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Abstract

We report on the design and implementation of a number type called Real_algebraic. This
number type allows us to compute the correct sign of arithmetic expressions involving the opera-
tions +, -, /, &/ . The sign computation is always correct and, in this sense, not subject to rounding
errors. We focus on modularity and use generic programming techniques to make key parts of the
implementation easily exchangeable. Thus our design allows for easily performing experiments
with different implementations or thereby to tailor the number type for specific tasks. For many
problems in computational geometry instantiations of our number type Real_algebraic are a
user-friendly alternative for implementing the exact geometric computation paradigm in order to
abandon numerical robustness problems.

1 Introduction

Recording the computation history of a numerical value in an expression tree, more precisely, in an
expression dag, allows us to recompute the value at a later stage of a program in a different way. For
example, the created expression dags allow for adaptive lazy evaluation: First, we compute a crude
numerical approximation only. If the current approximation does not suffice anymore, we can use the
expression dag to iteratively compute better and better approximations.

A typical application of this scheme is verified sign computation. If the actual numerical value
is far away from zero, rough numerical approximations suffice to compute the correct sign. Only
if numerical values are close to zero, high precision computation is needed. By correct sign com-
putations we assure correct control flow. This is the crucial idea of the so-called exact geometric
computation paradigm [26]. Regarding control flow, we ensure that the implementation behaves like
its theoretical counterpart, thereby ensuring correct combinatorics, whereas numerical values might
still be inaccurate. However, the potential inaccuracy never leads to wrong or even contradictory
decisions.

For the sake of ease-of-use recording computation history and adaptive lazy evaluation is wrapped
in a number type. In programming languages providing operator overloading, such a number type
can then be used like built-in number types. A user need not care about any implementation details
in order to get verified signs. There are certainly other techniques for verified sign computations,
which lead to more efficient code. However, applying these techniques requires a deep understanding
of the underlying theory and thus they are much less user-friendly.

*Supported by DFG grant SCHI 858/1-1
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typedef Real_algebraic<...> NT;

NT a = sqrt(NT(2));

NT b =3 - a - sqrt(11 - 6%*a); G G

Figure 1: An expression, a corresponding DAG, and the code leading to this DAG.

We present generic design and basic implementation of a number type based on expression dags.
We call it Real_algebraic. The number type allows you to exactly compute the sign of arithmetic
expressions involving the operations =+, -, /, &/ .

Since Real_algebraic is based on expression DAGs we start by reviewing the fundamentals of
this technique. A number is represented as a handle into an directed acyclic graph or short DAG that
records the creation history of that number. Creating a DAG representation for another, explicitly
represented number simply creates a DAG node storing it. An arithmetic operation creates a new
node, storing the type of the operation and pointers to the operands. A handle to the new node is
returned. Each handle and each node corresponds to a unique arithmetic expression which in turn
corresponds to a unique real algebraic number. The converse is not true, each real algebraic number
is representable by many expressions (or none) and for an expression there may be several DAGs
representing it. Most notable is the possibility to represent two identical subexpressions with just
one subDAG. The actual structure of the DAG depends on the way it is created. See Figure 1 for an
example DAG.

As said above, the reason for representing a number as an expression DAG is to allow for lazy
adaptive sign computation, especially in geometric computing. The obvious alternative is to compute
a more explicit “exact” representation with each arithmetic operation instead of just creating a DAG.
For example, in case of algebraic numbers one could compute a polynomial with enclosing interval with
each arithmetic operation, in case of rational numbers one could represent them by a quotient, where
both numerator and denominator are represented by arbitrary precision integers. However, these
approaches are not adaptive, i.e., the cost of sign computations with these approach does not really
reflect the difficulty involved. Many sign computations in typical geometric computations in practice
are simple however, meaning that the number whose sign must be determined has a relatively large
absolute value. Then the sign can be determined by computing a crude approximation. Representing
a number as a DAG allows us to iteratively compute approximations of increasing accuracy until the
sign is know. This make the algorithm adaptive, its running time depends also on the absolute value
of the number whose sign must be computed, the worst case is only attained if this number is actually
zZero.

We associate a DAG node v with the real algebraic number it represents. To compute the sign
of v the expression corresponding to the subDAG below v is evaluated. Using software floating-point
arithmetic with arbitrary precision an interval I containing v is computed. If zero is not contained in
I the sign of v is known. Otherwise the expression is reevaluated with higher precision to reduce the
size of I. Reducing the size of I repeatedly may however not suffice to compute the sign of v. If v is
actually zero, this can only be detected if I contains zero only. In the presence of division and root



operations this may never occur. This case is resolved with the help of so called separation bounds. A
separation bound consists of a set of rules that allows to compute a positive number sep(v) that is a
lower bound on |v| unless v is zero. We can conclude that v is zero if I is a subset of [—sep(v), sep(v)].

There are many ways to refine this rough scheme and there is no obvious best variant. Thus, a
lot of algorithm engineering is needed in order to detect superior and discard inferior methods. Our
generic implementation is not the first number type based on expression DAGs. The number type
CORE: :Expr [12, 4] has been developed by Chee Yap and his co-workers at New York University,
and the number type leda::real [5, 14] has been developed as part of the LEDA library. Our
generic implementation subsumes both as special cases. Finding improvements over the existing
implementations is the main motivation for our work.

