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Abstract

Existing database management systems (DBMS) are complex and less pre-

dictable (i.e., the consistency of performance with the increase of functionality and

the data growth is not certain). Database researchers acknowledge the need for

revisiting DBMS architectures to fulfill the needs of new hardware and application

trends. We propose a biologically inspired DBMS architecture called ”Cellular
DBMS”. The Cellular DBMS architecture promises development of highly cus-

tomizable and autonomous DBMS. This report explains in detail the design princi-

ples for Cellular DBMS architecture. It also explains an aspect-oriented program-

ming based model to equip Cellular DBMS architecture with autonomy. Finally,

it presents an extension to decomposed storage model (DSM) for use in Cellular

DBMS.
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1 Introduction and Motivation

In the past, database research got motivations from arrival of new hardware, software,

and applications for further progress. These motivations are still there and will persist

in the future. Desire for the improvement kept researchers busy for finding the break-

through in prevailing requirements. Sometimes we get many breakthroughs in a short

period and sometimes we wait for decade to get few. In the prevailing era, we have ex-

plosion in the data growth and usage scenario, because of wide spread usage of internet

and advent of new applications (e.g., social networking, virtual worlds, etc.). Hardware

trends are changing and the processing and storage unit cost has reduced. Many as-

sumptions about secondary storage and main-memory, etc., made in past are no longer

valid and many bottlenecks, such as network communication cost have changed. Lead-

ing database researchers found a consensus on the need of revisiting database engines,

accommodating architectural shifts in computing hardware and platforms, and finding

solutions for new usage scenarios [3]. Cellular DBMS1 is an effort to contribute to

database research in above-mentioned directions.

Existing data management solutions are complex. These solutions have evolved

over time and now they provide a multitude of functionalities. These functionalities are

tightly coupled within their monolithic architecture [70]. Due to complexity, their per-

formance is less predictable, i.e., the consistency of performance with the increase of

functionality and the data growth is not certain and it is difficult to assess, how perfor-

mance will vary for different hardware, workload, and, operating system, etc. Contin-

uous administration and maintenance is needed to keep them performing at an optimal

level, which results in high administrative and maintenance cost. Existing database

management systems (DBMS) have dozens of tuning knobs. Internal sub-systems are

tightly coupled. Effect of tuning a knob on other knobs and their performance is less

predictable [14, 70]. Furthermore, existing DBMS architectures and solutions were

designed decades ago considering legacy hardware and their bottlenecks. Now many

opportunities exist to redesign existing data management architectures for exploiting

features of new hardware.

Database researchers have suggested transition of DBMS from monolithic to diver-

sified architecture with small, simple, and reusable components of limited functionality

with clean inter-component interaction [3, 70]. The Cellular DBMS architecture is de-

signed by considering these suggestions. The Cellular DBMS architecture takes inspira-

tion from biological systems. We want to utilize the mechanisms that exist in biological

systems for data management. Using these mechanisms, we want to develop highly cus-

tomizable and autonomous DBMS with more predictable performance. The vision for

1 “Cellular DBMS”, http://wwwiti.cs.uni-magdeburg.de/˜srahman/
CellularDBMS/index.html
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Cellular DBMS predictability is shown in Figure 1, i.e., a DBMS should be consistently

predictability with the data growth and addition of functionalities. To achieve these

goals in Cellular DBMS, we envision integration of techniques from different relevant

fields, such as software engineering, distributed data management, computer networks,

and parallel processing.
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Figure 1: Cellular DBMS goal for predictability.

This report is organized as follows: Section 2 introduces the related concepts re-

quired for background information and technical discussion. A detailed related work

is provided in Section 3. Cellular DBMS architecture and its design principles are ex-

plained in Section 4. Section 5 presents the implementation details. Sample implemen-

tation scenarios are discussed in Section 6. Section 7 concludes the report with some

directions to future work.

2 Related Concepts

2.1 DBMS Aspect

2.1.1 Storage Models

Storage model selection is an important design decision for DBMS architecture. In

this sub-section, we will explain the two most commonly used storage models, i.e., N-

Ary Storage Model and Decomposed Storage Model followed by discussion on design

decision of selecting decomposed storage model for Cellular DBMS architecture.
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N-Ary Storage Model (NSM) N-Ary Storage Model (NSM) stores data as seen in the

relational conceptual schema, i.e., all attributes of a conceptual schema record are stored

together [17]. Most of the existing DBMS are NSM based.

Decomposed Storage Model (DSM) Decomposed Storage Model (DSM) is a trans-

posed storage model [9] that stores all values of the same attribute of the relational con-

ceptual schema relation together [17]. Svensson et al. mentioned the Cantor project [28,

29] as the pioneer for this approach [59]. Copeland and Khoshafian in [17] concluded

many advantages of DSM. We listed few of them as follows:

• Simplicity (Copeland and Khoshafian related it to RISC [44])

• Less user involvement

• Less performance tuning requirement

• Reliability

• Increased physical data independence and availability

In literature column-oriented [58], vertical fragmentation [19], vertical partitioning [2],

etc., are terms also used to refer to DSM.

Discussion Copeland and Khoshafian in [17] analyzed both approaches and concluded

that neither of the two approaches could be an ideal solution for all domains. DSM rel-

atively required more storage space, however, the required storage can be reduced by

using compression techniques [25]. Update and retrieval performance of both models

depend on the nature of data and implementation of models. DSM is known for fast

retrieval whereas NSM is efficient in fast updates [25]. Copeland and Khoshafian sug-

gest that many disadvantages of DSM can be avoided by using hardware and software

techniques, such as differential files, multiple disks, large main-memory, etc [17]. DSM

allows using the CPU cache efficiently [73]. Zukowski et al. in [76] compared the two

approached on most recent hardware for CPU performance trade-offs in block-oriented

query processing. Zukowski et al. concluded that it depends on query to identify, which

data layout is better, furthermore, they recommended on-the-fly conversion between

these formats for better performance and stressed on research on hybrid data layout us-

ing best of both approaches. Example of hybrid data layout can be found in PAX [4]

and MonetDB/X100 [73].

2.1.2 Embedded Database

An embedded database is a data management solution that is embedded into its user-

application. However, the same term is also used for a database that resides in an
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embedded system [41]. An embedded database is transparent to application end-user.

