaptation of models. One possible way around this important problem is boot-
strapping, including the evaluation of different decompositions of a particular
shape which vary within and across hierarchy levels. We believe that the insta-
bility problem inherent to compositional approaches might be solved by employ-
ing spectral methods [26,47,49] in combination with scale space approaches [30]
and pairwise segmentation techniques [7,27,33,34,45] (as preprocessing step, or
to improve the efficiency and accuracy of model search in an image [28,38]).
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