1.1 Policy based class design

There is almost no modularity in leda: :real, the implementation consists of two classes, one for the
handle type and another one for the DAG node type. Core: :Expr uses polymorphism to represent the
different DAG node types corresponding to different operations. Since version 2 the software floating-
point arithmetic, the separation bound and the floating-point filter used in the sign computation
algorithm are exchangeable. The CORE library provides however only one choice for each of the three
modules.

Our new number type Real_algebraic allows the exact sign computation for a subset of the real
algebraic numbers. Any int or double is a Real_algebraic and Real_algebraic is closed under
the operations =+, -, / and ¥/ . While maintaining generality, user friendliness and efficiency our focus
in the design has been on flexibility. Our implementation is separated into several modules, each
captures a certain algorithmic aspect. This enhances the maintainability of our implementation. We
use generic programming techniques to make those modules easily replaceable. So in fact we do not
provide a single new number type but a whole set of different but related number types. This allows
us to perform experiments to further increase the efficiency. As a side effect it allows the user to set
up a variant of Real_algebraic that best fits her needs.

The goal of policy based class design is to find relevant design decisions, things that can be
implemented in different ways or involve a trade off then factor them out into separate, independent
modules and allow to exchange them. This allows to evaluate the design decision or postpone the
decision to the user.

We use generic programming based on the template feature of C++ to make parts of the imple-
mentation exchangeable. Functions or classes, then called function templates and class templates are
implemented depending on a so called template parameter — a placeholder for some type that must be
specified or substituted at compile time. The template imposes certain requirements on the type to be
substituted, both syntactical and semantical. The entity of those requirements is called the Concept
for the type to be replaced. Since there is no direct language support for concepts, they have to be
documented well. Types that actually fulfill a concept are said to be a Model of this concept. The
main advantage of generic programming is that templates, once the parameters have been specified,
yield code that is as efficient as a hand written version.

According to Alexandrescu [1], a policy is a concept that encapsulates a certain behavioral aspect
of an algorithm or class. A small example given by him is that of a CreationPolicy. This policy
depends on a template parameter T itself and therefore should more accurately be called a policy
template. CreationPolicy provides a single member function Create() that shall return a pointer
to a new object of type T. Different models of CreationPolicy can implement Create() differently,
they can for example create an object using new or alternatively malloc() and placement new. A
class based on one or more policies is called a host class. Host classes have to be customized at
compile time by selecting an appropriate model for each policy. If a host class is based on several
policies, it is important that those are orthogonal, meaning that models for those policies are freely
combinable. It is for example not advisable to combine a CreationPolicy model that uses new with



a DestructionPolicy model that uses free(). In fact handling creation and destruction by different
policies is a bad idea.

The setup of one of more policies controlling the behavior of a host class is a variant of the
strategy design pattern [8] but with an emphasis on the point that the strategy or policy is supplied
through a template parameter and not a virtual base class that concrete policies must implement.
The downside is that a policy can not be exchanged at runtime. The advantage is, that policies can
exercise a very fine-grained control efficiently. Consider an aspect that can not be represented by a
single function, but affects small pieces of code at many places in the implementation. Using object
oriented techniques to factor out this aspect would require a virtual function call at each affected
place. When the policy is a template parameter there are no virtual function calls. In fact if the
functions provided by the policy are small, each call may be inlined, resulting in code that is as
efficient as hand written code.

1.2 Design Overview

We already reviewed the basic ingredients for arithmetic with expression DAGs. Creating a DAG
node for an arithmetic operation is not free of charge. In some cases it may be faster to actually
perform the operation and compute an exact, explicit representation for the result. The LocalPolicy
provides a strategy to postpone or avoid the creation of DAG nodes by performing operations directly
if possible. Complementary is the EzpressionDagPolicy that handles all operations on the DAG. The
DataMediator provides conversion of numbers from the LocalPolicy to the FxpressionDagPolicy. All
three are combined in the host class Real_algebraic that implements the handle to a DAG node.
In Section 2 we have a more detailed look at LocalPolicy, DataMediator and how they interact with
EzxpressionDagPolicy inside Real_algebraic. We shortly introduce two LocalPolicy models. Section 3
is dedicated to another LocalPolicy that represents a number as a sum of doubles.

Only one EzpressionDagPolicy model Original_leda_expression_dags is implemented, it fol-
lows the sign computation algorithm from leda: :real very closely. Key tools any sign computation
algorithm has to use are exchangeable in Original_leda_expression_dags, but the algorithm it-
self is monolithic. First there is the ApprozimationPolicy that provides arbitrary precision software
floating-point arithmetic. Second there is the SeparationBound providing an implementation of a sep-
aration bound. Finally we have the FilterPolicy that provides a floating-point filter based on hardware
floating-point numbers. Such a filter is not necessary for a sign computation algorithm, but can speed
it up in many cases. These three parts are in correspondence to the modules that are exchangeable in
CORE: :Expr. We discuss the ExpressionDagPolicy, our model Original_leda_expression_dags and
its three policies in Section 4. Approaches to further modularize and improve the sign computation
algorithm are discussed in Section 5.

