
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-009-2009

A Restructuring Operation for XML Documents

Klaus Benecke, Xuefeng Li

Arbeitsgruppe Theoretische Informatik

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-009-2009

A Restructuring Operation for XML Documents

Klaus Benecke, Xuefeng Li

Arbeitsgruppe Theoretische Informatik

Impressum (§ 5 TMG):
Herausgeber:
Otto-von-Guericke-Universität Magdeburg

 Fakultät für Informatik
 Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120

 39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage:

Redaktionsschluss:

Herstellung: Dezernat Allgemeine Angelegenheiten,
 Sachgebiet Reproduktion

Bezug: Universitätsbibliothek/Hochschulschriften- und

Tauschstelle

Klaus Benecke, Xuefeng Li

benecke@iws.cs.uni-magdeburg.de

95

19.05.2009

A Restructuring Operation for XML Documents

Klaus Benecke, Xuefeng Li

IWS/FIN Otto-von-Guericke University Magdeburg
Postfach 4120 39016 Magdeburg, Germany
benecke@iws.cs.uni-magdeburg.de

Abstract— This paper describes a new restructuring operation.
If an arbitrary XML-file with DTD and a (target) DTD is given
then by the operation stroke the document is transformed to a
XML file, which corresponds to the target DTD. Simultaneously
with this restructuring target data can be sorted and arbitrary
aggregations can be realized. Therefore, we believe that our stroke
operation is especially the first sorting algorithm for structured
data. The definition of stroke profits by a new understanding
of XML, where we distinguish not only at DTD- but also at
document-level between tuples and collections of (sub) docu-
ments. Because in our understanding database tables are also
XML-structures we think that stroke is not only useful for queries
on single or composed XML-documents but also for queries on
databases and also for queries on search engines. Here, it allows
especially to extract tuples of nodes (fragments) of the given
XML-structure. The paper presents use cases for restructuring
of XML documents and a description of the procedural defini-
tion and implementation of stroke. A corresponding functional
definition (implementation) of stroke in OCAML is the kernel of
the paper. Finally a short experimental evaluation of the both
implementations with corresponding galax programs is given.

I. INTRODUCTION

The restructuring operation stroke is one of the best op-

erations of our query language OttoQL (OsTfälisch Table

Oriented)([1]). A NF 2-version of stroke is published in [2].

It can be compared with the operation restruct of [3], but it

is generalized to XML and it allows additionally to sort, and

aggregate data. XQuery (see [4] or [5]) has no restructuring

operation. Therefore we can formulate some queries more

userfriendly than XQuery. Consider at first Query XMP:

1.1.9.2 Q2 from [5]: Create a flat list of all the title-author

pairs, with each pair enclosed in a ”result” element.

XQuery:

<results>
{
for $b in doc("XMP/bib.xml")/bib/book,

$t in $b/title,
$a in $b/author

return
<result>

{ $t }
{ $a }

</result>
}
</results>

OttoQL:

aus doc("bib.xml")
gib results results=L(result) &&

result=title,author

Here, ”L” abbreviates list and ”&&” connects two lines to a

logical unit. The gib-part is realized by the stroke operation.

Because we represent our documents often by tables we could

simplify the query in the following way:

aus doc("bib.xml")
gib L(title,author)

Now we consider query XMP: 1.1.9.4 Q4: For each author in

the bibliography, list the author’s name and the titles of all

books by that author, grouped inside a ”result” element.

XQuery:

<results>
{

let $a := doc("XMP/bib.xml")//author
for $last in distinct-values($a/last),

$first in distinct-values
($a[last=$last]/first)

order by $last, $first
return
<result>
<author>

<last>{ $last }</last>
<first>{ $first }</first>

</author>
{
for $b in doc("XMP/bib.xml")//book
where some $ba in $b/author

satisfies ($ba/last = $last
and $ba/first=$first)

return $b/title
}

</result>
}
</results>

OttoQL:

aus doc("bib.xml")
gib M(author,L(title))

Here, M abbreviates set (Menge). A result set of the gib-part

does not contain the atomic fields (here author) twice. That

means a set contains no duplicates. For each author value

the list of titles is collected. We see already on these small

examples that OttoQL has a much simpler syntax than XQuery

and even XPath. In the core of OttoQL the operations select,

ext (extension of a document by a new tag (column), stroke,...

are applied one after the other. In section II a definition of

the type XML-document is presented. This definition is the

fundament of stroke and the whole data model of OttoQL.

Section III presents the most important examples, to illustrate

stroke. It becomes clear that stroke replaces the following

operations: projection, distinct, aggregate, sort, union, nest,

and unnest. But for recursive structures a further operation

(giball) is used. This operation is much simpler than stroke, but

not considered in this paper. It corresponds to the doubleslash

operation of XPath. In the next section a procedural algorithm

of stroke is described. This algorithm seems to be very simple,

but it is not so easy to implement it as we believe. The kernel

of the restructuring algorithm is a restructuring table umstruc4,

by which is described which source levels are inserted into

which target levels. In the section V we consider the functional

implementation of stroke. This implementation is a result of

an algebraic specification with initial semantics (see [6]). We

have choosen a description in OCAML, because we think that

more people are familiar with OCAML than with algebraic

specification languages. In section VI we compare our both

implementations. As expected the procedural one is more

efficient than the functional one. For us it was surprising

that both implementations are much more efficient than the

restructuring with GALAX. In some examples they differ by

the the factor 100.

II. A NEW UNDERSTANDING OF XML

In this section we present our understanding of XML in the

syntax of OCAML ([7]). An XML document is also called

tabment (TABle+docuMENT).

type coll sym = Set | Bag | List | Set minus

| Bag minus | List minus | Any | S1 ;;

(* collection types: S, B, L, S-, B-, L-, A, ? *)

(* S-, B-, L- for downwards sorting *)

type name = string;; (* column names *)

type scheme = (* schemes of documents *)

Empty s (* empty scheme *)

| Inj of name (* each name is a scheme *)

| Coll s of coll sym * scheme (*schemes for collections*)

| Tuple s of scheme list (* schemes for tuples *)

| Alternate s of scheme list;; (* schemes for choice *)

type value = (* disjoint union of elementary types *)

Bar (* a dash; only for school of interest *)

| Int v of big int (* each big integer is a value *)

| Float v of float

| Bool v of bool

| String v of string;;

type tabment = (* type for tables resp. documents *)

Empty t (* empty tabment: error value *)

| El tab of value (* an elementary value is a tabment *)

| Tuple t of tabment list (* tuple of tabments *)

| Coll t of (coll sym * scheme) * (tabment list)

(* collection of tabments *)

| Tag0 of name * tabment

(* a tabment is enclosed by a name *)

| Alternate t of (scheme list) * tabment;;

(* the type of the tabment is changed to a choice type *)

Examples: The XML document ”Hallo” can be represented

by the OCAML term

El_tab(String_v "Hallo")

and the XML document

<X><A>a<A>b</X>

can be represented for example by

Tag0("X",Tuple_t[
Tag0("A",El_tab(String_v "a"));
Tag0("A",El_tab(String_v "b"))])

or by

Tag0("X",Coll_t((List, Inj "A"),
[Tag0("A",El_tab(String_v "a"));
Tag0("A",El_tab(String_v "b"))])).

