
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-007-2009

Safe Composition of Refactoring Feature Modules

Martin Kuhlemann, Don Batory, Christian Kästner

Arbeitsgruppe Datenbanken

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-007-2009

Safe Composition of Refactoring Feature Modules

Martin Kuhlemann, Don Batory, Christian Kästner

Arbeitsgruppe Datenbanken

Impressum (§ 5 TMG):
Herausgeber:
Otto-von-Guericke-Universität Magdeburg

 Fakultät für Informatik
 Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Martin Kuhlemann

martin.kuhlemann@ovgu.de

52

23.04.2009

Safe Composition of Refactoring Feature Modules

Martin Kuhlemann
University of Magdeburg, Germany

mkuhlema@ovgu.de

Don Batory
University of Texas at Austin, USA

batory@cs.utexas.edu

Christian Kästner
University of Magdeburg, Germany

ckaestne@ovgu.de

Abstract
Programs can be composed by successively applying trans-
formations that add features to a code base. These transfor-
mations must apply without errors but we cannot test ev-
ery combination of them. We must detect errors automati-
cally to encapsulate single transformations and scale them.
Prior work focused on transformations that monotonically
add code in order to produce program variants. We gener-
alized their work in that we automatically detect composi-
tion errors for transformations that add and remove code.
Specifically, we detect errors for automated refactorings that
transform a program when selected. The generalization is
important to detect errors for modules that add and remove
code. As a result, we can now guarantee that refactorings and
sequences of refactorings compose without errors in feature-
oriented designs.

1. Introduction
Programs in software product lines are created by compos-
ing features, which are code transformations that encapsu-
late an increment in program functionality [17, 4]. Different
combinations of features produce different programs; reuse
is inherent as many programs share the same features.

Not all combinations of features are meaningful [3]. Le-
gal combinations are defined by a feature model which de-
clares features to be mandatory, optional, alternative or in-
clusive to other features [9]. Unfortunately, developers can-
not verify properties of all programs in a product line by
brute force as the number of programs can be up to mil-
lions [13]. One solution to this problem is safe composition,
a technique that has been used to prove that all programs of
a product line that are assembled from feature modules are
type correct [23, 12, 10]. In prior work, feature modules were
monotonic transformations that could add new classes to a
program, add new members to existing classes, and wrap ex-
isting methods. Members or classes could never be deleted.

We recently proposed that feature modules be extended
in a fundamental way: to include object oriented refactor-
ings [16], which can rename, add, and delete existing classes
and members. Feature modules are now more expressive and
break with the traditional assumption of monotonicity [1]
where only code artifacts can be added. A feature can now

OR relation

List

Base Lock

feature
(a) diagram notation

(Base→ List)∧
(Lock→ List) ∧
(Base ∨ Lock)

(b) formula notation

Figure 1. Sample feature model.

rename a method M to method N. If a subsequently added
feature references M, the resulting program is no longer type
safe and will not compile. Prior safe composition analyses
could not detect this error. In this paper, we show how safe
composition analyses can be generalized to allow features
that include non-monotonic transformations.

2. Background
2.1 Safe Composition in Feature-Oriented Design
Feature models. A feature is an increment in program
functionality [4]. A feature is implemented by a sequence of
primitive transformations (i.e., add method, add field, wrap
method, etc.) called a feature module. Feature modules are
selected during a configuration process to define a target pro-
gram. When a feature module is selected, its transformations
are applied to that program.

Meaningful combinations of features are defined by a fea-
ture model [9]. A feature model can additionally define the
order in which selected feature modules are composed [3].

A feature model is depicted by a feature diagram (see Fig-
ure 1a). This model defines an abstract data type List with
the features Base and Lock and maps these features to the
feature modules Base and Lock respectively. The model says
that any combination of Base and Lock yields a meaning-
ful program, i.e., the legal compositions according to this
feature model are Base, Lock, and Lock•Base (Lock applies
transformations to Base). We graphically encode the feature
order by reading from left to right in the feature diagram so
Base•Lock (Base applies transformations to Lock) is not a
legal program.