2 LocalPolicy and Real algebraic

The class template Real_algebraic is a host class that depends on three policies, the LocalPolicy,
the ExpressionDagPolicy and the DataMediator. The basic strategy of expression DAG based number
types is to record the structure of an arithmetic expression as a DAG. More precisely each number
is represented by a handle to a DAG node. This node may either store the number directly or is
labeled with an operation and stores pointers to the operands which are again DAG nodes, confer
Figure 1. Maintaining this representation is simple, when creating a number through a constructor
call or through an operation, we create a new node with the appropriate data and return a handle to
it. The class template Real_algebraic effectively implements the handle, the creation of DAG nodes
and all other operations on the DAG like sign computation are handled by the EzpressionDagPolicy.

Creating a DAG node is not free from charge. It requires to allocate dynamic memory for the node
and the data inside the node must be initialized. To reduce the cost of creating nodes Real_algebraic
as well as leda::real and CORE::Expr use a memory manager specifically tuned to the frequent



allocation and deallocation of small, fixed size chunks of memory. Nevertheless adding two simple
doubles requires to create and initialize three nodes. In many cases it might be faster to compute the
result of an operation explicitly and exactly and only resort to expression DAGs if this is not possible.
Of course this requires an explicit representation of the operands. Performing some initial operations
explicitly before starting to create a DAG will also reduce the size of the DAG and therefore reduce
the running time for sign computation.

The LocalPolicy is designed to enable this. It reserves a small memory chunk inside the handle
to store a number. This chunk typically has a fixed size to avoid dynamic memory allocation. If
the number represented by a handle is directly stored in this memory chunk we say it is represented
locally. Therefore the number represented by a Real_algebraic may be represented locally or by a
DAG node or both. When a number is created through a constructor we represent it locally if possible.
If all arguments to an operation are represented locally and the result can be computed exactly and
it fits into the reserved memory chunk we simply store it locally again and avoid the creation of a
DAG node. If any of this is not the case we resort to creating a DAG. This might require to first
transform the local representation of the operands into a DAG node representation which is done by
the DataMediator. Then the ExpressionDagPolicy is used to perform the operation as usual.

A LocalPolicy provides storage for a number, constructors, member functions for the operations
+,-,/, & and for sign computation. It knows internally if it currently stores a number, but does not
expose this knowledge explicitly. Instead all functions simply return whether they could be performed
locally or not. Here are two examples:

(LocalPolicy)=
bool local_multiplication(const LocalPolicy a, const LocalPolicy b);

shall compute a local representation for the product of @ and b. Returns true upon success, i.e., iff
the product could be computed locally.

(LocalPolicy)+=
bool local_sign(int& s);

shall set s to the sign of the locally represented value. Returns true upon success i.e., iff the sign could
be computed locally. Constructors can not return whether their argument is locally representable.
The alternative is to first create a LocalPolicy using the default constructor and then set it’s value
with some member function but this might be inefficient, so we choose a different solution.

(LocalPolicy)+=
LocalPolicy(double d);

shall create a LocalPolicy that represents d, if d can be locally represented. If creation succeeded
can be checked afterwards.

(LocalPolicy)+=
bool local_creation_succeeded(double d);

returns true if the LocalPolicy represents d, under the precondition, that it has been constructed
from d. For a variety of local representations this pair of functions allows an efficient implementation
of the creation process. local_creation_succeeded() may compare d with the stored number, or
return a flag that has been set in the constructor, or simply always return true, e.g., if a double
can always be represented locally. Which implementation is best of course depends on the specific
number type used for local representation.

The FEzpressionDagPolicy provides an interface similar to that of LocalPolicy, but without the
option to refuse to perform some operation. We discuss the FxpressionDagPolicy in more detail in
Section 4. The DataMediator plays a central role in the collaboration of LocalPolicy and Ezxpres-
stonDagPolicy. One of the goals of policy based design and modularization in general is to create
orthogonal policies. With LocalPolicy and FExpressionDagPolicy this is not easily possible. We would
like to allow virtually any kind of number representation inside a LocalPolicy and we have to provide
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Figure 2: Class hierarchy of Real_algebraic and its immediate policies.

a way to convert this representation into an expression DAG. The EzxpressionDagPolicy provides cre-
ation of a DAG node from int and double, furthermore it computes with a software floating-point
number type AT provided by ApprozimationKernel, therefore we can easily allow the creation of a
node from AT too. A natural solution to decouple LocalPolicy and ExpressionDagPolicy is to let the
LocalPolicy provide its value as AT and then create a DAG node from this representation. This is how-
ever restricting the LocalPolicy, since any locally representable value must be exactly convertible to
AT. It prohibits e.g., LocalPolicy models that store some type of quotient to support division. To over-
come the restrictiveness of AT one could introduce a more general intermediate representation, that
ultimately should be able to represent any number that can be locally represented by any LocalPolicy
model. This leads to an intermediate representation that is probably DAG based itself. Converting
twice, first to a complex intermediate representation and then to the final DAG representation will in
any case be inefficient.

Our solution is to implement the conversion method separately in a DataMediator. A DataMe-
diator model depends on both the LocalPolicy model and ExpressionDagPolicy model it is made for
and gets privileged access to both. It encapsulates the dependencies between both policies, thereby
decoupling them. Of course this might require a quadratic number of DataMediators. On the other
hand the conversion method depends more on the LocalPolicy than the EzpressionDagPolicy. Many
DataMediators will convert the local data to an int, double or AT and create a single DAG node
storing it. Those can in fact be generalized on and used with any EzpressionDagPolicy.