The XML document students0.xml of figure 1 can be repre-

sented as table (Table 1) and as OCAML term (figure 2). We

summarize the differences between the common understanding

XML documents and the specified tabments:

1) The specification does not distinguish between XML-

attributes and XML-elements; an attribute is signaled

by a preceding ”@”.

2) Unlike to XML, a tabment need not have a root tag.

3) In the tabment, and not only in the scheme specification,

a tuple of several elements is distinguished from a

collection of these elements. This is an advantage, for

the specification and implementation of our powerful

tabment operations (restructuring stroke, selection, ex-

tension ext, vertical, ...).

4) The specification handles beside lists (L) additional

proper collection types: Set (M), Bag (B), and Any (A).

The ”collection” type S1 is not a proper collection. It is

used for optional values (?).

III. Stroke BY EXAMPLES

The content of this section can be considered as use cases

for a complex restructuring operation. Most examples refer

to an XML document students.xml.
students.xml: M(STID, SURNAME, FIRSTNAME,

MIDDLENAME?, FACULTY, LOCATION, ZIP, STREET,

L(EXAM), L(HOBBY), YEAR OF REG, CURR VITAE)

2

TABLE I

XML DOCUMENT STUDENTS0.XML REPRESENTED AS TAB FILE

<<L(STID, NAME, FACULTY, SEX, L(COURSE, MARK), L(HOBBY))::
2 Mueller Computer Science F DB 2. reading

EAD 1.3 schwimming
MATHS 2.

3 Schulz Mathematics M ALGEBRA 1.3
ANALYSIS 1.
NUMERICS 1.7 >>

Tag0("STUDENTS",
Coll_t((List,Inj "STUDENT"), [

Tag0("STUDENT",Tuple_t[
Tag0("STID",El_tab (Int_v (big_int_of_string "2")));
Tag0("NAME",El_tab (String_v ("Mueller")));
Tag0("FACULTY",El_tab (String_v "Computer Science"));
Tag0("SEX",El_tab (String_v "F"));
Coll_t((List,Inj "EXAM"),[
Tag0 ("EXAM",Tuple_t[
Tag0("COURSE",El_tab(String_v "DB"));
Tag0("MARK",El_tab (Float_v (2.)))]);

Tag0("EXAM",Tuple_t[
Tag0("COURSE",El_tab(String_v "EAD"));
Tag0("MARK",El_tab(Float_v 1.3))]);
Tag0("EXAM",Tuple_t[
Tag0("COURSE",El_tab(String_v "MATHS"));
Tag0("MARK",El_tab(Float_v 2.))])]);

Coll_t((List,Inj "HOBBY"),[
Tag0("HOBBY",El_tab(String_v "reading"));
Tag0("HOBBY",El_tab(String_v "schwimming"))])]);

Tag0("STUDENT",Tuple_t[
Tag0("STID",El_tab (Int_v (big_int_of_string "3")));
Tag0("NAME",El_tab (String_v "Schulz"));
Tag0("FACULTY",El_tab(String_v "Mathematics"));
Tag0 ("SEX",El_tab(String_v "M"));
Coll_t((List,Inj "EXAM"),[

Tag0("EXAM",Tuple_t[
Tag0("COURSE",El_tab(String_v "ALGEBRA"));
Tag0("MARK",El_tab (Float_v 1.3))]);

Tag0("EXAM",Tuple_t[
Tag0("COURSE",El_tab(String_v "ANALYSIS"));
Tag0("MARK",El_tab(Float_v 1.))]);

Tag0("EXAM",Tuple_t[
Tag0("COURSE",El_tab(String_v "NUMERICS"));
Tag0("MARK",El_tab(Float_v 1.7))]);]);

Coll_t((List,Inj "HOBBY"),[])])]))

Fig. 2. students0.xml as OCAML term

3

<!DOCTYPE STUDENTS [
<!ELEMENT STUDENTS (STUDENT*)>
<!ELEMENT STUDENT (STID,NAME,FACULTY,

SEX,EXAM*,HOBBY*)>
<!ELEMENT STID (#PCDATA)>
<!ELEMENT NAME (#PCDATA)>
<!ELEMENT FACULTY (#PCDATA)>
<!ELEMENT SEX (#PCDATA)>
<!ELEMENT EXAM (COURSE,MARK)>
<!ELEMENT COURSE (#PCDATA)>
<!ELEMENT MARK (#PCDATA)>
<!ELEMENT HOBBY (#PCDATA)>]>
<STUDENTS>
<STUDENT>
<STID>2</STID>
<NAME>Mueller</NAME>
<FACULTY>Computer Science</FACULTY>
<SEX>F</SEX>
<EXAM>

<COURSE>DB</COURSE>
<MARK>2.</MARK>

</EXAM>
<EXAM>

<COURSE>EAD</COURSE>
<MARK>1.3</MARK>

</EXAM>
<EXAM>

<COURSE>MATHS</COURSE>
<MARK>2.</MARK>

</EXAM>
<HOBBY>reading</HOBBY>
<HOBBY>schwimming</HOBBY>

</STUDENT>
<STUDENT>
<STID>3</STID>
<NAME>Schulz</NAME>
<FACULTY>Mathematics</FACULTY>
<SEX>M</SEX>
<EXAM>

<COURSE>ALGEBRA</COURSE>
<MARK>1.3</MARK>

</EXAM>
<EXAM>

<COURSE>ANALYSIS</COURSE>
<MARK>1.</MARK>

</EXAM>
<EXAM>

<COURSE>NUMERICS</COURSE>
<MARK>1.7</MARK>

</EXAM>
</STUDENT>

</STUDENTS>

Fig. 1. XML file students0.xml

EXAM = (COURSE, MARK, DATE) Therefore, we will

omit in these examples the from-part:

aus doc("students.xml")

Program 1: Projection

gib L(SURNAME, FIRSTNAME)

The result is not sorted, the order of elements in the given

table remains, and duplicates are not eliminated.

Program 2a: Sorting

gib B(SURNAME, FIRSTNAME, FACULTY)

The result is sorted by (SURNAME, FIRSTNAME, FAC-

ULTY) and duplicates are not eliminated. The sorting is

outside the theoretical specification.

Program 2b: Sorting with duplicate elimination

gib M(FACULTY, S-(MARK, &&
B(SURNAME, FIRSTNAME)))

The outmost collection is sorted by FACULTY, the next

inner collection by MARK downwards, and the most inner

collection by SURNAME, FIRSTNAME. Each faculty appears

only once and within each faculty each mark apperars only

once.

Program 3: Distinct

gib M(SURNAME, FIRSTNAME)

The result is sorted by (SURNAME, FIRSTNAME) and

duplicates are eliminated.

Program 4 a: Unnest

gib L(SURNAME, FIRSTNAME, COURSE, MARK)

The result is a four column flat table, where students without

examinations disappear.

Program 4 b:

gib B(SURNAME, MIDDLENAME)

Students without middle name disappear. The name pairs are

sorted. If we want all students in the result, we only have to

add a question mark:

Program 4 c:

gib B(SURNAME, MIDDLENAME?)

Now the system is not forced to build complete pairs. Here, we

see, the stroke operation follows the main principle of minimal
loss of information.

Program 5: Nest, respectively Group By

gib M(FACULTY, L(SURNAME, FIRSTNAME))

Additionally to nest, data are sorted by FACULTY.

Program 6 a: Restruct [3]

gib M(COURSE, B(SURNAME, &&
FIRSTNAME, MARK, DATE))

In the given document COURSE is subordinated to the

names and in the target document names are subordinated to

4

COURSE. Each COURSE appears only once, but the inner

bag may contain duplicates, contrary to restruct of [3].