An embedded database possesses many special characteristics as mentioned in litera-

ture [40, 42, 41, 50, 53]. We list some important embedded database characteristics as

follows:

• Small footprint

• Small set of tasks

• Little maintenance

• Multiple-platforms support

• API based access

2.2 Software Engineering Aspect

For designing data management architectures, knowledge of software engineering as-

pects plays an important role. In the end, we have to implement data management using

software engineering techniques. Many researchers already have considered software

engineering aspect while designing data management architectures and found its impact

on design decision as too high [36, 43, 50, 61]. In Cellular DBMS, we also consider the

software engineering aspects that can benefit us to achieve the targeted goals.

Software Product Line Software Product Line (SPL) engineering is an efficient and

cost-effective approach to produce a family of related programs for a domain [45]. A

product line shares a common set of features developed from a common set of software

artifacts [16]. It has been shown that a high degree of customizability makes an SPL a

suitable candidate for the development of data management systems [36]. Rosenmüller

et al. in [48] and Saake et al. in [51] demonstrated how SPL overcomes the limitation of

customizability and performance for data management in embedded systems that exist

in other approaches.

Feature-oriented Programming Feature-oriented programming (FOP) is a mecha-

nism for developing software product lines where programs are synthesized by com-

posing features [8]. A feature can be defined as “A distinguishable characteristic of a

concept that is relevant to some stakeholder” [27]. When an SPL is designed in terms

of features, creating a program is simply the selection of the required features and com-

position of the according feature modules [8].

Aspect-oriented Programming Aspect-oriented programming (AOP) [33] is a method-

ology that emerged with the aim to separate cross-cutting concerns. AOP ensures code
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scalability and maintenance by preventing code tangling and scattering [33]. Using

AOP, cross-cutting code is separated from the program logic using aspects. These as-

pects, such as data persistence, transaction management, and data security, etc., can

either be provided by a software component or could be required by it [33]. Using join-

points, pointcuts, and advice; an aspect weaver brings the program code and aspect code

together [32]. Join-points are points in the execution of a program and are events of in-

terest for aspect weaving [32]. Pointcuts is the collection of join-points and is used for

selection of related method-execution points [32]. An advice is the intended behavior

to be weaved [32].

2.3 Autonomy

Autonomy in data management means the capability of DBMS to monitor, diagnose,

and tune itself for consistent performance. Autonomy is an essential feature to reduce

the human effort in DBMS administration. Automatic administration can reduce the ad-

ministration cost for data management of large enterprises as well as for embedded sys-

tems. “The embedded vendors all acknowledge the need for automatic administration,

but fail to identify precisely how their products actually accomplish this” [53]. Simi-

larly, Chang et al. based on their experiences of Bigtable [12] implementation stressed

the importance of proper system-level monitoring of the system itself and its users to

detect and fix problems. Autonomous DBMSs monitor themselves and performs tuning

operations automatically based on pre-defined policies. A key motivation of Cellular

DBMS architecture is to achieve autonomy for self-tuning data management [14, 70].

3 Related Work

Cellular DBMS is an innovation in its own, but it did not appear from nowhere. All con-

cepts and technologies that are joined together in Cellular DBMS have their counterpart

in literature and industry. We believe that few concepts are new, but to make such a claim

is unrealistic. For decades, many researchers have worked on similar topics and always

found the possibility to have similar findings with different names in different domains.

Cellular DBMS inherit SPL-based approach from FAME-DBMS2 [50]. Different as-

pects of Cellular DBMS have to be covered to convince the reader for the originality

of Cellular DBMS, such as inspiration from biological systems, use of AOP, column-

oriented storage, and embedded database, etc., all have to be covered to convince the

reader for the originality of Cellular DBMS.

2“FAME-DBMS”, http://www.fame-dbms.org/
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3.1 Term ”Cellular DBMS” in Literature

The Infobionics Knowledge Server3 also know as Infobionics Cellular DBMS claims

to be first fluid dynamic solution for managing, navigating, and querying data. The

Infobionics Cellular Database Management System places information in individual

Data Cells, which can be flexibly compiled via Link Cells into an infinite number of

DataSets4. However, in patent [52] it is stated as ”A system for acquiring knowledge

from cellular information. The system has a database comprising a database manage-

ment module (”DBMS”).” The concepts presented for Cellular DBMS in current and

related publications [64, 65] are different from the ones used by Infobionics Cellular

DBMS. We are inspired from human cellular organization whereas in contrast Info-

bionics Cellular DBMS is inspired from human brain. For each cell in Cellular DBMS

high customizability, limited functionality, and highly predictable behavior is backbone

of the concept. Internal architectural details of Infobionics Cellular DBMS are not pub-

licly available, however, based on the available information in form of patent [52] and

press releases4, we found our work quite different in terms of both concept and imple-

mentation.

Kersten et al. in [31] proposed an architecture for Cellular database system. Accord-

ing to the proposal, each cell is a bounded container, i.e., a workstation or a mobile unit

linked into a communication infrastructure. It assumes the internet as the underlying

communication network. This work also envision a cell as an autonomous DBMS as we

do, however, realization of autonomy is different in our approach. We utilized an AOP

based model for implementing autonomy. Furthermore, we suggested freedom of using

any customizable embedded database as cell.

In 2003, Kersten et al. along with other researchers in [30] again tried to draw the

focus of database community towards Organic databases at VLDB. In 2006, Kersten

and Siebes took step forward with the concept of an Organic Database System in [66].

They provided the vision of new database architectures as ”an Organic Database System

where a large collection of connected, autonomous data cells implement a semantic

meaningful store/recall information system” [66].

Verroca et al. in [67] used the term Cellular Database for a solution for cellular

network data management. Kodama et al. in [34, 35] proposed a Cellular DBMS that

is based on the layer model. It is based on incremental modular abstraction hierarchy.

Mechanisms are gradually added in it as a global model. They have applied the cellular

model to model web-based information spaces for designing the Cellular DBMS [34].

3 “The Infobionics Knowledge Server”, http://www.infobionics.com/
4 “Cellular DBMS Seeks Business Intelligence Beta Sites”, PRESS RELEASE, infobionics, http:

//www.infobionics.com/news/news_2/file_item.pdf, Accessed: 21-07-2009
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3.2 Embedded Database

COMET Tesanovic et al. in [61] proposed the concept of aspectual component-based

real-time system development (ACCORD) and applied it successfully in the design and

development of a component-based embedded real-time database system (COMET).

COMET DBMS was developed for resource-constrained embedded vehicle control-

systems. COMET DBMS is highly tailorable for different requirements and was devel-

oped using component-based and aspect-oriented programming approaches. Cellular

DBMS also target real-time embedded domain for its variants. It has similarity with

COMET DBMS in terms of use of AOP in this domain.