We compose the host class Real_algebraic, that implements the handle to a DAG node from its
three policies by means of inheritance, confer Figure 2. This serves two purposes. First it aggregates
the data fields from the LocalPolicy for storing a local representation and the data fields from the
EzxpressionDagPolicy. Second it allows the DataMediator privileged access to those data fields. The
DataMediator is allowed to access those fields to implement an efficient conversion from the local
representation to an expression DAG representation. The class Real_algebraic itself however is
implemented by means of its policies only. We give some sample code from its implementation.
(Real_algebraic)=

friend Real_algebraic<Policies>
operator*(const Real_algebraic<Policies>& a,
const Real_algebraic<Policies>& b){

Real_algebraic<Policies> c;

if (!'c.local_multiplication(a,b)){

a.create_dag_from_local_data();
b.create_dag_from_local_data();
c.expression_dag_multiplication(a,b);

}

return c;

}

implements the multiplication by means of its policies. local_multiplication() is provided by
the LocalPolicy, expression_dag multiplication() by the FEzpressionDagPolicy. The function



create_dag_from_local_data() checks first if there already is an expression DAG representation
before before using the DataMediator to create one. All other arithmetic operations and comparison
operators are implemented analogously.
(Real_ algebraic)+=
Real_algebraic(const double d):DataMediator(d){
assert(isfinite(d));
if (!LocalPolicy: :local_creation_succeeded(d)){
ExpressionDagPolicy: :create_rep(d);
}
};

creates a new Real_algebraic with value d. We pass the Argument through the DataMediator
to the LocalPolicy, the FExpressionDagPolicy is default constructed and initialized only if no local
representation is possible. If the return value of local_creation_succeeded() is fixed at compile
time, the compiler may remove the branch and part of the code.

We have implemented two LocalPolicy models that reproduce already existing strategies. The
first one is No_local_data, following the strategy of CORE::Expr. It does not attempt to repre-
sent any number locally, all operations are immediately forwarded to the ExpressionDagPolicy. The
corresponding DataMediator Jobless_mediator is usable with any EzpressionDagPolicy and does
nothing.

The LocalPolicy Local_double_with_interval_check reproduces the behavior of leda: :real.
Local_double_with_interval_check uses a single double for local representation. Any of the oper-
ations =+, -, /, &/ is performed with double interval arithmetic. If the resulting interval is a singleton
the result is locally representable. The corresponding Local_double_to_expression_dag_mediator
creates a DAG node from the locally stored double and is usable with any FxpressionDagPolicy.

The motivation for Local_double_with_interval_check is as follows. Most input data consists
of small 32 bit ints or doubles. Converting such an int into a double leaves quite some bits unused
and it is likely that a couple of additions, subtractions and even multiplications can be performed
before the available precision becomes insufficient. For double input a similar argument holds but
since more bits are used initially, the strategy will be less effective. In Section 3 we present a
LocalPolicy that is designed to allow some more operations before for double input before a DAG
must be created. In Section 3.5 we compare some of our local policies with each other as well as
leda: :real and CORE: :Expr.

3 A LocalPolicy based on sums of doubles

The LocalPolicy model Local_double_sum represents a number as a sum of doubles. More precisely
it stores a sequence of doubles representing their sum. Operations that can be performed locally are
negation, addition, subtraction and multiplication. Of course also the sign of a sum can be computed.
This suffices for most applications in computational geometry. Other arithmetical operations are not
supported but directly forwarded to the EzpressionDagPolicy. The number of summands currently
stored is called the length or actual length of the sum. To avoid dynamic memory management we
limit the maximum length of a sum at compile time and perform operations only if the length of the
result does not exceed the maximum length. This leads to a tradeoff between the maximum length
and the ability to postpone DAG construction. Increasing the maximum length will avoid more DAG
constructions but on the other hand increase the size of a Real_algebraic handle in memory.

At the core of all operations on sums of doubles are so called error-free transformations. Error-free
transformations transform an arithmetic expression involving floating-point numbers into a mathe-
matically equivalent expression that is more suited for a particular purpose, e.g., sign computation.
Let @ and ® denote floating-point addition and multiplication respectively. For example, a + b can



be transformed into ¢™ + ¢!°, such that a ® b = ™ and a + b = " + ¢!°. Note that ¢ is the round-
ing error involved in computing a & b. Efficient algorithms for performing this transformation have
been devised for IEEE 754 [19] compliant arithmetic with exact rounding to nearest. TWOSUM(a, b),
due to Knuth [13], uses six floating-point additions and subtractions to perform this transformation,
FASTTWOSUM(a, b), due to Dekker [7], requires |a| > |b|, but uses only three operations. The trans-
formations are error-free unless overflow occurs. Analogously, TWOPRODUCT(a, b), due to Veltkamp
and Dekker [7] computes floating-point values ¢ and ¢!© with a ® b = " and a - b = M + cl°.
TWOPRODUCT uses 17 floating-point operations and is error-free, unless overflow or underflow occurs.