Program 6 b:

gib M(COURSE, HOBBY)

The result of query 6 b is an empty set, because COURSE

and HOBBY are not on a hierarchical path in the DTD

of students.xml (see figure 3). A restructuring with restruct
results in general in a non-empty set, because an inner join

of M(COURSE, MARK, DATE)- and L(HOBBY)-tables is

realized before restructuring. During restructuring with stroke
(COURSE, MARK, DATE)-tuples are lengthened only by

superordinated student data as STID, SURNAME, ... and not

by HOBBY. Later HOBBY is lengthened by STID, SUR-

NAME,... . If we want to combine all COURSE and HOBBY

tuples of each student we have to realize a corresponding join

at first or to unnest the data in an additional step. To combine

COURSE- and HOBBY-subtuple contradicts to the principle

of stroke that each (lengthened) subtuple is inserted only once

into zero, one or more levels of the target structure. stroke
follows also the minimal cost priciple. But, it is also possible

to realize the Cartesian product only with stroke.

Program 6 c:

gib M(COURSE,L(HOBBY)) ATOM::L(HOBBY)

If we would omit the ATOM clause then for each COURSE an

empty list of HOBBYs would result, because COURSE and

HOBBY are not on a hierarchical path. Since L(HOBBY) is

one level higher then HOBBY, COURSE and L(HOBBY) are

on one hierarchical path. This is visible in figure 3. Therefore,

in the result appears each list of hobbies for each course. By

a following additional gib-part the flat Cartesian product can

be generated:

Program 6 d:

gib M(COURSE,L(HOBBY)) ATOM::L(HOBBY)
gib M(COURSE,HOBBY)

Program 7 a: Aggregations simultaneously in different levels

of target table. (Compute the total count of marks, the count

for each faculty, and for each student.)

gib AG,M(FACULTY,AG,B(SURNAME,AG)) &&
AG := count(MARK)

The first AG of the target scheme is the total number, the

second the count for each faculty, and the third AG is the

count for each student. In the next section we will see that it

is not necessary to use the student identifier STID in the target

structure in this case. If we use M(SURNAME, AG) then the

total numbers of marks of all students with the same name are

computed. The aggregations are realized during restructuring

with stroke.

Program 7 b: A simultaneous horizontal and vertical aggre-

gation. Let students2.xml the same document as students.xml,
but with another EXAM-type:

EXAM2: (COURSE, EXERCISE1, EXERCISE2, EXER-

CISE3)

(Compute the total sum of points, the sum for each faculty,

and for each student.)

aus doc("students2.xml")
gib AG,M(FACULTY,AG,B(SURNAME,AG)) &&

AG := sum(EXAM2)

Here, it is assumed that COURSE is of type TEXT such that

COURSE-data do not contribute to the sums. The exercise tags

are assumed to be integers or floats.

Program 7 c: Conditional aggregations (Find for each

faculty and each student the number of very good and very

bad marks.)

gib M(FACULTY,C1,C5,B(NAME,C1,C5)) &&
C1:=count(case MARK &&

when(MARK=1)endcase) &&
C5:=count(case MARK when(MARK=5)endcase)

Program 8 a: Union (Collect for each student all hobbies and

courses in one column, where duplicates are omitted.)

rename COURSE by HOBBY
gib B(NAME, M(HOBBY))

Here, student by student is inserted into target structure and

for each student each COURSE now renamed by HOBBY is

inserted. After the insertion of COURSEs the original HOB-

BYs are inserted one after the other. If we would rename the

LOCATION for example by HOBBY then all inner collections

contain only the LOCATION with new name.

Program 8 b: Counterexample for union

rename LOCATION by HOBBY
gib B(NAME, M(HOBBY))

Here, the student level is inserted into NAME- and HOBBY-

level. Therefore, there is no need to insert the proper HOBBY

data into the target. Because the subordinated HOBBY data

would be lengthened by STUDENT records the lengthened

element would contain two HOBBYs and it would be unclear,

which of both we have to take. We recognize again that one

of the second main principles of stroke is restructuring with

minimal cost.
Program 9: Joins: We consider three flat relations:

STUDFLAT.xml: M(STID, NAME, SEX)

EXAMFLAT.xml: M(STID, COURSE, MARK)

HOBBYFLAT.xml: M(STID, HOBBY)

Program 9 a: Natural join of two relations

aus doc("STUDFLAT.xml"),&&
doc("EXAMFLAT.xml")

gib M(STID,(NAME,SEX)?, &&
L(COURSE,MARK))

gib M(STID,NAME,SEX,COURSE, MARK)

The comma in the from-part stands for pairs and not for the

Cartesian product. Therefore, the resulting scheme of the first

line is:

M(STID, NAME, SEX), M(STID, COURSE, MARK)

Because of the last row a flat 1NF-relation results, which is

5

M
|

(STID, SURNAME, FIRSTNAME, MIDDLENAME?,..., M, L, YEAR_OF_REG, CURR_VITAE)
| |

(COURSE, MARK, DATE) (HOBBY)

Fig. 3. The ”final” scheme of students.xml as hierarchical graph

more unnatural than the result of second row. We can not omit

the sign ”?” in the stroke-part of the second row, because the

insertion of a EXAMFLAT-tuple would then require a (STID,

NAME, SEX) comparison and not only a STID-comparison.

Program 9 b: ”Join” of the above 3 tables

aus doc("STUDFLAT.xml"), &&
doc("EXAMFLAT.xml"), &&
doc("HOBBYFLAT.xml")

gib M(STID, (NAME, SEX)?, &&
L(COURSE, MARK), L(HOBBY))

Program 9 c: The flat natural join of all three tables

aus doc("STUDFLAT.tab"), &&
doc("EXAMFLAT.tab"), &&
doc("HOBBYFLAT.tab")

gib M(STID,(NAME,SEX)?, &&
L(COURSE,MARK),L(HOBBY))

gib M(STID, NAME, SEX, L(COURSE, &&
MARK, L(HOBBY))) ATOM::L(HOBBY)

gib M(STID,NAME,SEX,COURSE, &&
MARK,HOBBY)

Program 10: Restructuring with choice

<<L(A,L(C,D)),L(X,Y,M(C,D))::
1 2 3 1 5 6 7

7 8 6 9
1 6 8 8 >>

gib M((A|X),M(C,L(D)))

Result as Tab-file:

<<M((A| X), M(C, L(D)))::
1 2 3

7 8
1 6 7 9

8 8>>

If the user wishes on toplevel only one value, he can rename

A by X.

Program 11: Restructuring with any collection

<<L(C,M(D,E)),L(X,Y,M(C,Z))::
1 2 3 1 5 6 7

9 9 6 9
2 6 8 8 >>

gib M(TUP) TUP=C,A()

Result as XML file:

<root>

<TUP>
<C>1</C>
<C>1</C>
<D>2</D>
<E>3</E>
<D>9</D>
<E>9</E>

</TUP>
<TUP>
<C>6</C>
<X>1</X>
<Y>5</Y>
<C>6</C>
<Z>7</Z>
<X>1</X>
<Y>5</Y>
<C>6</C>
<Z>9</Z>

</TUP>
<TUP>
<C>8</C>
<X>2</X>
<Y>6</Y>
<C>8</C>
<Z>8</Z>

</TUP>
</root>

The system goes in depth until the C-level is reached. The

corresponding lengthened elements are inserted in the C-level

and in the ANY collection. Because the two given collections

contain elements of different types the elements of the Any-

collections have two different types. The structure of the result

is better visible, if we copy the query in our online version

[1] and compute the result as OCAML term. The whole data

set is now sorted and structured by C. This collection type

can be used to sort element of different types from different

documents or from collections of documents of different type.