While the diagram notation is illustrative we need a dif-
ferent representation of feature models in this paper. We rep-
resent the model of Figure 1a in Figure 1b as propositional
formula following the rules of [23, 2, 6]. Each variable in this

1

Feature Module Base
1 pub l i c c l a s s L i s t {
2 p r i v a t e MyList e l emen t s ;
3 Object ge t (){
4 r e t u rn e l emen t s . ge t (0) ;
5 }
6 }

Feature Module Lock
7 r e f i n e s c l a s s L i s t {
8 boo l ean l o c k e d = f a l s e ;
9 vo id s e tLock (boo l ean newLock){

10 l o c k e d=newLock ;
11 }
12 Object ge t (){
13 i f (l o c k e d) r e t u rn n u l l ;
14 r e t u rn Super . ge t () ;
15 }
16 }

Figure 2. Sample feature-oriented design.

formula corresponds to one feature – we thus call it ’feature
variable’. A feature variable is ’true’ when the according fea-
ture is selected and ’false’ otherwise. The formula is true for
legal feature selections.

Feature modules. Features are implemented by feature
modules which successively transform the code contribu-
tions of prior features [19, 4]. They encapsulate classes and
class refinements where class refinements add new members
to classes or extend existing members. If a feature module
is not selected then its classes and class refinements are not
applied to the generated program.

In Figure 2, we show the feature modules referenced in
the feature model of Figure 1a (we use the Jak language [4]
which adds feature modules to Java). The module Base en-
capsulates a class List. The module Lock encapsulates a
refinement of class List which adds a field locked and a
method setLock to class List of Base. Method get of the class
refinement List (in Lock) refines method get of the class List

(in Base) by wrapping. It calls the refined method using Jak’s
keyword Super (Line 14) and adds statements.

Safe composition of refinements. The feature model in
Figure 1 does not represent the set of programs which can be
composed from the referenced feature modules of Figure 2.
Any composition of Base and Lock is legal for this model.
However, Lock requires the selection of Base for two rea-
sons: (a) the class refinement of Lock requires the class List

to exist and (b) method refinement List.get of Lock requires
the refined method List.get to exist. Knowing this depen-
dency we can infer the legal program defined only by Lock
is in error because Base is not selected, i.e., either the model
is in error, feature module Lock is in error, or both. In this
example, the feature model is in error.

Thaker et al. [23] determined dependencies between fea-
ture modules, called composition constraints, such that do-
main experts could attach them to the features in the feature
model. These composition constraints restrict the legal com-

positions to those which compose without errors. To repair
the feature model of Figure 1, a constraint can be added to
require Base to be present each time Lock is selected.

2.2 Refactoring Feature Modules
There are many use cases where more expressive feature
modules are needed, i.e., feature modules that can create and
delete code. An example is adding refactorings to feature
modules.

A refactoring transforms a program by altering the pro-
gram’s structure but not its semantics [8]. For example, mod-
ifying a method’s name and updating its references is a ’Re-
name Method’ refactoring. The standard refactorings that
we use to illustrate the concepts in this paper are ’Rename
Method’ and ’Rename Class’ but our approach is not limited
to them.1

In previous work, we explained how refactorings could
be included in feature modules; we called such a module
a refactoring feature module (RFM) [14]. Figure 3 shows
RFMs in the order they can be applied to the feature module
Base (top-down order). In line with feature modules, an
RFM only transforms code created in feature modules which
precede the RFM in a composition but not code created after
the RFM. For instance, RFM ListAdt in Figure 3 renames
the class List into ADT of feature modules Base and GetPop
when they are selected but not List of ListLlist (ListLlist is
arranged after ListAdt).

As an aside, RFMs are beneficial for product lines of
components [14]: A component generated from feature mod-
ules often needs to integrate with legacy applications [5],
which expect particular names and signatures for a compo-
nent’s interface, that is, different names and signatures than
those that are generated. RFMs can transform generated in-
terfaces so that they can neatly be integrated with legacy
code. RFMs in this use case are final transformations per-
formed on generated components.