Error-free transformations allow us to implement the required operations on sums of doubles, but
are susceptible to the floating-point exceptions overflow and underflow. The sum or difference of two
sums of length m and n will have length at most m + n, using TWOSUM the product of two sums of
length m and n can be transformed into a sum of length at most 2mn. Both upper bounds hold for
any method to compute the sum, difference or product and are attained in general. The length of
sums will grow with operations and the maximum length for sums controls a tradeoff between size of
a Real_algebraic handle and the effectiveness of Local_double_sum to postpone DAG construction.
With this in mind we identified four orthogonal design decisions which are reflected in four policies
that govern the behavior of our implementation.

o DoubleSumMaxLength simply provides the maximum length for sums.

e DoubleSumOperations provides the operations we can perform with sums, namely addition,
subtraction, multiplication, sign computation and compression. A compression transforms a
sum into an equivalent sum with smaller or equal length.

o DoubleSumProtection provides a way to handle overflow or underflow should it occur in one of
the operations.

e DoubleSumCompression decides when and how to apply the compression algorithm provided
by DoubleSumOperations.

We implemented several models for these policies and performed experiments to evaluate them.
Section 3.1, Section 3.2 and Section 3.3 are dedicated to the operations policy, the protection policy
and the compression policy respectively. In Section 3.4 we show how the policies are combined to
a working implementation in the host class Local_double_sum. We describe our experiments in in
Section 3.5.

3.1 Operations

One of the operations DoubleSumOperations must provide is the exact sign computation for a sum
of doubles. We evaluated the performance of several exact sign of sum algorithms when used to
implement geometric predicates [16]. Our first model Double_sum_plain_operations is consequently
based on winner of this study, the SIGNK algorithm.

SIGNK is based on compensated summation, a well known approach to increase the accuracy of
floating-point summation [11]. For i = 2,...,n we compute TWOSUM(a;_1,a;), replace a; 1 by c'°
and a; by ¢™ and eliminate zeros on the fly. This leaves the value of the sum unchanged but we may
end up with fewer, namely n’ summands. We call this step a TWOSUM sweep. Then we sum up a; to
a,» with ordinary floating-point addition to an approximation s and use an error bound by Ogita et
al. [18] to verify the sign of s. When the sign can not be verified we re-iterate the algorithm.

The TWOSUM sweep works similar to a bubblesort, sorting increasingly for absolute value. It does
however not swap adjacent numbers but places the results of TWOSUM in the correct order. After
some iterations we have a;_1 @ a; = a; for i = 2,...,n and the TWOSUM operations will not lead to
changes any more. We show that in this this case the error bound suffices to verify the sign and the



algorithm terminates [16]. However even after only a few sweeps the summands with higher indices
will tend to be more significant and the error bound is likely to verify the sign.

The remaining operations are designed to support this property: The compression algorithm per-
forms a TWOSUM sweep, addition and subtraction copy and mix the summands of the operands,
placing the summands from one operand at the even positions and the summands from the other
operand at the odd positions in the new sequence. Mixing is important as it keeps the more signifi-
cant summands at the top of the sequence, if those summands have different signs, they will cancel
out in the first sweep after the operation. Without mixing, the next TWOSUM sweep will basically
operate on the same sequence of summands as in the operands and it will probably take much more
sweeps to restore a rough order. The multiplication performs TWOPRODUCT for each pair of sum-
mands and stores ¢™ in the top half of the new sequence of summands and ¢! in the lower half. The
upper bounds m + n and 2mn for the length of a sum, difference and product of two sums of length
m and n are always attained.

Since the first step of SIGNK is always a TWOSUM sweep, one could perform one such sweep
at the end of each arithmetical operation. This would increase the cost for operations, reduce
the length of sums and reduce the cost for sign computation. Our other DoubleSumOperations
model Double_sum_expansion_zeroelim_operations follows this idea through. Based on work by
Priest [20], Shewchuk [24] has given algorithms to compute with sums of doubles.

Expansion operations maintain what Shewchuk has called a strongly nonoverlapping expansion.
The relevant mantissa of a double is the sequence of bits from its lowest nonzero bit to its largest
nonzero bit. Two doubles overlap if their relevant mantissa overlap, when properly aligned, otherwise
they are non-overlapping. Two non-overlapping doubles are adjacent if their relevant mantissa are
adjacent. A sequence of doubles is a strongly nonoverlapping expansion, when the summands are
ordered increasingly by absolute value, no two summands overlap, each summand is adjacent to at
most one other summand and if two summands are adjacent both are a power of two. Shewchuk allows
zero summands anywhere in the sequence, in which case it is not necessarily ordered increasingly by
absolute value. We do not allow zeros, unless the only summand is zero.

The structure of an expansion is as if a TWOSUM sweep has been performed on the sum. This is not
evident from the definition but can be seen from the algorithms for computing with expansions [24].
They have an even better property: the sign of the sum is always the sign of a,, and can be read off
directly. Our implementation is based on code provided by Shewchuk on the web [25], we implemented
missing functionality following suggestions from his paper [24, section 2.8].

In our study of exact sign of sum algorithms for geometric predicates [16] we also included a com-
petitor that straightforwardly evaluates predicates using expansions. This approach was not among
the best ones. We turned it into an operations policy model nevertheless because it is diametral to
plain sum operations and puts an emphasis on keeping the length of sums short. The arithmetical
operations perform some work to keep the resulting sums short, which is not done at all with plain
sums. Consequently the upper bounds m + n and 2mn are rarely attained. Performing a compres-
sion this way inside the operations might well be better than performing it outside using a special
compression algorithm and lead to a better overall performance.