Program 12: Optional values are no proper collections

given: students3.xml: L(NAME, COURSE?, HOBBY?)

aus doc("students3.xml")
gib M(NAME, COURSE, HOBBY)

Each student with COURSE and HOBBY appears in the

result, contrary to this query on ”students.xml”.

Program 13 a: Tags in the target DTD

gib M(NAME, MARKS) &&

6

NAME=(SURNAME, FIRSTNAME, MIDDLENAME) &&
MARKS=L(MARK)

The restructuring, which corresponds to the above query, is

similar to a restructuring of the following target scheme:

M(SURNAME, FIRSTNAME, MIDDLENAME, L(MARK)).

The additional tags NAME for each corresponding triple

and MARKS for each corresponding collection are the only

difference.

Program 13 b: stroke cannot go into tags, if they are atomic

gib M(COURSE, L(SURNAME, EXAM))

In this target scheme EXAM is considered as atomic. There-

fore, stroke does not see any COURSE-value such that we

get in any case an empty result. We do not consider this as a

serious problem because we can use (MARK, DATE) instead

of EXAM, which would have less redundancy. In the following

query EXAM is not atomic, because it is redefined.

Program 13 c:

gib M(COURSE, L(SURNAME, EXAM)) &&
EXAM = (MARK, DATE)

Program 14: Long strings

gib M(FACULTY, B(NAME, L(CURR_VITAE)))

The target structure would look better, if we omit the inner list

symbol, but then the bag is sorted by (NAME, CURR VITAE).

That means comparisons of the CURR VITAE-values would

be necessary. Each list contains only one element, but it does

not require these comparisons. The list can also be replaced

by ”?” or the ”B” by an ”M”.

Program 15: Recursive target DTDs

gib L(E) E = (STID, L(E))

Recursive target DTDs are not considered in our implementa-

tion, because otherwise an infinite result would be generated,

as in the above example.

IV. PROCEDURAL IMPLEMENTATION OF Stroke

Let’s start with a special but not untypical flat source file

zufall1000.xml: L(X, Y, Z)
of random triples of integers between 0 and 9, which contains

each triple exactly ones.

Program 16 a:

aus doc("zufall1000.xml")
gib M(X,Y,Z)

If we assume that the given file contains 1000 elements then

the insertion of one triple requires in average 500 complete

comparisons. If we choose a higher structured target scheme

Program 16 b:

aus doc("zufall1000.xml")
gib M(X, M(Y, Z))

then an insertion of one triple requires in average roughly

5 X-comparisons and 50 (Y, Z)-comparisons, because the X

chain consists of 10 elements and each (Y, Z) chain of 100

elements. We see that the additional X-level has a similar effect

as skip pointers. In the same way the number of comparisons

in the child-twin-pointer structure is reduced if we introduce

one further level:

Program 16 c:

aus doc("zufall1000.xml")
gib M(X, M(Y, M(Z)))

Here the insertion of an (X, Y, Z)-element requires in average

5 X-, 5 Y-, and 5 Z-comparisons. This are 5 complete

comparisons compared with 500 comparisons in Program 16

a. Again this query is similar to an implementation with two

level skip pointers. We see, without measuring the response

time of any query that a high structured target table can be

generated in general quicker than a flat one. We believe that

a user will in general prefer a high structured table, because

it is looks more lucid than a flat one. Further, he can add

corresponding aggregations in higher levels. Now, we shall

see that a structured source table will result in a yet quicker

restructuring. Let

zufall10 10 10.xml: L(X, L(Y, L(Z)))
be a random file, which contains 10 distinct X-values, for

each X-value 10 distinct Y-values, and for each (X, Y)-value

10 distinct Z-values, where these data are randomly sorted.

Program 17 a:

aus doc("zufall10_10_10.xml")
gib M(X, M(Y, Z))

Here, an X-value is inserted into the X-chain (5 comparisons),

the Y-values cannot be inserted, and each Z-value is length-

ened by its superordinated Y and X values, and can therefore

be inserted into the (Y, Z) level. The number of comparisons

is similar to the number of Program 16 b, but in the X-chain

only 10 elements are inserted, contrary to 1000.

Program 17 b:

aus doc("zufall10_10_10.xml")
gib M(X, M(Y, M(Z)))

Here, the total number of complete comparisons for re-

structuring is (10*5+100*5+1000*5)/3=1819 compared to

1000*(5+5+5)/3=5000 comparisons of Program 16 c.

The procedural implementation is based on restructuring ta-

bles. By umstruc4 is described, which source (hierarchical)

level (qhl) is inserted into which target level (zhl). Table

II shows this for the Programs 16 and 17. Because, our

current procedural implementation of stroke does not allow

tags on non elementary tabments and does not allow the choice

operator and optional values in the target scheme we restrict

ourself to restructuring tables of some of the remaining queries

on students.xml. This file has 3 levels the STID-level, the

EXAM-level, and the HOBBY-level. The superordinated level

of the last two levels is the STID-level. In Table III Program

7 a is described. Here, each STID-level element is inserted in

both target levels. By these insertions the AGG-components

are occupied by neutral values. For the count aggregation this

7

TABLE II

UMSTRUC4 FOR PROGRAM 16 AND 17

Query source level target level
Program 16 a 1 1
Program 16 b 1 1 2
Program 16 c 1 1 2 3

1 1
Program 17 a 2

3 2 3
1 1

Program 17 b 2 2
3 3

TABLE III

UMSTRUC4 FOR PROGRAMS ON STUDENTS.XML

Query source level target level
Program 2 a 1 1
Program 2 b 1 1

2 2 3
Program 5 1 1 2
Program 6 a 2 1 2
Program 6 b
Program 7 a 1 1 2

1 1
Program 8 a 2 2

3 2
Program 8 b 1 1 2

is zero. After the insertion of a first level element the pointers

for FACULTY and SURNAME are fix. For each EXAM-

element now a one is added at each of the three levels. That

means no further comparisons are necessary for realizing the

aggregations.