Berkeley DB Berkeley DB [42] is a customizable embedded database system. Cel-

lular DBMS takes many inspirations from Berkeley DB. Key/Value pairs, API-based

access, main-memory database, and small footprint all these concepts have their coun-

terpart in Berkeley DB.

FAME-DBMS FAME-DBMS [50] is developed based on an SPL approach. SPL ap-

proach promises benefits for the embedded domain as proposed by Leich et al. [36]. Our

Cellular DBMS implementation is an extension of FAME-DBMS, however, concept of

Cellular DBMS can be implemented using any customizable embedded database. Since

we extend FAME-DBMS, all features of it can become part of Cellular DBMS, but we

have many unique features of Cellular DBMS that are not part of FAME-DBMS, such

as column-based storage, different cell type implementations, autonomy, evolution, etc.

It is not an exhaustive list of features for Cellular DBMS. We have many new features in

development phase and many are planned as future work. Data management of embed-

ded system is the focus of FAME-DBMS, in contrast, Cellular DBMS is not confined

to it. FAME-DBMS focus derivation of concrete instance of a DBMS by composing

features of DBMS product line whereas Cellular DBMS derive one or more instances

of any DBMS and exploits them in concert for data management.

3.3 In-Network Query Processor

Cellular DBMS also target sensor networks domain for its variants. Well-known databases

in this domain are in-network query processors.
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TinyDB TinyDB5 [38] is an in-network acquisitional distributed query processor for

sensor networks. In acquisitional processing, records in table are only materialized (i.e.,

acquired) as needed to satisfy the query, and are usually stored for a short period of

time or delivered directly out of the network [38]. It runs on Berkeley mote platform

on top of TinyOS operating system. It is different from traditional databases as it is not

designed for large data storage instead it performs acquisition of data generated from

sensor nodes. It uses declarative query based approach for querying sensor networks.

Queries in TinyDB are parsed at the base station and disseminated in a simple binary

format into the sensor network, where they are instantiated and executed [38]. On each

node, it maintains a catalog of meta-data and periodically copies it to the root of the

network for use by the query optimizer. It uses materialization points to store streaming

view of recent data on local (i.e., single) node. It performs lifetime estimation based on

the available energy on the node.

COUGAR COUGAR6 [21, 23, 71] is an in-network query processor for sensor net-

works. Like TinyDB, it is also different from traditional databases as it is not designed

for large data storage instead it performs acquisition of data generated from sensor

nodes. It uses declarative queries for tasking sensor networks. It proposed a query

layer consisting of query proxy on each sensor node to enable declarative querying of

sensor networks. Query proxy also performs the task of in-network processing. It uses

sensor networks as a processing platform.

Discussion Both TinyDB and COUGAR present an appropriate solution for sensor

networks data management. There is no solution in the world that can be ideal for all

circumstances. Similarly, in Cellular DBMS we want to adapt the good concepts of

in-network acquistional query processing. Furthermore, we want to apply other valu-

able concepts like tailor-made data management for sensor networks as proposed by

Leich et al. [36] and approaches for robust data storage in wireless sensor networks

as proposed by Siegmund et al. [54]. Aggregation is the most common and important

operation in the sensor networks domain [26, 71]. We argue that column-oriented stor-

age of Cellular DBMS can benefit in sensor networks as it makes aggregation efficient.

Column-oriented storage greatly reduces I/O demand using compression techniques,

which is important in sensor networks domain [25]. Holloway et al. in [25] showed

that performance of column-oriented storage is higher when number of columns is less

and data distribution is uniform. Both characteristics of data exist in sensor networks

domain making column-oriented storage a good solution.

5 ”TinyDB”, http://telegraph.cs.berkeley.edu/tinydb/index.htm
6 “COUGAR”, http://www.cs.cornell.edu/bigreddata/cougar/index.php
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3.4 Column-oriented DBMS

There exist many column-oriented DBMS in industry as shown in Table 17. Only few

we found important for further discussion based on similarity with Cellular DBMS.

DBMS Web Reference
MonetDB http://monetdb.cwi.nl

Vertica (Formerly: C-Store) http://www.vertica.com

http://db.csail.mit.edu/projects/cstore/

Infobright (Formerly: Brighthouse) http://www.infobright.com

HBase http://hadoop.apache.org/hbase/

Kdb+ http://kx.com/Products/kdb+.php

TokuDB for MySQL http://www.tokutek.com

Calpont http://www.calpont.com

The ParAccel Analytic Database http://www.paraccel.com

EXASolution http://www.exasol.com

Sybase IQ http://www.sybase.com/products/datawarehousing/sybaseiq/

LucidDB http://www.luciddb.org

Table 1: Column-oriented DBMS.

MonetDB MonetDB8 [10] is an open-source database system for high-performance

applications (e.g., data mining, OLAP, etc.). It is a column-oriented database. Mon-

etDB supports multiple data models simultaneously. MonetDB architecture is based on

RISC-approach for database systems. MonetDB uses MonetDB Interpreter Language

(MIL) to abstract internal implementation from higher-level models. To support exten-

sibility, it supports MonetDB Extension Language (MEL), which can be used to extend

the MonetDB functionality, e.g., datatypes, commands, etc. “MonetDB is designed

as a main-memory system, and achieves high performance for problems of a limited

size” [72].

MonetDB/X100 Zukowski et al. in [73] presented X100. A new execution engine

for the MonetDB system. X100 uses in-cache vectorized processing that improves exe-

cution speed of MonetDB and overcomes its main-memory limitation. It further intro-

duced the ColumnBM storage layer to handle large disk-based datasets using techniques

of ultra lightweight compression [75] and cooperative scans [74]. We found Cellular

DBMS evolutionary column-oriented storage quite close to MonetDB/X100. Cellular

7 List of column-oriented DBMS is not exhaustive.
8 “MonetDB”, http://monetdb.cwi.nl/
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DBMS gets inspiration from MonetDB/X100 and intend to adapt and integrate the best

of MonetDB/X100 concepts with its unique cellular architecture.

C-Store C-Store [1, 58] is an open-source read-optimized relational DBMS. It is a

column-oriented DBMS. Its architecture is designed to reduce the number of disk ac-

cesses per query.

Brighthouse Brighthouse [55] is a column-oriented data warehouse with the concept

of a meta-data layer called Knowledge Grid. Knowledge Grid is used as an alternative

to classical indexes. In use of meta-data, Cellular DBMS evolutionary column-oriented

storage finds some similarity with the concept of Brighthouse; however, they are differ-

ent. Cellular DBMS allows the use of common indexes. Meta-data in Cellular DBMS

is not used as an alternative to classical indexes. For database functionality, Bright-

house uses MySQL’s pluggable storage engine platform9, whereas Cellular DBMS can

be developed using any customizable embedded database. Cellular DBMS also gets

inspiration from Brighthouse and intend to adapt and integrate the best of Brighthouse

concepts within its unique cellular architecture. An important feature of Brighthouse is

the selection of different compression algorithms for different Data Packs, based on the

data types and regularities automatically observed over data.