Considering the design one could break up the operations policy into even smaller parts and
have a separate policy for each of the five operations. The SIGNK algorithm can be used with any
sum of doubles and hence any set of arithmetical operations. Splitting the operations policy would
simplify experiments combining the SIGNK algorithm with other implementations of the arithmetical
operations. On the other hand these policies would not be completely orthogonal. The expansion
operations maintain crucial invariants and are only useful in this combination. Increasing the number
of policies from four to eight impairs the usability of our design, especially if policies can not be
combined freely. Therefore we opted for a single policy for all operations.



3.2 Protection

Since all our operations policies are based on error-free transformations and those are truly error free
only if neither overflow nor underflow occurs, we provide a way to handle those errors. According to
the IEEE 754 standard we can check for overflow and underflow after the fact. To ensure we can do
this all operations must always terminate, even in case of overflow or underflow. Three models are
provided:

e Double_sum_no_protection does not detect any exceptions.
e Double_sum_warning_protection detects overflow and underflow and calls an error handler.

e Double_sum_restoring_protection makes a backup copy of any sum that is to be overwritten
by an operation. If overflow or underflow are detected after the operation this sum is restored
and we return that the operation could not be performed locally. Then a DAG node will be
created from the still correct sum.

Restoring protection is actually what we want, overflow or underflow are invisible to the user and
do not harm the correctness of our computation. The other models exist mostly to evaluate the cost
of protection.

3.3 Compression

The sum and difference of two sums with m and n summands may take m+n summands, the product
may even take 2mn summands. Thus the actual length of sums grows with every operation. Since
the maximum length is limited but we want to delay DAG node creation as long as possible, we try
to reduce the actual length using the compression algorithm provided by the operations policy. The
compression policy decides when to apply it. We provide four models:

e Double_sum_no_compression triggers no compression at all.

e Double_sum_lazy_compression compresses the operands of an operation once before the op-
eration takes place. Compression is triggered only if the result might exceed the maximum
length.

e Double_sum_lazy_aggressive_compression does the same, but keeps on compressing as long
as the length decreases.

e Double_sum_permanent_compression compresses the result of each operation once.

Since our two models of the operations policy perform different amounts of compression inside the
arithmetical operations we expect that different compression policies will be optimal for them.

3.4 Implementation

To obtain a Local_double_sum variant one has to first collect a set of policies and pass them as
template parameter to the host class Local_double_sum. This generates the class hierarchy show in
Figure 3 which reflects some dependencies between the policies. Double_sum_storage provides the
storage for the sum, that is a field of doubles and an int for the length. All other policies have access
to the storage. The compression policy calls functions from the operations policy and the protection
policy when compressing operands. The host class Local_double_sum uses functionality from all its
policies, combining them to a working LocalPolicy.
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Figure 3: Class hierarchy of double sum policies.

The function local_multiplication() is one of the functions required in a local policy. Its im-
plementation in Local_double_sum is entirely based on the four policies. The placeholders (compress
operands) and (perform protected multiplication) represent code chunks given further below.

(local multiplication)=
bool 1oca1_mu1tiplication(const Local_double_sum& a,
const Local_double_sum& b){
assert(this != &a); assert(this !'= &b);
assert(Base::length == 0);
if(a.length > 0 && b.length > 0){

(compress operands)
if (predictor(a.length,b.length) <= MaxLength::value){
(perform protected multiplication)

assert(0 <= Base::length &% Base::length <= MaxLength::value);
b
by
return static_cast<bool>(Base::length);

3

A length of zero implies that no sum is stored and of course we can perform the multiplication locally
only if both operands store a sum. We compress the operands and perform the actual multiplication
only if the final result is guaranteed not to exceed the maximum number of summands.

(compress operands)=
multiplication_length_predictor predictor;
Base: :compress_operands (a,b,predictor) ;

The class multiplication_length_predictor is a model of the C++ Standard Template Library [2]
concept AdaptableBinaryFunction and simply computes f(n,m) = 2mn. By passing it to the
compress_operands () function from the compression policy, we can have a single function for multi-
plication and addition/subtraction, where we pass an AdaptableBinaryFunction computing f(n,m) =
m+ n.

11



(perform protected multiplication)=
typedef typename Base::template
Protector< Base::Tag_multiplication_needs_protection::value
|| Base::Tag_compress_result_needs_protection::value
> Protector;

Protector p(*this);
Base::multiplication(a,b);
Base: :compress_result();
Base: :restore(p);

The protection policy provides a nested type Protector<bool> where Protector<false> does noth-
ing and Protector<true> provides protection as described in Section 3.2. In general in any operation
provided by the operations policy overflow or underflow may occur, leading to a wrong result. There-
fore the operations policy additionally provides a tag, a simple nested type with value true or false,
that indicates whether overflow or underflow may actually occur in an operation. To avoid unnecessary
protection we select a protector based on the tags for multiplication() and compress_results().
For example with plain sum operations and any compression policy except permanent compression,
the addition does not need any compression.

Addition and subtraction as well as sign computation are implemented analogously. Negation is
always a simple summand wise copy and negation. The other arithmetical operations can not be
performed with sums of doubles and simply return false.