V. FUNCTIONAL IMPLEMENTATION OF stroke IN OCAML

Originally, stroke was defined for NF 2-relations in an

algebraic specification language of [6], which was based on

initial semantics. Because OCAML is more easy to under-

stand, we shall present the essential part of the definition

for XML documents in OCAML. The definition of stroke is

based on the definition of an insert operation. To restructure

a source tabment st to a target DTD tdtd means to insert

st into the empty tabment or a tuple of empty tabments

with corresponding neutral values for aggregations of level

zero. We handle aggregations in a simplified way. Before

restructuring corresponding extensions of the source table are

realized such that the source table contains already the names

of all aggregations. In Program 7 c for example the following

two extensions are realized before stroke.

ext C1:=case 1 when (MARK=1) endcase
ext C5:=case 1 when (MARK=5) endcase

The DTD of the resulting extended source tabment differs only

in EXAM with the given one:

EXAM:(COURSE, MARK, C5?, C1?, DATE)

C5 and C1 contain a 1, if the mark is 5 and 1, respectively,

and are empty otherwise. Therefore, we need only the name

and the type of an aggregation in an parameter of insert. These

names and the remaining names are contained in a variable p
of type

type t_agg = {
mutable summe: name list;
...
mutable avg: name list;
mutable atom: scheme list;
mutable unimportant: name list}

Here, the first entry is the list of sum fields. The atomic

components are collected in the last but one row. Here, Inj
n is included, if n is contained in a right side of a target DTD

entry and n is not a left side of a target DTD entry.. Tags of the

left side of the target DTD are collected in the unimportant

list. This list is needed only for auxiliary operations. Now,

we present the most important auxiliary operations, which are

needed for the specification of insert.
agg n: t agg * name → bool

a name appears in the aggregational components of the first

argument.

at comp tt: t agg * tabment → tabment

The atomic components of the given (target) tabment. Here,

non-atomic collections and unimportant tags of the target are

omitted.

at comp st: t agg * tabment → tabment

The atomic component of a (source) tabment. Contrary

to at comp tt, here, atomic values in optional names are

included. If for example X , Z, and M(Y) are atomic,

and W is a sum aggregation then for a tabment t of

type X, Z?,W,M(Y), L(Y 2), B(Y 3,M(Y 4)) the operations

yield in tabments of the following types :

at comp tt: X, M(Y)

at comp st: X, Z, M(Y)

The following operations simplify the specification of insert a

little.

non at coll st: t agg * tabment → tabment

at agg comp st: t agg * tabment → tabment

at agg comp tt: t agg * tabment → tabment

The non-atomic collections in the above example are

L(Y 2), B(Y 3,M(Y 4)), the atomic and aggregational com-

ponents with respect to the source are X, Z, W,M(Y), and

with respect to the target X, W,M(Y)
agg: t agg * tabment * tabment → tabment

By agg p tt st to all aggregational components of tt all

corresponding values from st are added (sum) and the other

components of tt remain unchanged. agg goes in st into depth,

but not in tt. This operation is needed, if we go with insert
in depth of the target tabment tt. The operation

lengthen: t agg * tabment → tabment

replaces the Cartesian product. It is applied if we cannot insert

into a target tabment, because of missing atomic values in

the source tabment. By lengthen each element of a non-

atomic collection of the (source) tabment is lengthened by

its superordinated atomic and aggregational components. By

8

let insert= fun p ttdtd ->
let rec ins source target = match source,target with

(Coll_t((c,s),sts)), tt when List.mem (Coll_s(c,s)) p.atom=false
-> List.fold_left (function x -> (function y -> ins y x)) tt sts (*A*)

| (Tuple_t sts),tt when eq_tabment(at_agg_comp_st p (Tuple_t sts)) Empty_t
-> List.fold_left (function x -> (function y -> ins y x)) tt sts (*B*)

| st, tt when eq_tabment(at_agg_comp_tt p tt) tt -> agg p tt st (*C*)
| st, (El_tab v) -> El_tab v (*D*)
| st, (Tag0(n,t)) -> Tag0(n, ins st t) (*E*)
| st, (Alternate_t(ss,t)) -> Alternate_t(ss,(ins st t)) (*F*)
| st, Empty_t -> Empty_t (*G*)
| st, (Tuple_t tts) -> Tuple_t(map (fun x->ins st x) tts) (*H*)
| st, (Coll_t((S1,s),[tt])) when type_t(occupy p ttdtd st s)=s

-> if in2 p s st [tt] ttdtd then Coll_t((S1,s),[agg p tt st]) (*I1*)
else Coll_t((S1,s),[tt]) (*I2*)

| st, (Coll_t((c,s),ts)) when type_t(occupy p ttdtd st s)=s &
(List.mem c [Bag;List;List_minus;Bag_minus] or
(List.mem c [Set;S1;Set_minus]) & not(in2 p s st ts ttdtd))
-> Coll_t((c,s),(ins st (occupy p ttdtd st s))::ts) (*I3*)

| st, (Coll_t((Any,s),tts)) -> Coll_t((Any,s),(st::tts)) (*I4*)
| st, (Coll_t((c,s),tts)) when type_t(occupy p ttdtd st s)=s

-> let at=at_comp_tt p (occupy p ttdtd st s) in
let tt2=try first_that (fun x->(eq_tabment (at_comp_tt p x) at)) tts
with E_first_that -> raise(Fehler "Insert Fehler 2")
and tts2=omit_first_that(fun x->(eq_tabment(at_comp_tt p x) at)) tts
in Coll_t((c,s),((ins st tt2)::tts2)) (*I5*)

| st, (Coll_t((c,s),tts))
when equal_s(type_t(occupy p ttdtd st s)) s = false
-> let l=(lengthen p st) in

if empty_s1(l) then Coll_t((c,s),tts) (*J1*)
else ins l (Coll_t((c,s),tts)) (*J2*)

| _, _ -> raise(Fehler"insert Fehler 3")
in fun st tt ->sort_t p (ins st tt);;

Fig. 4. Functional Definition of Stroke on the base of Insert in OCAML

the operation

occupy: t agg * dtd * tabment * scheme → tabment

the given scheme is occupied by the atomic components of

the tabment, where Empty t results if no component exists in

the tabment. The aggregational components are occupied by

corresponding neutral values. Here, dtd abbreviates (name *
scheme) list; the first component of the first element is always

TABMENT.

eq tabment: tabment * tabment → bool

is the equality relations for tabments and

type t: tabment → scheme

is the scheme of an tabment.

in2: t agg * scheme * tabment * tabment list * dtd → bool

describes whether the atomic components of the tabment occur

as atomic components in an element of the list of tabments.

empty s1: tabment → bool

A tabment is equal to Empty t or a tuple of Coll t((S1,s),[])
components. The axioms of figure 4 describe the following

situations. The insertion, element by element, of a non-atomic

collection into a tabment is described by A. If the source

is a tuple of non-atomic collections then the collections

are inserted collection by collection (B). If the target is a

tuple of atomic and aggregational components then at most

aggregations have to be realized (C). If a single component

is neither aggregational nor atomic then the rules D, E, F,

respectively can be applied. G is trivial. The insertion into

a tuple is realized componentwise (H). The insertion into an

optional value changes the value only in the case that the

atomic components are equal to the corresponding components

of st (I1) otherwise the target remains unchanged (I2). The

insertion of a new element into a collection is described by

I3. The new element is generated by occupy and insert. In a

target set it is required that the atomic components of st are

yet not contained in the set. An element st is simply added to

an ANY-collection (I4). If tts contains for M or M- already an

element tt2 with the atomic components of st then we have to

omit tt2 from the list and to add ”insert st tt2” to the list (I5). If

there are not enough atomic components of st for the insertion

9

into a collection it is tried to lengthen st. In general the new

source tabment contains new collections with elements with

more atomic components. After the insertion of a complete

source structure the target tabment is sorted for all non-atomic

sets and multisets at all levels.