3.5 AOP for Autonomy

Use of AOP to implement autonomic behavior is not a new concept. Many researchers in

past have used it successfully to develop autonomic systems. Greenwood et al. in [24]

outlined the case of the use of dynamic AOP for autonomic systems. Truyen et al.

in [62] demonstrated the applicability of AOP for implementing self-adaptive frame-

works. Tesanovic et al. in [61] proposed the concept of aspectual component-based

real-time system development (ACCORD) and applied it successfully in the design and

development of a component-based embedded real-time database system (COMET). In

Cellular DBMS, we use an AOP based model to implement autonomic behavior at cell

as well as at DBMS level.

9 “MySQL 6.0 Reference Manual: Storage Engines”, http://dev.mysql.com/doc/refman/
6.0/en/storage-engines.html, Accessed: 13-07-2009
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3.6 Biological Inspiration

To take inspiration from biological systems in computer science is not a new approach.

There have been many attempts by many researchers to take benefits from the concepts

in biological systems. An important step in this direction was taken by John von Neu-

mann in his work on self-reproduction and cellular automata [68,69]. We found a major

contribution from Gheorghe Păun and Cristian Calude in the area of membrane com-

puting [11,15,46,47]. Kersten and Siebes proposed an organic database System in [66].

It is similar to our approach, but with many differences as we have already discussed

in section 3.1. We want to use the best of it regarding how to take the inspiration from

biological systems.

4 Cellular DBMS

A Cellular DBMS is composed of multiple atomic and autonomic customizable embed-

ded database instances, called Cells [64, 65]. The motivation behind this approach is

to ensure that a DBMS can be reduced to a fine-grained atomic unit (i.e., a cell) with

predictable behavior and reduced complexity [70]. This approach enables us to assess

the behavior of a complete DBMS by accumulating the behavior of all atomic cells.

4.1 DBMS Cell

A Cell is an atomic and autonomic instance of a customized embedded database [64,65].

Each cell is based on RISC-style architecture with simple and limited functionality. A

cell can be customized based on different criteria, such as hardware, software, applica-

tion scenario, nature of data, etc. Decisions about cell composition require a detailed

analysis of all these criteria. Cellular DBMS architecture restricts cell functionality to

a manageable complexity. It ensures that each cell is optimized for its task and is pre-

dictable for its performance. Each cell is customized to handle a single kind of data (i.e.,

data with unique characteristics, e.g., aggregated data; for details refer to section 6.1).

If a cell supports handling multiple tables than the same kind of data should be stored in

these tables. It ensures customization of each cell according to the kind of data. Multiple

cells should be used to handle different kinds of data.

The most fine-grained variant of the cell can handle key/value pairs of data. Variants

that are more complex can handle tables and maintains data dictionary, however, com-

plex variants should be composed by using multiple fine-grained variants of cell. As

mentioned above, the simplest cell handles a key/value pair and has definite (optimal)
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data-handling capacity, however, with the data growth, more cells could be induced into

DBMS to extend its data-handling capacity. Virtually each cell uses Binary Fission [5]

mechanism to grow. In binary fission, biological cell grows to twice of its starting size

and then splits-up into two cells, each cell having a complete copy of its essential ge-

netic material. Not exactly, but similarly each DBMS cell splits into two equal halves.

One-half is left in the parent cell where as the other half is moved to a newly induced

cell.

Deployment of cells depends on many criteria, such as the kind of data, the distribu-

tion of computing resources10, as well as the hardware of computing resources, etc. For

example, in the simplest sensor network scenario, a single cell can be deployed on an

individual node. However, for more complex scenario, multiple cells can be deployed

on a single node or can be distributed over multiple nodes in a network.

4.2 Types of DBMS Cells

Cellular DBMS defines many different types of cells. Each type differs from the other

based on its composition and characteristics. These types enhance the diversity of Cellu-

lar DBMS for many data management scenarios. Currently, implementation of Cellular

DBMS is a work in progress. More cell types are expected to appear in the future. In

this report, we explain the types that we have defined based on our existing architecture

and implementation.

Composite Cells A cell can be composed of multiple similar or dissimilar cells related

to each other as shown in Figure 2. Such composition of cells is termed as Composite
Cell. Each composite cell should have limited (optimal) data-handling capacity to en-

sure it has manageable complexity and predictable performance. With the data growth,

more composite cells could be induced into the DBMS to extend its data management

capacity. Each composite cell maintains a meta-data of cell composition. Composite

cell can be used to implement a table in Cellular DBMS where each column is im-

plemented by a cell that could be of different type, e.g., one column cell contains in-

memory data management functionality whereas another column cell can also store per-

sistent data. It can also be used to handle large amount of data that simple cells cannot

handle. From software engineering perspective, when using multiple cells, composite

cell avoid code replication and allow us to reuse the program code between different

cells on a single computing resource.

10 From computing resource, we mean any device with processing capability. It may range from small-

embedded device to high-end enterprise server machines.
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High-level Composite Cells In Cellular DBMS, composite cells can be built from

simple cells, as well as from composite cells, which results in high-level composite

cells as shown in Figure 2. The reason for such architecture is to provide hierarchical

data management functionalities to manage complexity. According to Cellular DBMS

architecture, data-handling capacity of a cell is optimally limited for highly predictable

performance and reduced complexity. Cellular DBMS uses high-level composite cell for

handling large amount of data. In high-level composite cell, cell composition becomes

deeper with the increase in the size of data. Each high-level composite cell maintains a

meta-data cell (i.e., stores meta-data) that helps in fast retrieval and updation of records.

To retrieve data from high-level composite cell, only meta-data cells are used to trace

the data cell. Once the targeted data cell is traced, only this cell or its related cells are

used for data management.
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Figure 2: Different types of cells.

Hybrid Cell For diversified data management, Cellular DBMS introduce the concept

of Hybrid Cell. We could have horizontal as well as vertical hybrid cells as shown in

Figure 2. From horizontal hybrid cell, we mean a composite cell that is composed of

different type of cells such that each type is handling a definite data range. For example,

we want to store city codes to be used in the contact book of a mobile phone product.