In this paper we focus on RFMs that modify fully-
qualified names of code artifacts (’identifiers’ for short).
Thus, refactorings which affect only method bodies (e.g.,
’Remove Assignments to Parameters’2) are not considered.
The standard refactorings that we cover are: Add parameter,
Change Unidirectional Association to Bidirectional, Change
Value to Reference, Encapsulate Field, Extract Class, Ex-
tract Interface, Extract Superclass, Hide Delegate, Inline
Method, Introduce Parameter Object, Move Class, Move
Field, Move Method, Rename Class, Rename Field, Rename
Method, Replace Constructor with Factory Method, Replace
Method with Method Object, Self Encapsulate Field. That
is, we cover about 26% of the standard refactorings in [8].
This list contains the most common refactorings. According
to our experience and prior studies this is no restriction.

1 ’Rename Class’ changes the name of a class [8].
2 ’Remove Assignments to Parameters’ assigns method parameters to new
local variables and uses these variables inside the method instead [8].

2

Base

RenameClassRefactoring
<<RFM>>

RenameClassRefactoring
<<RFM>>

RenameMethodRefactoring
<<RFM>>

List

get()

_elements

rename ’LinkedList.pop’ into ’topmost’

RenameMethodRefactoring
<<RFM>>

rename ’LinkedList.get’ into ’topmost’

RenameMethodRefactoring
<<RFM>>

rename ’List’ into ’LinkedList’

rename ’List’ into ’ADT’

rename ’List.get’ into ’pop’

GetTopmost

PopTopmost

ListLlist

ListAdt

GetPop

Figure 3. Refactorings as parts of feature modules.

Given the above, we want to verify that all legal combina-
tions of feature modules (including RFMs) that are permitted
by a feature model are type safe. We examine the difficulty
of doing so in the following sections.

3. Analysis of Refactorings
The key to the safe composition of a refactoring is to ver-
ify its preconditions [20, 8, 16]. Preconditions are formu-
lated in terms of code artifacts (described with identifiers)
which must exist when the according RFM applies and arti-
facts which must not exist. For instance, a refactoring which
renames class List into LinkedList requires both List to ex-
ist and LinkedList to not exist. If List does not exist then
the refactoring fails because there is no class to rename. If
LinkedList exists in the code to refactor then the refactoring
fails too because there can only be one LinkedList class in a
program [16, 20]. If these constraints are fulfilled in all legal
compositions then this ’Rename Class’ RFM is guaranteed
to compose safely.

To clarify the challenges, we deduce composition con-
straints for the refactorings of Figure 3:

• The ’Rename Method’ refactoring in RFM GetPop re-
quires a method List.get. Base creates List.get and thus

GetPop must always appear after Base. GetPop addition-
ally requires that List.pop does not exist – this is always
true because List.pop is not created by any combination
of features prior to GetPop. The composition constraint
for GetPop is that when GetPop applies then Base must
have been applied before (GetPop→Base).

• The ’Rename Class’ refactoring in RFM ListAdt re-
quires a class List and that a class ADT does not ex-
ist. List is created by Base and ADT is not created be-
fore ListAdt thus the composition constraint for ListAdt
is ListAdt→Base.

• The ’Rename Class’ refactoring in RFM ListLlist re-
quires a class List and that a class LinkedList does not
exist. Special to ListLlist is ListAdt. ListAdt deletes List

and so ListLlist requires that ListAdt not be present. The
constraint for ListLlist is ListLlist→(¬ListAdt∧Base).

• The ’Rename Method’ refactoring in RFM PopTopmost
requires LinkedList.pop. ListLlist creates LinkedList.pop

when GetPop is selected (ListLlist creates LinkedList.get

without error when GetPop is not selected). Thus, Pop-
Topmost requires both ListLlist and GetPop.3 The con-
straint becomes PopTopmost→(ListLlist∧GetPop).4

• Special to GetTopmost is that it requires method Linked-

List.get but this method is only created by ListLlist when
GetPop is not selected (ListLlist creates LinkedList.pop

without error when GetPop is selected):
GetTopmost→(ListLlist∧¬GetPop).