VI. EXPERIMENTAL EVALUATION

In the following we will consider only four examples

for comparisons. stroke denotes the functional and stroke+
the procedural implementation. We used the following test

environment:

CPU: Intel(R) CORE(TM) DUO T2250 @ 1.73 GHz

Primary storage: 1024 MB

Operating system: Ubuntu 8.04 with Kernel Linux 2.6.24-23

generic

Hard disk: SATA 80 GB (5400 RPM)

Input: zufall1000t.xml: L(TUP) TUP=(X,Y,Z)

QueryA:

$T:=TIME
aus "zufall1000t.xml"
gib+ M(X,M(Y,B(Z)))
ext T34:=TIME - $T

The above aus-part can be used only with ”gib+”

$T1:=TIME
aus doc("zufall1000t.xml")
$T2:=TIME
gib M(X,M(Y,B(Z)))
ext T3:=$T2 - $T1
ext T4:=TIME - $T2

<results>
{
let $t := doc("zufall1000t.xml")//TUP
for $x in distinct-values($t/X)
order by $x
return <TUP1>

<X>{$x}</X>
{for $y in distinct-values
($t[X=$x]/Y)
order by $y
return <TUP2>

<Y>{$y}</Y>
{for $z in ($t
[X=$x and Y=$y]/Z)
order by $z
return
$z}
</TUP2>}

</TUP1>
}
</results>

The time for XQuery was measured with the GALAX-system

[8] by the following command:

time galax-run program.xq -language xqueryp

QueryB:

$T:=TIME
aus "zufall1000t.xml"
gib+ M(Z,M(Y,B(X)))
ext T34:=TIME - $T

$T1:=TIME
aus doc ("zufall1000t.xml")
$T2:=TIME
gib M(Z,M(Y,B(X)))
ext T3:=$T2 -$T1
ext T4:=TIME - $T2 ,

<results>
{
let $t := doc("zufall1000t.xml")//TUP
for $z in distinct-values($t/Z)
order by $z
return <TUP1>

<Z>{$z}</Z>
{for $y in distinct-values
($t[Z=$z]/Y)
order by $y
return <TUP2>

<Y>{$y}</Y>
{for $x in
($t[Z=$z and Y=$y]/X)
order by $x
return
$x}
</TUP2>}

</TUP1>
}
</results>

Now, we consider queries which are similar to the queries of

the introduction. Here, zufall90000t.xml is a file of 300 tuples

with 90000 A-values. Its type is TUP* and TUP is of type

A,L(C). We omit the stroke+ programs:

QueryC:

$T1:=TIME
from doc ("zufall90000t.xml")
$T2:=TIME
stroke L(A,C)
ext T3:=$T2 -$T1
ext T4:=TIME - $T2

<results>
{ for $b in doc("zufall90000t.xml")//TUP

for $a in $b/A
for $c in $b/C
return

<result>
{ $a }
{ $c }

</result>
}
</results>

10

TABLE IV

CPU TIMES FOR QUERIES A - D IN SECONDS

Query procedural functional XQuery (Galax)
QueryA 0.096 T4: 0.048 7.608

T3: 0.772
QueryB 0.104 T4: 0.076 13.385

T3: 0.748
QueryC 3.248 T4: 1.312 24.49

T3: 433.647
QueryD 5.536 T4: 51.34 572.992

T3: 435.999

QueryD:

$T1:=TIME
from doc("zufall90000t.xml")
$T2:=TIME
gib M(C,M(A))
ext T3:=$T2 - $T1
ext T4:=TIME - $T2

<results>
{ let $r := doc("zufall90000t.xml")
/root
for $c in distinct-values($r/TUP/C)
let $ts := $r/TUP[C=$c]
order by $c
return

<TUP>
<C>{$c}</C>
{ for $a in distinct-values($ts/A)
order by $a
return <A>{$a} }

</TUP>
}
</results>

The parser of the functional implementation is a DOM-parser.

We plan to substitute it by an SAX-parser. The CPU times for

the procedural implementation and XQuery implementation in

Table IV are the total times.

VII. RELATED WORK

The restruct operation of [3] is most similar to our stroke
operation. But, there are deep differences. Stroke is defined

for arbitrary XML input documents and restruct only for

V-relations. V-relations are non-first-normal-relations, which

contain at each level a key, which consists of elementary

fields only. Stroke allows not only sets in in- and output,

but also bags, lists and any collections. Behind stroke is

an algebraic specification and behind the kernel of stroke
additional a procedural algorithm. Behind restruct is a set

of facts, which is build out of all joinable flat segments of

the given V-relation. Therefore this operation uses contrary

to stroke the Cartesian product in its definition. Stroke only

uses a lengthen operation, by which tuples are lengthened by

its uniquely existing superordinated segments. Because it is

allowed that a superordinated component is a collection, the

Cartesian product can be simulated. Using not the Cartesian

product concept fits to the principles of minimal cost and

minimal result information. The restructuring of XML-

documents in XQuery differs deeply from the restructuring

with stroke. The main difference is that the XQuery user has to

find alone the way to restructure data, but the OttoQL user has

to write only the DTD. We finally only want to remark that the

considerations of query XMP: 1.1.9.4 Q4 are not completely

correct. Namely, if we assume that a book contains an author

au twice then the corresponding title would appear for au twice

in the OttoQL query, but not in the XQuery program. OttoQL

does not use node identity. The result of an (intermediate)

operation is always a new document, with new nodes.

Schema-Free XQuery [9] allows to formulate precise queries

without perfect knowledge of the document structure. The

given document structure can change in a certain extent and the

schema-free queries have not to be rewritten. In this paper the

following examples are presented, which are correct for two

given different schemas. In schema A the year tag is outside

the book tag and in schema B within. Without problems we

can formulate the example queries of this paper in OttoQL.

For comparision purposes the first query is repeated from [9].

Query1: Find title and year of the publications, of which Mary

is an author.

for $a in doc("bib.xml")//author,
$b in doc("bib.xml")//title,
$c in doc("bib.xml")//year

where $a/text()="Mary" and
exists mclas($a,$b,$c)

return <result>{$b,$c}</result>

aus doc("bib.xml")
mit title:: author="Mary"
gib B(title, year)

Query2: Find additional authors of the publications, of which

Mary is an author.

aus doc("bib.xml")
mit title:: author="Mary"
ohne author:: author="Mary"
gib B(author)

There are two big differences between both approaches. Ot-

toQL requires the DTD of the given XML-documents and

Schema-free XQuery needs additional nodes as aricle and

book to compute the mclas (meaningful lowest common

ancestors) of the nodes of the given query.

XSearch [10] is a semantic search engine for XML, with a

simple syntax, suitable for naive users. As in Schema-free

XQuery the queries can be applied for documents with varying

schemas. We will consider examples of this paper:

Q1: Find pairs of titles and authors, belonging to the same

article.

Q1(+title:, author:)

11

The + signals that a title has to exist in the result. Q2 looks for

volumes, authors with the name Kempster, and authors who

have published with Kempster.

Q2(+volume:, +author:Kempster, author:)

If author has an additional name tag, then the query

Q3(+volume:, +name:Kempster, name:)

does not express the desired meaning. The corresponding

OttoQL queries: Q1:

gib B(title,author?)
or better
gib M(title,L(author))

Q2:

mit title:"Kempster"
gib M(volume,M(author))

Q3: (here the query is correct)

mit title:"Kempster"
gib M(volume,M(name))

We see that XSearch differs again deeply from OttoQL.

• Selection and restructuring are interwoven.

• Q(+A1, +A2, ...,+An) corresponds to the target struc-

ture L(A1, ..., An) (all-pair semantic). Missing ”+” signs

do not correspond exactly to ”?” signs.

• Star semantics corresponds to L(A1, A2?, A3?, ..., An?).
• Restructuring in XSearch uses Cartesian

product (for example Q2). In a target structure

L(volume, author, author?) both author components

will be occupied by the same author.