If mobile is to be used in European Union (EU), frequency to access city codes of

EU countries is much higher as compared to city codes of Australia. Using horizontal

hybrid cell, we can store data in a composite cell in such a way that EU city codes
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should be stored in cell with a type that is suitable for faster access time whereas we

store remaining city codes in a cell, which requires less storage space. We can exploit

this feature in conjunction with autonomy to move data among different cells based on

their usage scenario and available resources.

From vertical hybrid cell, we mean a high-level composite cell that is composed of

different type of cells at different levels. For example, we have In-Memory Data Man-

agement type cell at the fine-grained level, i.e., level 0. At one level above, i.e., level 1,

we have B+Tree composite cell using multiple In-Memory Data Management cells, and

finally one more level above, i.e., level 2, we have SortedList using multiple B+Tree

composite cell. Vertical hybrid cell can be generated using the evolution approach dis-

cussed in this report; however, implementation of hybrid cells is future work.

Evolving Cell Evolution in Cellular DBMS means run-time transformation of cells.

We term a cell that supports evolution as an “Evolving Cell”. Evolution can be con-

structive as well as destructive. From constructive evolution, we mean the transforma-

tion of a cell from one form to another in such a way that the previous form becomes

an atomic integral unit of new form as shown in Figure 3. New form of such an evolved

cell should have larger data-handling capacity. Evolution is a mandatory concept to

bring autonomy in Cellular DBMS. For example, consider a cell X that is initially an

in-memory data management cell. We also support a SortedList that stores data us-

ing multiple in-memory data management cells. SortedList is the simplest composite

cell. From evolution, we mean the transformation of cell X to SortedList so that cell X

becomes an atomic integral unit of SortedList.

B

A A A …

A

Data

C

B B B …

Evolve Evolve

Figure 3: Evolving cell.

19



4.3 Clean API and Interaction

From software engineering aspect, providing a consistent API for simple as well as

composite cells is an important design criterion, which is required for communication

between cells. We argue that, two communicating cells should not care about the con-

crete type of one-another. On the other hand, simple cells provide limited data manage-

ment functionality and should exhibit a simple API that reflects the limited functionality,

which is in contrast to a consistent API and has to be considered when generating cells.

For solution, we use two different mechanisms. First, we allow only interface exten-

sions, but not modifications of an interface [65]. For example, a DBMS feature might

add a method to the interface of the DBMS, but is not allowed to modify the signature

of an existing method. This ensures upward compatibility, i.e., we can use cells with a

more complex API when cells with a simple API are expected.

The second approach is to generate wrappers for simple cells when complex cells

are expected [65]. For example, if a method for creating an index is expected from an

in-memory cell without index support, an empty wrapper method can be generated to

provide this method. Wrappers are used to achieve only downward compatibility and

wrappers that are more complex might be required. Furthermore, it has to be analyzed

for which scenarios it is not possible to generate such wrappers.

Distributed Cells In Cellular DBMS, cells are not confined to a single computing re-

source. Cells can be distributed across network, or more ambitiously speaking across

internet. Important distribution criteria could be size and locality of data. For example,

in a complex distributed sensor network scenario, cells are deployed on multiple nodes

and collaborate for data management. On each node of such a distributed scenario, a

single cell might be used or a composite cell might provide complex data management.

Distributed cells interact with each other through API calls over the network. For dis-

tributed deployment, we envision a Cellular DBMS using a global data dictionary and

statistics as well as distributed monitoring functionality to implement distributed auton-

omy. However, it has to be further analyzed how distributed deployment of interacting

cells can be achieved in Cellular DBMS.

4.4 Resource Balancing

In distributed environment, we envisioned the possibilities of resource balancing using

distributed cells. We have listed down our vision, but complete implementation is future

work.
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Cell Mobility In Cellular DBMS, we propose the concept of cell mobility. Cell mobil-

ity means the capability of Cellular DBMS to move a cell from one processing environ-

ment to another. Mobility of cells could be across processes on single system or across

systems connected via network. The motivation behind mobility is to achieve load bal-

ancing and to use resources efficiently. Cell mobility can be used in many different

ways. For example, one scenario in distributed network of interconnected embedded

devices is that the embedded device on which a cell is deployed, is heavily loaded with

processing. We envision moving that loaded cell to another relatively idle device. If all

devices are over-consumed, then a new device can be brought into the network and then

cells can be moved to that new device for load balancing.

Virtual Resources Embedded systems are different from high-end systems by means

of resources. In embedded system, we normally have resource constraints on a sin-

gle device, but in the network of interacting embedded systems there are many re-

sources that are available across network and are idle. We envision in Cellular DBMS

to virtually-combine these scattered resources as Virtual Resource, i.e., it gives a virtual

view of scattered small resource across embedded devices as one single large resource.

For example, on three embedded devices we have 10 kB, 6 kB, and 13 kB of free mem-

ory. Now if we have to store data that is 18 kB large, none of these devices has enough

capacities on its own. In this case, Cellular DBMS approach is capable of storing data

distributed across devices using cells and transparently provides a view of a single large

resource capable of accommodating 18 kB of data to an application. This concept also

gives us a clue that how Cellular DBMS can use cells for fragmenting data on multiple

embedded devices, sensor nodes, or high-end enterprise servers.

4.5 Cell Classification

Based on our current architecture and implementation, we can also classify cells in two

types based on the data they store, i.e., data cell and meta-data cell. Data cell manages

data. Meta-data cell is also a data cell, but it stores meta-data.

4.6 Design Principles for Autonomy in Cellular DBMS

Autonomy of each cell is an important design principle for Cellular DBMS. Cellular

DBMS envision the development of complete autonomous DBMS by accumulating au-

tonomic behavior of all participating cells. For autonomy, the most fundamental func-

tionalities are Monitoring, Diagnostics, and Tuning [37,13]. According to the proposed
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architecture, monitoring, diagnostic, and tuning components should also be customiz-

able according to the cell functionalities to ensure reduced monitoring overhead. We

present an AOP based model for autonomy at cell-level. We argue based on provided

related work in section 3.5 that AOP join-point model can be used to implement efficient

monitoring functionality for data management.

According to Cellular DBMS architecture, each cell contains an optional lightweight

monitoring functionality. The purpose of monitoring functionality is to monitor the cell

for specific parameters. These parameters are defined as a policy for DBMS cell goals.

Each cell should be able to adapt to changes based on events identified by the moni-

toring component. Additional to a cell-level monitoring, there should be a monitoring

component at composite cell as well. It should get feedback from an individual cell-

monitoring component and should by itself monitor certain parameters at composite

cell level. It enables global monitoring of cells for adaptation to DBMS changes and

fixing of DBMS problems according to defined DBMS policy. A symbolic monitoring

functionality distribution is depicted in Figure 4. For diagnostics, we use the state of the

cell, and results of data management operations to identify the definite tuning points.