Summary. In safe composition of feature modules, a fea-
ture F requires another feature G if F references an element
(e.g., method, field, class, interface) introduced in G. In safe
composition of RFMs, one RFM may require that multiple
features apply in an ordered composition to create an arti-
fact with a particular identifier. Finally, RFMs do not only
require that certain features are selected but also that certain
features are not selected.

4. Safe Composition of RFMs
In this section, we present our solution to validate safe com-
position of RFMs without composing and testing every legal
composition. We explain the overall process of our approach
in Section 4.1 and its implementation in Sections 4.2 and 4.3.

4.1 Basic Concept
Preconditions of refactorings reference identifiers of arti-
facts that either must exist or that must not exist. We de-
termine composition constraints by relating feature compo-
sitions to each other that make the referenced artifacts exist
(or not exist). We translate these constraints to propositional
3 Base creates List.get; GetPop renames List.get into List.pop; ListLlist
renames List.pop into LinkedList.pop
4 Note, PopTopmost also requires that ListAdt does not apply and Base
applies but this is guaranteed transitively by the constraints of required
ListLlist and GetPop.

3

formulas as SAT solvers can validate them efficiently in one
step for all feature combinations.

To provide a concise syntax for the next discussions, we
explain how feature compositions are translated into propo-
sitional formulas: A composition of features translates into
a conjunction of feature variables5 because all features in a
composition must be selected in order to apply it. When fea-
tures in a feature composition are not selected their feature
variables nevertheless contribute to the generated conjunc-
tion but are assigned as ’false’. As an example, we translate
a feature composition ListAdt•Base that does not select Get-
Pop into the formula ListAdt∧¬GetPop∧Base.

When we examined preconditions of refactorings we ob-
served that they fall into two camps: the existence of some
artifacts X and the non-existence of some artifacts Y in
the code to refactor. As a consequence, two preconditions
emerge where elements of X must be guaranteed to exist and
elements of Y must be guaranteed to not exist. We create
a composition constraint for each precondition. Both con-
straints must be fulfilled in every legal composition in order
to compose a refactoring safely, i.e., every legal composi-
tion must make both elements of X exist and elements of Y

not-exist immediately prior to that refactoring.
As an example, suppose a refactoring R requires some

artifact with the identifier x∈ X then we validate (a) that
x always exists immediately prior to R. Further, suppose
that a refactoring R requires some artifact with the identifier
y∈ Y to not exist then we validate (b) that y never exists
immediately prior to R.

(a) With an assumed function (its implementation is not
important for now) we calculate the set C of unique feature
compositions that make an artifact with the required identi-
fier x exist at the point immediately before the feature R.

C = {C1, C2, . . . Cn} (1)

Consequently, a constraint which we must validate for all
legal compositions is that R implies that one composition of
C applies prior to it:

R → (C1 ∨ C2 ∨ . . . Cn) (2)

Technically, SAT solvers efficiently validate existential
clauses for propositional formulas [15]. Therefore, we trans-
form constraint (2) into a theorem to verify by a SAT solver.
That is, instead of validating that every legal composition
fulfills R’s composition constraint we validate whether there
is a composition that is legal for a feature model but that does
not fulfill R’s constraint. We follow previous work [2, 6, 23]
to translate a feature model into a propositional formula FM.
The theorem that we need to prove is:

FM → ¬(R → (C1 ∨ C2 ∨ . . . Cn)) (3)

5 A feature variable is a propositional variable that is ’true’ when the ac-
cording feature is selected and ’false’ otherwise (cf. Sec. 2.1).

This formula (3) is unsatisfiable when R composes safely. If
(3) is satisfiable then the binding tells us a legal composition
of features for which R’s precondition fails (because x does
not exist).

(b) We now consider how to verify the non-existence of
an artifact. With our assumed function we calculate the set
C

′ of feature compositions that make y exist at the point
immediately before R where R requires y to not exist.

C
′ = {C ′

1
, C ′

2
, . . . C ′

n
} (4)

Consequently, a constraint which we must validate for all
legal feature compositions is whether R implies that no com-
position of C

′ applies prior to it:

R → ¬(C ′
1
∨ C ′

2
∨ . . . C ′

n
) (5)

As before, we translate this constraint into a theorem for
a SAT solver to verify. A binding that satisfies the formula
exposes a legal composition for which R’s precondition fails
(i.e., y exists).