• To find semantically related nodes XSearch requires

suitable tuple and collection tags.

• XSeach does not need a DTD.

• Queries of type Q(A:, :b) cannot be expressed in the

present version of OttoQL.

VIII. FUTURE WORK

Firstly, we have to replace our dom parser by an SAX parser.

Then we have to generalize our procedural implementation.

Further, we or somebody else, have to develop and prove

optimization rules for stroke and the other operations of

OttoQL. We should try to use stroke in a search engine for

XML-documents. If we realize a pilot system on top of a

relational system, then we should not only allow flat source

structures. By the program fragment

aus STUDFLAT
rename STID by STUDID
ext EXAMFLAT at SEX # extension
mit STUDID=STID # join condition

for example results a structured table of type M(STID, NAME,

SEX, M(STID, COURSE, MARK)), which has in many

situations advantages in comparison to a flat table. These

are: more efficient restructuring, aggregations are possible at

student level and exam level simultaneously, different join

operations can be used by different conditions, additional

selection possibilities,... .

IX. CONCLUSIONS

The axioms of our functional definition of stroke (Figure 4)

make clear that XML-documents should by defined by simple

generating operations like Tag0, Coll t, Tuple t,... and not by

the both operations Pcdata and Element. We believe that it is

possible to develop OttoQL with stroke, as one of its most

powerful operations, to an easy to use query language for

XML and databases. If we extend the selection mechanisms

by keyword queries combined with stroke then OttoQL can in

our opinion also be extended to a language for search engines

for Intranet or Internet of XML-data and tables. There are a

lot of advantages of such an approach. For example:

• The end-user has to learn only one computer language.

• Because of keyword queries the user can get familiar with

the language step by step.

• The results of an Intranet- or Internet-query can be

handled with the same tools as for querying the Intranet

resp. Internet.

ACKNOWLEDGMENT

I would like to thank W. Reichstein for his first proceduaral

one step implementation of stroke for HSQ-files (hierarchcal

sequential files), D. Schamschurko for his first functional

implementation in Caml-Light for non-first-normal-form re-

lations, and Xuefeng Li for his procedural implementation for

XML files.

REFERENCES

[1] K. Benecke and M. Schnabel. Internet server for ottoql. [Online].
Available: http://otto.cs.uni-magdeburg.de/otto/web/index.html

[2] K. Benecke, “A powerful tool for object-oriented manipulation,” in On
Object Oriented Database: Analysis, Design & Construction. IFIP
TC2/WG 2.6 Working Conference, July 1991, pp. 95–121.

[3] S. Abiteboul and N. Bidot, “Non-first-normal-form relations: An algebra
allowing data restructuring,” J. Comput. System Sci, no. 5, pp. 361–393,
1986.

[4] S. Boag, D. Chamberlain, and D. F. et. al, “Xquery 1.0: An
xml query language,” J. Comput. System Sci. [Online]. Available:
http://www.w3.org/TR/xquery/

[5] D. Chamberlain et. al. (ed.), “Xml query use cases.” [Online]. Available:
http://www.w3.org/TR/xmlquery-use-cases

[6] H. Reichel, Initial Computability, Algebraic Specifications, and Partial
Algebras. Oxford, UK: Clarendon Press, 1987.

[7] E. Chailloux, P. Manoury, and B. Pagano, Developing Applications
With Objective Caml, Paris, France, 2000. [Online]. Available:
http://caml.inria.fr/oreilly-book/

[8] Mary Fernndez, Jrme Simon,et. al., “Xquery implementation of galax.”
[Online]. Available: https://launchpad.net/ubuntu/+source/galax/1.1-4

[9] Y.Li, C. Yu, and H.V.Jagadish, “Schema-free xquery,” in VLDB Confer-
ence, 2004, pp. 72–83.

[10] S. Cohen, J. Mamou, Y. Kanza, and Y. Sagiv, “Xseearch: A semantic
search engine or xml,” in VLDB Conference, 2003.

APPENDIX

Here, we present the OCAML-code of the auxiliary func-

tions mentioned in section V.

12

(* agg_n p n: n is an aggregational name with respect to p *)
let agg_n =fun p n ->
(mem n p.all) or
(mem n p.exists) or
(mem n p.summe) or
(mem n p.max) or
(mem n p.min) or
(mem n p.prod);;

(* at_comp p t: the atomic components of top level of t
with respect to the target tabment *)

let at_comp_tt =
let rec f p = function

Tuple_t t -> elim_Tuple_t(Tuple_t (elim_Empty_t2(map (f p) t)))
| El_tab v -> if mem (Inj (type_v v)) p.atom

then El_tab v
else Empty_t

| Tag0(n,t) -> if mem (Inj n) p.atom
then Tag0(n,t)
else (if mem n p.unimportant

then f p t
else Empty_t)

| Alternate_t (ss,t) -> if mem (Alternate_s ss) p.atom
then Alternate_t (ss,t)
else f p t

| Coll_t ((c,s),ts) -> if mem (Coll_s (c,s)) p.atom
then Coll_t((c,s),ts)
else Empty_t

| Empty_t -> Empty_t
in f;;

13

(* at_comp_st p t: the atomic components of top level of t for a source tabment t *)
let at_comp_st =
let rec f p = function

Tuple_t ts -> elim_Tuple_t(Tuple_t (elim_Empty_t2 (map (f p) ts)))
| El_tab v -> if mem (Inj (type_v v)) p.atom

then El_tab v
else Empty_t

| Tag0(n,t) -> if mem (Inj n) p.atom
then Tag0(n,t)
else (if agg_n p n

then Empty_t
else f p t)

| Alternate_t(ss,t) -> if mem (Alternate_s ss) p.atom
then Alternate_t(ss,t)
else f p t

| Coll_t((S1,s),[t]) -> if mem (Coll_s(S1,s)) p.atom
then Coll_t((S1,s),[t])
else f p t

| Coll_t((S1,s),[]) -> Coll_t((S1,s),[])
| Coll_t ((c,s),ts) -> if mem (Coll_s (c,s)) p.atom

then Coll_t((c,s),ts)
else Empty_t

| Empty_t -> Empty_t
in f;;

(* non_at_coll_st p t: non-atomic collections (of top level) of t *)
let non_at_coll_st =
let rec f p = function

Tuple_t ts -> elim_Tuple_t(Tuple_t (elim_Empty_t2(map (f p) ts)))
| Tag0(n,t) -> if (agg_n p n) or (mem (Inj n) p.atom)

then Empty_t
else f p t

| El_tab v -> Empty_t
| Alternate_t(ss,t) -> if mem (Alternate_s ss) p.atom

then Empty_t
else f p t

| Coll_t ((S1,s),[t]) -> if mem (Coll_s(S1,s)) p.atom
then Empty_t
else f p t

| Coll_t ((S1,s),[]) -> Empty_t
| Coll_t ((c,s),ts) -> if mem (Coll_s (c,s)) p.atom

then Empty_t
else Coll_t ((c,s),ts)

| Empty_t -> Empty_t
in f;;