For tuning we use the evolution and evolving cell approach presented in section 4.2.

Application
(Local View)

Diagnose

Tune

Monitor
CELL A

Diagnose

Tune

Monitor

Diagnose

Tune

Monitor
CELL B

Application
(Global View)

Figure 4: Monitoring functionality distribution.

According to the model, tracing is an important functionality during monitoring.

By tracing, we mean collection of cell state information that is needed to diagnose

and tune the individual cell as well as complete Cellular DBMS. For each join-point,

before advice should be used for tracing whereas after advice should be used to diagnose

the abnormality. If any abnormality is detected during diagnostics, tuning should be

executed to counter the abnormality.

To explain the concepts in detail, we describe a scenario. We compose a Cellular

DBMS that supports an in-memory data management cell and an in-memory data man-

agement composite cell, i.e., a SortedList. We term in-memory data management cell
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Stress (No. of Records) 256 1024 2048 3072 4680
Cell A 4 39 138 297 666

Cell B 10 81 277 618 1425

Evolving Cell 4 39 80 119 175

Table 2: Average execution time for stress test in millisecond for different Cellular

DBMS cells.

as Cell A and in-memory data management composite cell as Cell B. Cell A stores data

in a single memory chunk where as Cell B is composed from multiple Cell A. It is also

shown in Figure 3. Both cells store definite/limited amount of data, however, capacity of

data storage in Cell B is larger. In contrast, the complexity and main-memory require-

ment of Cell A is relatively low. To differentiate the behavior of two cells we presented

the average execution time in millisecond of stress test on both cells in Table 211 and

Figure 5. We executed test with different stress values, i.e., number of records that are

inserted, retrieved, and deleted. For Cell A, we kept memory allocation large enough to

accommodate all test data into a single cell. For Cell B, we kept memory allocation of

each Cell A small enough so that multiple cells can be used to demonstrate the change

in behavior. It can be observed that Cell A performs much faster than Cell B, because

of reduced execution complexity. Cell A also consumes less main-memory, because of

simple data management structure. Based on the results, we argue that cell complexity

should only be increased with the data growth. For example, we should use the Cell

A as long as the data is small enough for it to handle. As data grows to exceed the

limit of Cell A capacity, we bring the concept of evolving cell to evolve cell from type

A to type B, i.e., Cell A becomes part of Cell B and evolved cell has relatively larger

data management capability. In Cellular DBMS, we can evolve cells to higher level,

e.g., compose Cell C based on multiple B cells and so on. Autonomy should be kept at

the fine-grained level of Cell A to ensure highly predictable and tunable behavior at the

smallest data management unit.

To generate better results, we first analyzed the optimal memory allocation of Cell

A that resulted in the fastest execution time for stress test using Cell B. We observed

that for our sample stress data, both, i.e., too small as well as too large memory alloca-

tion was found to be inefficient. Once we identified the optimal memory allocation for

Cell A, our evolving cell implementation uses Cell A until its data management limit

is reached. Monitoring component keeps monitoring the Cell A based on join-point

specification and keeps trace of the required information. As soon as our diagnostic

implementation detects that Cell A is out of memory, it executes the tuning implemen-

tation, which evolves Cell from type A to B by injecting Cell A in Cell B. From end-user

and application point of view, it is kept transparent when evolution occurs. By using this

11 Average execution time is used to demonstrate the concept and may vary in future work.
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approach, we ensures that complexity of data management implementation should only

be increased as the amount of data is increased.
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Figure 5: Average execution time graph for stress test in millisecond for different Cel-

lular DBMS cells.

4.7 Cellular DBMS Storage Model

Customization capability of Cellular DBMS gives us provision to use any of the avail-

able storage models. Cellular DBMS does not restrict the usage of any specific storage

model; however, we recommend one in this section based on the Cellular DBMS goals.

Cellular DBMS stores data using Decomposed Storage Model (DSM) [9] also know as

Column-oriented Storage (COS) [58]. Based on the discussion in the related concepts

section, we found COS most appropriate for implementing atomic and autonomous

cells. Use of COS enables simple cell design and gives more control over data. We

envision achieving all benefits from COS as discussed in related concepts section. In

Cellular DBMS, each column is a separate cell. A column data can be stored using a

simple as well as composite cell. COS in Cellular DBMS is shown in Figure 6.

Cellular DBMS usage of COS is different from its traditional usage. Cellular DBMS

combines the concept of evolution, high-level composite, and meta-data cells with COS

to enhance the storage model to overcome the deficiencies that we identified in the re-

lated concept and related work sections. We term this enhanced model as “Evolutionary
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Figure 6: Column-oriented storage using composite cell.

Column-Oriented Storage”.

4.7.1 Evolutionary Column-Oriented Storage

Evolutionary Column-Oriented Storage (ECOS) is an extension of column-oriented

storage with the concepts of customization, autonomy, evolution, high-level compo-

sition, and meta-data. We outline the principles that govern the ECOS as follows:

• ECOS stores data using DSM.

• Each column is customized based on the kind of data.

• Each column evolves from simple cell to high-level composite cell with the data

growth.

• Each high-level composite cell for column maintains the meta-data about cell

composition.

• Each high-level composite cell for column maintains the user defined real-time

aggregation for its stored data.

Using ECOS, Cellular DBMS manages data management complexity and resource

consumption based on the size and kind of data. Using meta-data approach, it ensures

fast data management operations. Use of high-level composite cell approach enables

highly predictable behavior of each cell by managing complexity. As shown in Fig-

ure 7, in ECOS each column is customized based on kind of data it handles. As we have

already discussed, in Cellular DBMS, each column is handled by a separate cell and

each cell data storage capability is limited to optimal limit with manageable complex-

ity. In the sample ECOS implementation shown in Figure 7, among all three columns,

column 2 is managed by the simplest cell. The cell type for column is defined by the
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end-user. However, if the selected type is found to be insufficient for handling the data

storage, cell evolve to a higher level in form of high-level composite cell.

For large-scale data storage, ECOS uses separate persistent storage for each cell.

This mechanism in conjunction with meta-data reduces the I/O demand for ECOS. For

example, to fetch a particular record, Cellular DBMS searches for relevant cell using

the meta-data information. As it finds the relevant cell, it gets data from it. As call

to get data is received by cell, it searches for data in internal in-memory cells (similar

to pages). If data is not found in the already loaded in-memory cells only than I/O is

performed and relevant page with data is loaded into main-memory as in-memory cell.