When the proofs of either (a) or (b) fail then we found
an error in the feature model, the feature modules, or both.
That is, the feature R is selected but the precondition of R
is violated. A domain expert is alerted and can now correct
the feature-oriented design. If finally both tests succeed (the
SAT-tests fail) then no legal feature composition causes er-
rors when composed – all legal programs can now be com-
posed safely.

Example. We calculate the composition constraint for
ListLlist of Figure 3 systematically which we determined
informally in Section 3. ListLlist renames class List into
LinkedList. Thus, ListLlist requires (a) that List exists and
requires (b) that LinkedList does not exist in all legal com-
positions immediately before ListLlist.

(a) To validate the existence of List, we calculate the set
of compositions which make List exist immediately before
ListLlist (C={Base,GetPop•Base}). From this set we calcu-
late the composition constraint for ListLlist and translate this
constraint into a propositional formula:

ListLlist → ((¬ListAdt ∧ ¬GetPop ∧ Base)

∨(¬ListAdt ∧ GetPop ∧ Base))

This formula was directly translated from C and for clarity
it is not optimized – we show optimizations later.

Instead of validating that every legal composition fulfills
ListLlist’s constraint we validate an equivalent theorem, i.e.,
whether there is one composition that is legal for a feature
model FM but that does not fulfill ListLlist’s constraint.

FM → ¬(ListLlist → ((¬ListAdt ∧ ¬GetPop ∧ Base)

∨(¬ListAdt ∧ GetPop ∧ Base)))

4

Base

ListAdt

GetPop

identifier

Legend

empty program

feature is not selected

feature is selected

Base

ListAdt

GetPop

Y Y N

Y

Y N

N

N Y

Y

Y N

List

List

List

ADTADT

List

List

List

List ADT

(a) unoptimized (b) optimized

Figure 4. Transformation history for List of Fig. 3.

If the SAT solver finds an assignment for the variables
in this formula this assignment corresponds to a feature
composition which is in error, i.e., a composition which is
legal, contains ListLlist, and does not fulfill the constraint
of ListLlist. These compositions do not contain the required
class List.

(b) To validate the non-existence of LinkedList, we cal-
culate the set C

′ of compositions that create LinkedList im-
mediately before ListLlist (C′=∅). From this set we create
a composition constraint and then a propositional formula.
We finally validate this formula with a SAT solver as shown
above. Since C

′ here is empty the constraint becomes a tau-
tology and no composition can violate it (the SAT-test fails).

4.2 Computing Feature Compositions with Identifiers
In order to assemble composition constraints we relied on
a function which determines compositions where an artifact
with a particular identifier exists. In this section, we show
(with optimizations) how we calculate those compositions
without actually enumering them.

We record all identifiers of artifacts that feature modules
create and establish each identifier as root of a decision tree –
when 2 features introduce the same artifact then 2 root nodes
(and thus two decision trees) emerge. The decisions recorded
in these trees are whether features are selected or not. Fea-
ture decisions then map nodes of identifiers to nodes of new
identifiers. Refinements do not transform identifiers of arti-
facts and so features that solely encapsulate refinements are
not recorded at all. A single decision tree represents one code
artifact that has different identifiers over time (after refac-
torings apply). A tree represents the history of decisions on
features that lead the identifier of its root node to identifiers
of leafs – we thus call it history tree.

In Figure 4a we visualize the effects of feature decisions
prior to ListLlist (Base, GetPop, and ListAdt) from Figure 3
on the identifier of class List, i.e., we show the history tree of
List. In this tree, an arrow is a feature which can transform an
artifact’s identifier (arrow-source) to a new identifier (arrow-
target). With different labels for arrows we indicate whether

the decision to select a feature creates the child node or
whether the decision to not select it does.