3.5 Experiments

Local_double_sum is designed to to speed up the evaluation of small polynomial expressions for
double input within the Real_algebraic number type. Therefore we decided to evaluate our
implementations using CGAL’s [6] Delaunay triangulation algorithm that uses the 2D orientation
and incircle predicate. Of those the incircle predicate is arithmetically more demanding. We use
CGAL’s Simple_cartesian kernel. The Cartesian kernel uses reference counting and is generally
better suited for number types with a larger memory requirement, as our Real_algebraic with
Local_double_sum will be. For the Delaunay triangulation algorithm however there is no difference
since it does not copy points or numbers.

In order to force the Delaunay triangulation algorithm to perform more difficult incircle tests we
generate test data that contains points almost on a circle with no other points in its interior: First, we
create a set D of disks with a random radius and place a certain percentage f of the points (almost)
on the boundary of their union, bd(UD). Next, the remaining points are generated uniformly in
the complement of the disks. All points are generated inside the unit circle. In order to get nearly
degenerate point sets we use exact arithmetic to compute a point on a circular arc of bd(UD) and then
round it to a nearby floating-point point closest to the circular arc. For f € {0%, 25%, 50%, 75%} we
generate 25 point sets with 5000 points each and measure the average running time. Sample input
sets are shown in Figure 4.

We ran experiments on two platforms. A notebook with an Intel Core 2 Duo T5500 processor with
1.66 Ghz, using g++ 4.3.2, CGAL 3.3.1 and LEDA 5.2. and a Sun Blade Station 1000 with 0.9 Ghz,
using g++ 3.4.4, CGAL 3.3.1 and LEDA 6.2. When ranking different variants of Local_double_sum
by measured running time their relative order was invariant with respect to f and with respect to
the platform. In fact the measured running time itself is nearly invariant with respect to f. For two
variants this can be seen in Figure 8. Hence all other figures show only results from the Intel platform
and for f = 25%.

For Local_double_sum we have four policies each with at least two models, so the parameter space
to search for an optimal variant is rather large. We ran some initial experiments fixing three policies
and varying the fourth to determine a good choice for this policy. Then we replaced the previously

12



f=0% f=25% f=50% f=175%

Figure 4: sample input data sets
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Figure 5: plain sum, restoring protection, lazy aggressive compression

fixed policies by choices that performed well and repeated the experiments, finally resulting in those ex-
periments shown here. To complete the Real_algebraic we chose Original_leda_expression_dags
as ExpressionDagPolicy an ApproximationPolicy based on leda: :bigfloat, a FilterPolicy based on
leda::interval and Bfmss2_separation_bound as SeparationBound, confer Section 4. The expres-
sion DAG computation of our Real_algebraic therefore comes close to leda: :real. As DataMediator
we use Local_double_sum_to_expression_dag mediator. It computes the sum exactly using the
arbitrary precision software floating-point type from ApproximationPolicy and creates a node from
the result. If the sums consists of only a single double it directly creates a DAG node for this double.

First we were interested in the impact of the maximum length of a sum on the performance. We
fixed policies to use a plain sum, restoring protection and lazy aggressive compression. We varied
the maximum length from 2 to 128. Looking at Figure 5 it can be seen that with an increasing
maximum length, the computation time decreases, reaches a minimum at 16 summands and then
remains constant. We conjecture that at this point no DAG nodes are created at all and all work is
done by the LocalPolicy, at least for the majority of predicate evaluations. It is quite surprising that
the minimum is already attained at such a small number of summands. Considering the growth of
sums, the incircle predicate as implemented by CGAL, may require up to 1152 summands for the final
result. We observed already in our study of exact sign of sum algorithms [16] that often 96 summand
suffice when eliminating zeros in the first stage of the predicate. Compressing sums and eliminating
zeros in later stages obviously reduces the number of summands required even more.

Next we evaluate the cost of protecting against overflow and underflow. Since both models of the
operations policy require protection for different operations, we use the expansion operations with lazy
compression and 16 summands and the plain sum operations with lazy aggressive compression and 16
summands and combine both sets with each of the protection policies. Figure 6 shows the results of
our experiments. Just resetting and checking the floating-point exception flags increases the running
time for plain sums by a factor of two and by a factor of four for expansions. The additional cost

13



1.8 [ no protection, expansion, lazy compression

[ warning protection

I restoring protection

N no protection, plain sum, lazy aggressive compression
I warning protection

I restoring protection

Intel

f=25%

Figure 6: 16 summands, two combinations of operations and compression
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Figure 7: 16 summands, restoring protection

for making a backup copy in the restoring protection policy is negligible compared to this increase.
For plain sums addition and subtraction only copy summands, and hence need no protection against
overflow and underflow. For expansions only the sign computation needs no protection. Addition and
subtraction are however used more often, so for expansions the floating-point exceptions are checked
more often. The result is, that while expansions are the better choice without effective protection
they are slower than plain sums when protection is used.

Next we evaluate the effect of different compression policies, again with both operation policies.
We combine plain sum operations with a maximum length of 16 summands and restoring protection
as well as expansion operations with a maximum length of 16 summands and restoring protection.
Both sets are combined with each compression policy. Figure 7 shows the results.

No kind of compression is performed inside plain sum operations, so all policies that trigger
additional compression increase the performance of plain sums. The permanent compression policy,
however, triggers a compression directly after each operation. Then addition and subtraction must
be protected which is very expensive as we have seen before. The best result is provided by lazy
aggressive compression, the running time is nearly halved compared to no compression. The arithmetic
operations on expansion perform some compression themselves. This is quite effective: as can be seen
the running time decreases only slightly when performing additional compression. There is not much
difference between lazy, lazy aggressive and permanent compression.