PS: Persistent Storage

Composite
Cell

Composite
Cell
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Meta-data
Cell
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Data
Cell
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Data
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Data
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Data
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Figure 7: Evolutionary column-oriented storage.

Meta-data cells play an important role in reducing the search space for data retrieval

and updates. We envision meta-data to store real-time data aggregation as well. It is

on user discretion to define the data aggregates. We have implemented basic ECOS in

Cellular DBMS, however, complete implementation and its performance comparison

with other approaches is a work in progress.

4.7.2 Compression

Compression is an important technique for optimizing column-oriented storage for space,

here we describe the few compression techniques that we intend to use in Cellular

DBMS; however, it is currently part of future work.
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Delta Encoding In our current implementation, each cell in Cellular DBMS stores

data in sorted order. If data is in sequential order, delta encoding [39] can be used to

compress data at a cell level. Using delta encoding we store the differences of the two

values in sequence. The decision of either to use delta encoding or not depends on

the average size difference of encoded and real value. It could only be used when the

average size difference of encoded values is small.

Run-Length Encoding (RLE) For data sequence with high repetition, Run-Length

Encoding (RLE) [63] can be used to transform a sequence into vector form, i.e., key/-

value pairs. Key/value pair is the basic storage mechanism for data in currently im-

plemented cells. This approach promises high compression for sequences with high

repetition.

5 Cellular DBMS Implementation

Existing Cellular DBMS implementation is an extension of FAME-DBMS, a highly cus-

tomizable embedded database management software product line developed for deeply

embedded systems [50]. We used FAME-DBMS to generate the cells, however, any

customizable embedded database can be used to generate cells. FAME-DBMS is im-

plemented using feature-oriented programming. It untangles and modularizes DBMS

functionalities as features. A decomposition of DBMS into features, i.e., the function-

alities individual DBMS differ in, allows a developer to generate a tailor-made DBMS

variants based on the selection of required features [36]. These different variants are

built from the same code base as depicted in Figure 8 [65]. Based on such an SPL,

multiple heterogeneous DBMS cells can be generated [50].

The feature model of Cellular-DBMS, as shown in Figure 9 12, is based on the

FAME-DBMS feature model. Feature model describes the features of an SPL and

their relationships [27]. As depicted, the implementation of Cellular DBMS consists

of five main features, i.e., In-Memory Data Management, Buffer Manager, Access Path,

Autonomy, and OS Abstraction. Each functionality can be implemented differently to

achieve benefits, e.g., better performance, and can be described as alternative features.

For example, feature Index provides two variants for effective data access, i.e., B+Tree

and Hash. It enables us to generate specialized cells by selecting one feature or the

other.

Functionality for storing data is provided by feature In-Memory Data Management.

12Shown is an excerpt of the feature model with only modified features/concepts required for discus-

sion.
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Figure 8: Generating different DBMS cells by composing features (F1–F7) of a DBMS
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Figure 9: Cellular DBMS feature model.
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This feature contains the functionality of an in-memory embedded database. It can alone

be used to construct a simple DBMS cell. It performs data management operations in

an in-memory environment and does not have any unneeded persistence functionality,

resulting in good performance in terms of fast operations [22]. Most sensor nodes are

equipped with storage memory that can be used to store data persistently. To scale a

Cellular DBMS cell for such nodes feature Persistence can be used.

The simplest cell, consisting only of feature In-Memory Data Management, supports

exactly one column or a fragment of column (if used as a part of high-level composite

cell). For multiple columns, we can clone the In-Memory Data Management feature.

Cloning a feature means to create multiple instances of it [18]. For example, to support

two columns we have to create two instances of the In-Memory Data Management fea-

ture and each instance handles one of the columns. Whether a feature can be cloned is

depicted with cardinalities in Figure 9. For example, there has to be at least one instance

of the In-Memory Data Management feature, but an arbitrary number of instances are

allowed.

We bring autonomy to each cell by using AOP based model. We utilized As-

pectC++13 [56] for using AOP constructs. FeatureC++ also supports AOP extensions

as discussed in [6, 7], however, we used AspectC++ independently to have greater con-

trol on AOP constructs. Code transformation model for our implementation using Fea-

tureC++, AspectC++, and C++ compiler is shown in Figure 10.

FC++
Source
Code

FC++
Compiler

C++
Source
Code

AspectC++
Compiler

C++
Source
Code

AspectC++
Source
Code

C++
Compiler

Executable
File

Figure 10: Source code transformation.

6 Discussion

We envision that Cellular DBMS architecture is scalable for use in embedded systems

to enterprise systems. For explanation, we discuss two assumed sample scenarios for

13 “AspectC++”, http://www.aspectc.org/
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Cellular DBMS use in sensor networks and enterprise data management.

6.1 Sensor Networks

Sensor networks are important data-centric systems with hardware and software hetero-

geneity as depicted in Figure 11. Hardware in sensor networks may vary from 8 bit

motes to 32 bit microservers with the program memory that can vary from 48 kB to 512

kB, whereas the data memory may vary from 4 kB to 64 kB [20]. Each node varies in

terms of the processing power and the memory configuration. Considering extreme re-

source scarcity and high hardware and software heterogeneity as discussed above, one

of the requirements of sensor networks is to make the best use of available resources

and exploit the hardware heterogeneity for efficient data management.
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SM = ---
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SM = 1024 kB

Mica2Dot
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PM: Program Memory (Executable code)
DM: Data Memory (Non-persistent memory) 
SM: Storage Memory (Persistent memory)

Figure 11: Sensor network scenario.

For deployment on sensor networks, each cell should be customized based on the

resources and kind of data that cell handles on the deployment node. Our data classi-

fication consists of four kinds: standing data, setup data, transactional data, and ag-
gregated data. Standing data is generated during the deployment and is never changed

during its lifetime. It is read quite often, e.g., fixed time intervals for sensing the en-

vironment. Setup data is also initialized during the deployment, but may be subject to
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Kind of Data Standing Setup Transactional Aggregated
Data Size Small Small to Medium Medium to Large Medium to Large

Read Frequency High High Medium to High Low to High

Write Frequency No Write Low Medium to High Low to Medium

Table 3: Data categorization

Features In-Memory Data Management Persistence List Index Binary Size (.ELF) Compiler: avr-g++
Read Write Delete LRU Read Write Delete B+Tree

Cell A X X X 32 KB

Cell B X X X X X 42 KB

Cell C X X X X X X X 45 KB

Cell D X X X X X 48 KB

Table 4: Binary size for different Cellular DBMS cells.

change during its lifetime. For example, it is needed for routing information in a wire-

less sensor network. If nodes fail due to limited power, new neighbor nodes have to be

registered for communication. Transactional data is generated during data operations

(e.g., add, update, remove) and is often changed during its lifetime, e.g., sensed data in

a sensor network. Aggregated data is the result of some aggregation operations. This

kind of data can be found on aggregation nodes in a sensor network. Each kind of data

has its own characteristics in terms of usage frequency and size, as shown in Table 3.