To create history trees we iterate the features in the order
that is defined in the feature model. In each iteration step we
first validate safe composition for the current feature with the
existing trees before we record the current feature’s effects
on identifiers in these trees, i.e., trees successively grow.
Trees we use to validate an RFM thus contain only effects of
features that precede the currently validated RFM (as RFMs
only transform code added prior to them).

With history trees for all identifiers we can determine
compositions which include artifacts with a particular iden-
tifier. When an RFM requires that an artifact of a particular
identifier exists immediately before the RFM then it requires
a leaf node with this identifier in the history trees which are
recorded up to this RFM. The composition that makes the
tree’s artifact with its leaf’s identifier exist before the vali-
dated RFM emerges from the path of feature decisions from
this leaf backward to the empty program.

To exemplify the use of history trees we recalculate
the compositions prior to ListLlist that include List (in
the prior section we assumed a function to compute this
set). That is, we want to calculate in Figure 4a the com-
positions that make List exist for ListLlist. From List leaf
nodes in our history tree we calculate two different com-
positions (paths to the empty program) that contain List so
C={Base,GetPop•Base}. We translate and use these com-
positions in order to create composition constraints and val-
idate these constraints with SAT technologies.

Optimization. The history tree of every code artifact grows
exponentially with the number of features it records. To
optimize history trees, we do not add children to a node
when both children have the same identifier as the current
node, i.e., when the refactoring does not change the identifier
of a code artifact. For example, the ’Rename Method’ RFM
GetPop does not change the identifier of class List. Thus,
GetPop adds two children to node List in Figure 4a but
both have the same identifier as their father node. In the
optimized trees, we do not add either child to the List node

5

when recording GetPop. The optimized history tree for List

is shown in Figure 4b.
With optimized history trees we compute patterns for

compositions with an artifact of a particular identifier when
we calculate paths from leafs to the empty program. That is,
we do no longer calculate completely defined compositions.
Inside such a pattern only features appear which decide
whether an artifact with this identifier exists, e.g., GetPop
is not in the pattern of List (cf. Fig. 4b; GetPop is not in the
path of decisions from leaf List towards the empty program)
because GetPop does not decide the existence of List.

In contrast to completely defined compositions, patterns
have a three-value logic because patterns distinguish (a) fea-
tures that must be selected in order to create the tree’s artifact
with the required identifier, (b) features that must not be se-
lected, and (c) features that do not influence the creation of
the tree’s artifact with the required identifier. Therefore, pat-
terns are translated differently into propositional formulas
than completely defined compositions. In a formula trans-
lated from a composition, every feature is defined to be se-
lected or not selected. In a pattern only features are defined
that decide whether the tree’s artifact exist with a particu-
lar identifier and only those features contribute to the trans-
lated formula. All features that are not inside the pattern re-
main undefined in the translated formula. The pattern that
describes for ListLlist the compositions where List exists is
¬ListAdt∧Base (cf. Fig. 4b) where GetPop, which does not
decide the existence of List, is undefined. Since, this pattern
is already a propositional formula it is not translated further
– we use these patterns instead of compositions inside com-
position constraints.

To further optimize the tree concept we merge nodes of
one tree when they expose the same identifier. As a conse-
quence, history trees become directed graphs when one iden-
tifier can be created with different features from one root.
A path description (i.e., a pattern) to the empty program is
then more complex because it combines alternative paths but
identifiers are unique in leafs of one tree. As we show in Sec-
tion 4.3, leafs with equal identifiers in different trees cannot
be merged (different trees cannot be intermingled).

We implemented several technical optimizations for his-
tory trees. We omit their discussion for clarity and brevity of
this paper.

4.3 Preconditions Towards Inheritance Hierarchies
It is not enough for some refactorings that artifacts with cer-
tain identifiers exist, i.e., the composition result would be
type-safe but incorrect. Additionally to the existence of sin-
gle artifacts, a number of refactorings require properties of
whole inheritance hierarchies [16, 22].6 As an example, a
’Rename Method’ refactoring is incorrect when the method
it creates overrides a method the transformed method did

6 13 of the 19 covered refactoring types (cf. Sec. 2.2) have preconditions
towards inheritance hierarchies.

not override before the refactoring (so-called ’method cap-
ture’ [22]). In order to validate such errors do not occur, we
must navigate between artifacts and so between nodes of dif-
ferent history trees.