14

(* at_agg_comp_tt p t: atomic and aggregational top level components
of target tabment t *)

let at_agg_comp_tt =
let rec f p = function

Tuple_t ts -> elim_Tuple_t(Tuple_t (elim_Empty_t2(map (f p) ts)))
| Tag0(n,t) -> if (agg_n p n) or (mem (Inj n) p.atom)

then Tag0(n,t)
else Empty_t

| El_tab v -> let n=type_v v in
if agg_n p n or (mem (Inj n) p.atom)
then El_tab v
else Empty_t

| Alternate_t(ss,t) -> if mem (Alternate_s ss) p.atom
then Alternate_t (ss,t)
else Alternate_t(ss,f p t)

| Coll_t ((c,s),ts) -> if mem (Coll_s (c,s)) p.atom
then Coll_t((c,s),ts)
else Empty_t

| Empty_t -> Empty_t
in f;;

(* at_agg_comp_st p t: atomic and aggregational top level components
of source tabment t *)

let at_agg_comp_st =
let rec f p = function

Tuple_t ts -> elim_Tuple_t(Tuple_t (elim_Empty_t2(map (f p) ts)))
| Tag0(n,t) -> if (agg_n p n) or (mem (Inj n) p.atom)

then Tag0(n,t)
else f p t

| El_tab v -> let n=type_v v in
if agg_n p n or (mem (Inj n) p.atom)
then El_tab v
else Empty_t

| Alternate_t(ss,t) -> if mem (Alternate_s ss) p.atom
then Alternate_t (ss,t)
else f p t

| Coll_t ((S1,s),[t]) -> if mem (Coll_s(S1,s)) p.atom
then Coll_t((S1,s),[t])
else f p t

| Coll_t((S1,s),[]) -> Coll_t((S1,s),[])
| Coll_t ((c,s),ts) -> if mem (Coll_s (c,s)) p.atom

then Coll_t((c,s),ts)
else Empty_t

| Empty_t -> Empty_t
in f;;

15

(* agg p tt st: the toplevel aggregational components of tt are extended
by all corresponding aggregational values of st *)

let rec agg p target source = match target,source with
(Tag0(n,t2)), (Tag0(n1,t1)) ->

if n=n1 then
if mem n p.summe then Tag0(n,plus2_t t2 (sum_t t1)) else
if mem n p.all then Tag0(n,and_t t2 (all_t t1)) else
if mem n p.exists then Tag0(n,or_t t2 (ex_t t1)) else
if mem n p.max then Tag0(n,max_t (Tuple_t[t2; t1])) else

if mem n p.min then Tag0(n,min_t (Tuple_t[t2; t1])) else
if mem n p.prod then Tag0(n,mul2_t t2 (prod_t t1)) else
Tag0(n, t2)

else agg p (Tag0(n,t2)) t1
| (Tag0(n,t)), st when not(is_inn_comp [n] st)-> Tag0(n,t)
| (Tag0(n,t)), st ->

if agg_n p n
then
match st with

(Tuple_t sts) -> it_list (fun x y -> agg p x y) (Tag0(n,t)) sts
| (Coll_t (_,sts)) -> it_list (fun x y -> agg p x y) (Tag0(n,t)) sts
| (Alternate_t(ss, st)) -> agg p (Tag0(n,t)) st
| _ -> raise (Never "agg")

else Tag0(n, t)
| (Tuple_t ts), st -> Tuple_t (map (fun x -> agg p x st) ts)
| t, _ -> t;;

(* lengthen p t: each element of a non-atomic component of t is lengthened by
the atomic and aggregational components of t *)

let rec lengthen =
let f x y = elim_Tuple_t(Tuple_t (elim_Empty_t2 [x;y]))
in fun p st ->
match non_at_coll_st p st with

(Tuple_t ts) -> let sta = at_agg_comp_st p st in
Tuple_t (map (fun x -> lengthen p (f sta x)) ts)

| (Coll_t((c,s),ts)) ->
let statag = at_agg_comp_st p st in
let s1n= names_s(type_t(statag)) in
let ts2 = map (fun x -> forget2_t x s1n) ts in
(Coll_t ((c,elim_Tuple_s(Tuple_s (elim_Empty_s2[type_t statag;

forget_s s s1n]))),
map (f statag) ts2))

| _ -> Empty_t;;

16

(* occupy p dtd st s: occupy all possible atomic components of s by corresponding
atomic components of st and all aggregational top level components by neutral
values and all nonaggregational collections by empty collections *)

let occupy= fun p ttdtd ->
let rec occu source target_s = match source,target_s with

st, (Inj n) ->
if mem n p.summe then Tag0(n,El_tab(Int_v zero_big_int)) else
if mem n p.exists then Tag0(n,El_tab(Bool_v false)) else
if mem n p.all then Tag0(n,El_tab(Bool_v true)) else
if mem n p.max then Tag0(n,Empty_t) else

if mem n p.min then Tag0(n,Empty_t) else
if mem n p.prod then Tag0(n,El_tab(Int_v unit_big_int)) else
if mem (Inj n) p.atom
then
(if (type_t st = Inj n)
then st
else (match st with

(Tuple_t sts)->(try first_that
(fun x -> (type_t (occu x (Inj n)) = Inj n)) sts

with E_first_that -> Empty_t)
| _ -> Empty_t))

else
(if mem n p.unimportant
then (let oc=occu st (type_n n ttdtd) in

if type_t(oc)=type_n n ttdtd & type_t(oc) != Empty_s
then Tag0(n,oc)
else Empty_t)

else Empty_t)
| st, (Tuple_s ss) -> elim_Tuple_t(Tuple_t(elim_Empty_t2 (map (occu st) ss)))
| (Coll_t((c,s),sts)),(Coll_s(c’,s’)) ->

if List.mem (Coll_s(c’,s’)) p.atom & c=c’ & s=s’
then t7
else if List.mem (Coll_s(c’,s’)) p.atom

or List.mem (Coll_s(c,s)) p.atom
then Empty_t
else Coll_t((c’,s’),[])

| st, (Coll_s(c,s)) -> if mem (Coll_s(c,s)) p.atom
then (match st with

(Tuple_t sts)->(try first_that
(fun x -> (type_t (occu x (Coll_s(c,s))) = Coll_s(c,s))) sts
with E_first_that -> Empty_t)

| _ -> Empty_t)
else Coll_t((c,s),[])

| (Alternate_t(ss1,st)), (Alternate_s ss2) ->
if List.mem (Alternate_s ss2) p.atom & ss1=ss2
then t7
else if List.mem (Alternate_s ss1) p.atom

then Empty_t
else occu st (Alternate_s ss2)

| st, (Alternate_s ss) -> if List.mem (Alternate_s ss) p.atom
then
(match st with
(Tuple_t sts)->(try first_that
(fun x -> (type_t (occu x (Alternate_s ss)))

= Alternate_s ss) sts
with E_first_that -> Empty_t)

| _ -> Empty_t)
else let s1=(try first_that (fun x-> x=type_t(occu st x)) ss

with E_first_that -> Empty_s) in
if s1=Empty_s
then Empty_t
else Alternate_t (ss,(occu st s1))

| st, Empty_s -> Empty_t
in fun st1 s -> occu (at_comp_st p st1) s;;

17

(* in2 p s t tts dtd: the atomic target components of t are contained as components in
the list of tabments tts *)

let rec in2 p ss t tts dtd = match ss,t,tts,dtd with
s, st, [], ttdtd -> false

| s, st, (t::ts), ttdtd ->
(eq_tabment (at_comp_tt p (occupy p ttdtd st s)) (at_comp_tt p t))
or in2 p s st ts ttdtd;;

18