Since the nature of data may vary for different sensors on single node as well as across

different nodes. We argue that customized data management is needed to manage each

kind of data, i.e., using different types of DBMS cells. In described scenario, we pro-

pose to build data management for nodes using a Cellular DBMS that consist of multiple

individual cells, each customized for optimal data management based on available re-

sources and kind of data. Since data could be distributed over multiple nodes in a sensor

network. DBMS cells should also be distributed over nodes and should collaborate for

complete sensor network data management.

For discussion of our proposed architecture, we consider storage memory, and pro-

gram memory as parameters of interest. To explain the idea, how specialized DBMS

cells can be beneficial for data-centric embedded systems, four types of DBMS cells

are generated based on different feature selections using FAME-DBMS prototype as

shown in Table 4 14. For each cell, the binary size is different and depends on the se-

lected features of FAME-DBMS prototype. Each cell is a candidate for a different type

of node based on the available program and storage memory as well as type of data it

handles. Cell A is suitable for nodes without any storage memory, e.g., Imote node.

Cell D is suitable for nodes with relatively large data and storage memory, e.g., BTnode

rev3. A sample deployment of these customized cells based on a node’s resources is

shown in Figure 12. In the sample deployment, Tmote sky contains the smallest pro-

14 Binary size contains additional overhead of dependencies and may vary in future work.
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gram memory and can only handle small cells like Cell A. However, it also contains

largest storage memory making Cell B, C, and D a good candidate for storing relatively

large data on storage memory. In contrast, Imote contains the largest program memory,

but lacks storage memory, again making Cell A best candidate for deployment. BTn-

ode rev3, Mica2, and Mica2Dot all contain moderate program and storage memory. We

argue that, in the demonstrated sample deployment, the Cellular DBMS is a promising

solution. The Cell implementation is lightweight and allows for deployment of multiple

heterogeneous cells on a single node, enabling specialized handling of data based on

available resources and the nature of data.

Mica2

Cell B

Cell A

Leaf 
Nodes

Data 
Aggregators

Tmote Sky

Cell A
Cell A

Cell A

Cell A

BTnode rev3

Cell D Cell C

Mica2Dot

Cell B

Cell D

Imote

Cell A
Cell A

Figure 12: Sample deployment of different Cellular DBMS cells.

6.2 Enterprise Data Management

Industries with enterprise data management needs are quite satisfied with existing DBMSs

in term of their performance. They have many solutions to choose from based on dif-

ferent criteria, e.g., cost, performance, etc. However, maintenance cost of most of the

existing DBMSs is high. We argue that Cellular DBMS architecture with its goals to

achieve highly predictable, customizable, autonomous DBMS will be able to reduce the

maintenance cost.

The data classification we provided in Table 3 is also applicable for enterprise data

management. Cellular DBMS gives an end-user the provision for data management
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customization at many different levels. An end-user can specify, what functionalities

DBMS should have, how these functionalities should be used, and how DBMS should

be tailored based on application and data [36, 49, 50, 60]. For example, consider the

case for setup data. The frequency of update in setup data is low whereas frequency of

retrieval is high. Furthermore, setup data (except some exceptions) is not too large. In

an enterprise application, we normally have many setup tables. Existing DBMS handles

all tables similarly. Either we have large data or not, we cannot customize the internal

implementation to optimize it for handling small data. The same column implementa-

tion is used for handling a column with only five values as well as for a column with

many MB’s of data. Cellular DBMS approach is different. It provides the provision for

customization at the fine-grained level of cell. It is possible to compose different cells

based on the kind of data, i.e., we can compose four types of cells for all four kinds of

data we presented in Table 3. This approach is similar to using four small databases

customized for their task instead of using a single large DBMS customized for noth-

ing. Another important aspect is that existing DBMS uses complex internal structures

irrespective of existing data size. In contrast, in Cellular DBMS data management com-

plexity only increases with the data growth, i.e., utilizing the resources only when they

are needed.

7 Conclusion and Future Work

We proposed a novel DBMS architecture based on composition of multiple cells that

are atomic and autonomic customized embedded databases. As explained, these cells

provide restricted data management functionality and collaborate to constitute one large

Cellular DBMS. This cell based approach ensures predictable behavior and efficient

utilization of resources by keeping the cells simple.

We argue that Cellular DBMS architecture reduces DBMS complexity and when

blended with autonomy, it can be used to develop highly predictable autonomous DBMS.

In this work, we also presented an AOP based model for implementing autonomy at cell

level in Cellular DBMS. We also explained the idea how evolving cells can be used to

self-tune data management with data growth. Our presented implementation ensures

that initially for small amount of data, simpler data management functionality is used.

We evolve the functionality with the data growth maintaining consistent performance.

Furthermore, we also introduced an extension of column-oriented storage with the con-

cepts of customization, autonomy, evolution, high-level composition, and meta-data to

overcome the deficiencies of classical column-oriented storage. In our proposed archi-

tecture, we argue that we can develop highly customizable autonomous DBMS that can

scale from requirement of small embedded systems to large-scale enterprise systems.
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As a future work in Cellular DBMS, we found many opportunities that are listed

below:

• Many concepts, such as hybrid cell, cell mobility, resource balancing, self-* [57]

(e.g., self-tuning, self-managing, self-adaptation, etc.) capabilities, etc., that we

presented in this report need implementation and performance comparison with

existing approaches.

• In the era of multi-core processors, we want to enable Cellular DBMS to exploit

parallelism.

• Using differently composed cells simultaneously while minimizing code replica-

tion is an important open issue. A software engineering based solution is needed

to solve this issue.

• Monitoring is an overhead for high-end embedded system. For implementation

of Cellular DBMS in such systems, we want to investigate mechanisms to reduce

this overhead.

• Current implementation of cell evolution is explicitly programmed. An impor-

tant future direction is to enable implicit learning in Cellular DBMS for self-*

capabilities.

• Query processing is a mandatory feature for all existing DBMS. For Cellular

DBMS architecture, we need specialized mechanism for efficient query process-

ing.
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