In order to navigate between nodes of different history
trees we associate them according to the type of artifact they
represent (methods, fields, or classes). A node that represents
a method references a node which represents this method’s
host class (in a different tree). As a result, we can navigate
between nodes of different artifacts/trees and calculate the
methods a method, that is to be renamed, may capture.

Different history trees cannot be intermingled. When a
single identifier occurs in different history trees then differ-
ent code artifacts can be transformed to expose it. These ar-
tifacts may differ in the inheritance hierarchy they are in or
in the position inside an inheritance hierarchy. For exam-
ple, a method which has the identifier x in one configuration
is in an inheritance hierarchy but a different method which
has the identifier x in another configuration is not. We thus
must distinguish different artifacts with equal identifiers in
our history trees – we cannot merge identifiers to intermin-
gle history trees.

5. Related Work
Safe composition. Thaker et al. [23] determined compo-
sition constraints for feature modules and used the con-
straints for safe composition. Delaware et al. extended this
work and defined a sound type system of composition con-
straints [7]. Both assume, feature modules monotonically
add code. CIDE guarantees safe composition for ifdefs (rep-
resented as colors) [11], a mechanism formalized by Kim
et al. [12]. Ifdefs delete code monotonically. In this paper we
guarantee safe composition for refactorings as part of feature
modules, i.e., modules that create and delete code.

Whitfield et al. guarantees safe composition for code
transformations [24]. The transformations of Whitfield are
optimizations as used in compilers, like ’dead code elimi-
nation’ or ’loop unrolling’, but they are no object-oriented
refactorings. Whitfield relates types of transformations and
proposes a composition order for transformations of these
types, e.g., ’loop unrolling’ enables ’dead code elimination’
and thus should be arranged before. The transformations of
Whitfield do not consider type-safety as their transforma-
tions are on statement level. A possible direction of future
work is to combine both approaches.

Model checking. Sittampalam et al. used model checking
to validate properties of incrementally executed transforma-
tion specifications [21]. The transformations of Sittampalam
are no object-oriented refactorings but optimizations inside
methods, e.g., propagation of variable values or dead assign-
ment eliminitation. The transformations of Sittampalam are
defined completely in their transformation modules with reg-
ular expressions to match code to transform. RFMs cannot
enumerate all identifiers of artifacts which the refactoring

6

creates and deletes in every feature composition nor can give
a pattern for them. An RFM also cannot enumerate identi-
fiers of artifacts that it requires to not exist because there may
be an infinite number of them. Sittampalam evaluates a se-
quence of transformations at once but not multiple possible
sequences. Technically, Sittampalam uses Prolog to validate
transformations and we use SAT technologies.

Category theory. A program corresponds to a category
in category theory [18] and identifiers of program artifacts
correspond to points in that category. Refactorings corre-
spond to arrows that map points (identifiers) of one cate-
gory (program) to points of another category. Our trees that
record refactoring effects with associated nodes merge dif-
ferent categories in that transformation arrows map a tree
node to another in a different category (in a different pro-
gram) but some nodes belong to multiple categories (pro-
grams), e.g., the refactoring ’Rename method LinkedList.get

into topmost’ maps a node LinkedList.get of one category to
a tree node LinkedList.topmost of another category – how-
ever, both method nodes reference the same LinkedList node
to represent their hosting class – this class node contributes
to both categories. History trees thus visualize categories of
identifiers and arrows of identifier transformation. In terms
of category theory, history trees become commuting graphs
when different paths exist to one identifier.

6. Conclusions
Programs can be composed by successively applying trans-
formations that add features to a program. Program transfor-
mations must be validated to apply without errors. However,
we cannot test every combination of transformations as these
can be millions.

We must detect errors automatically to encapsulate single
transformations and scale them. That is, users must be able
to rely on the correctness of single transformations without
inspecting them and every possible peace of code they may
be applied to.

Prior work focused on safe composition of transforma-
tions that either monotonically add or monotonically remove
code in order to produce program variants. We generalized
their work in that we automatically detect composition errors
for transformations that add and remove code. Specifically,
we detect errors for automated refactorings that transform a
program when selected.

The contribution of this work is important to detect er-
rors for modules that add and remove code. Specifically, we
can now validate automatically whether refactorings and se-
quences of refactorings compose without errors in feature-
oriented designs. As a result, we can deliver configurable
components, that can be configured to have a certain func-
tionality and to have a certain interface, and guarantee that
every configuration of functionality and component interface
is type-safe and correct.

References
[1] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An algebra

for features and feature composition. In Proceedings of the
International Conference on Algebraic Methodology and
Software Technology (AMAST), pages 36–50, 2008.

[2] D. Batory. Feature models, grammars, and propositional
formulas. In Proceedings of the International Software
Product Line Conference (SPLC), 2005.

[3] D. Batory and S. O’Malley. The design and implementation
of hierarchical software systems with reusable components.
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 1(4):355–398, 1992.

[4] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling step-
wise refinement. IEEE Transactions on Software Engineering
(TSE), 30(6):355–371, 2004.

[5] D. Batory, V. Singhal, M. Sirkin, and J. Thomas. Scalable
software libraries. In Proceedings of the International
Symposium on Foundations of Software Engineering (FSE),
pages 191–199, 1993.

[6] K. Czarnecki and A. Wasowski. Feature diagrams and logics:
There and back again. In Proceedings of the International
Software Product Line Conference (SPLC), pages 23–34,
2007.

[7] B. Delaware, W. Cook, and D. Batory. A machine-checked
model of safe composition. In Workshop on Foundations of
Aspect-Oriented Languages (FOAL), pages 31–35, 2009.

[8] M. Fowler. Refactoring: Improving the design of existing
code. Addison-Wesley Longman Publishing Co., Inc., 1999.

[9] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

[10] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in
software product lines. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 311–320,
2008.

[11] Christian Kästner and Sven Apel. Type-checking software
product lines - a formal approach. In Proceedings of the
IEEE International Conference on Automated Software
Engineering (ASE), pages 258–267, 2008.

[12] C.H.P. Kim, C. Kästner, and D. Batory. On the modularity
of feature interactions. In Proceedings of the International
Conference on Generative Programming and Component
Engineering (GPCE), pages 23–34, 2008.

[13] C. W. Krueger. New methods in software product line
practice. Communications of the ACM (CACM), 49(12):37–
40, 2006.

[14] M. Kuhlemann, Don Batory, and Sven Apel. Refactoring
Feature Modules. Technical Report 15, School of Computer
Science, University of Magdeburg, 2008.

[15] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: Engineering an efficient SAT solver.
In Proceedings of the ACM IEEE Conference on Design
Automation (DAC), pages 530–535, 2001.

7

[16] W. F. Opdyke. Refactoring object-oriented frameworks. PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[17] D. L. Parnas. On the Design and Development of Program
Families. IEEE Transactions on Software Engineering (TSE),
SE-2(1):1–9, 1976.

[18] B. C. Pierce. Basic category theory for computer scientists.
MIT Press, 1991.

[19] C. Prehofer. Feature-oriented programming: A fresh look
at objects. In Proceedings of the European Conference on
Object-Oriented Programming (ECOOP), pages 419–443,
1997.

[20] D. B. Roberts. Practical analysis for refactoring. PhD thesis,
University of Illinois at Urbana-Champaign, 1999.

[21] G. Sittampalam, O. de Moor, and K. F. Larsen. Incremental
execution of transformation specifications. ACM SIGPLAN
Notices, 39(1):26–38, 2004.

[22] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse
contracts: Managing the evolution of reusable assets. ACM
SIGPLAN Notices, 31(10):268–285, 1996.

[23] S. Thaker, D. Batory, D. Kitchin, and W. Cook. Safe
composition of product lines. In Proceedings of the
International Conference on Generative Programming and
Component Engineering (GPCE), pages 95–104, 2007.

[24] D.L. Whitfield and M.L. Soffa. An approach for exploring
code improving transformations. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 19(6):1053–
1084, 1997.

8