Finally we compare Local_double_sum with other approaches. We choose the best variant based
on plain sums and the best variant based on expansions with restoring protection. As competitors
we choose No_local_data and Local_double_with interval_check introduced in Section 2. Those
two local policies resemble the behavior of CORE: :Expr and leda: :real respectively, which we also
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Figure 8: comparison with other approaches

add to the set of competitors. Note that CORE: :Expr uses MPFR [17] for arbitrary precision floating-
point computations while leda: :real and our implementations use leda: :bigfloat. Furthermore
the expression DAG computations of all our variants closely resemble the behavior of leda: :real.
The results are shown in Figure 8.

Unlike the other competitors, both Local_double_sum variants are invariant to the amount of
nearly degenerate predicate evaluations. Therefore they are a good choice for input sets where many
such evaluations occur but less favorable for randomly distributed input. Compared to the other
approaches CORE: : Expr is very fast for randomly distributed input, especially on the Intel platform.
It is in fact so fast that none of our local policies could improve the performance of CORE: :Expr for
this type of input.

Storing no local data is also always a bit better than storing a single double and using interval
arithmetic to check the exactness of operations. We already hinted at the end of Section 2 that the
latter strategy is more suitable for small precision integer input than doubles. But this strategy, to-
gether with the other policies we use for our experiments form a Real_algebraic variant that comes
very close to leda: :real. The experiments show that no performance is lost by our modularization
efforts. leda: :real performs especially bad on the Sun platform and we can only guess the causes.

Going back to Local_double_sum most of the running time is spend on protecting against over-
flow and underflow, see again Figure 6. Without effective protection Local_double_sum makes
Real_algebraic competitive to CORE: :Expr for randomly distributed input and clearly superior for
input with many nearly degenerate predicate evaluations. The goal therefore must be to reduce the
cost for protection. One possible way is to base an operations policy on ESSA, another algorithm for
exactly computing the sign of a sum of doubles [21] that we also examine in our study [16]. Although
it was shown not to be competitive there, ESSA is immune to overflow and underflow and can be
used to implement an operations policy where only the multiplication must be protected. Another
approach is to avoid overflow or underflow in the first place. This requires to check the operands
before each operation. If some summands are so large or small that floating-point exceptions might
occur we simply return that no local operation is possible and create a DAG node. What “large” or
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“small” means depends however on the operation so these checks must occur in the operations policy,
rendering the the protection policy obsolete. In the light of our experiments above this might well be
faster than checking for floating-point exceptions after the fact. Altogether basing a LocalPolicy on
sums of doubles is a promising approach whose full potential has yet to be exploited.

4 ExpressionDagPolicy

The class Real_algebraic, among other things, acts as a handle to a DAG node. The handle part,
as well as all operations on the DAG are inherited from the FEzpressionDagPolicy and then used to
implement the arithmetical operations and comparison operators, confer Section 2 where some code
from Real_algebraic is shown. Some of the functions provided by the expression DAG policy are
(EzxpressionDagPolicy)=

bool expression_dag_is_initialized();

returns whether a representation as DAG node is available.

(EzxpressionDagPolicy)+=
void expression_dag multiplication(const ExpressionDagPolicy a,
const ExpressionDagPolicy b);

turns the EzpressionDagPolicy into a handle to a DAG node that represents the product of a and b.
Both a and b must already be represented as DAG node. This function allows a variety of implemen-
tations, which may include restructuring the DAG.

(EzxpressionDagPolicy)+=
void expression_dag_sign(int& s);

sets s to the sign of the number represented by the DAG node. A DAG node representation must be
available.

These three functions represent the two tasks of the expression DAG policy: creating nodes repre-
senting operations and sign computation. We provide a single model for EzpressionDagPolicy called
Original_leda_expression_dags only. It comes with an associated class sdag_node that actually
implements a DAG node and the algorithm for sign computation.

We describe how Original_leda_expression_dags implements the sign computation algorithm
that we sketched in the introduction. Sign computation actually starts when a node v is created. Each
node stores a dynamic hardware floating-point filter. This filter represents an interval I’ containing
v and allows to compute the filter for a new node from the operands. This is done every time a
new node is created. Note that when dividing by a node whose interval contains zero, the resulting
interval must represent the whole real line and will be meaningless. There are other cases that render
the filter meaningless too. Since there are many ways to actually implement such a filter we made it
exchangeable as FilterPolicy.

When the sign of a node v is requested, first the already available interval I’ is checked. If zero is
not contained in I’ the sign of v is known. Otherwise the algorithm needs for each node z below v an
upper bound on |z|, and if z is a divisor or radicand in some operation also a positive lower bound
on |z|.

To compute these bounds the DAG below v is traversed by a depth-first-search, processing in
postorder. For each node z a software floating-point approximation Z and an absolute error e, are
computed and stored in the node, such that |z — 2| < e,. For example in case of a multiplication
z = x -y, we compute Z = T ® g with p bit precision and in round-to-nearest. The relative error of
this multiplication is 27P. The initial computation is done with p = 53 bits, so the approximation is
about as accurate as the one from the floating-point filter. The error e, can be computed using the
following estimate [5], where Y = |9| + ey is an upper bound on |y|.

16



e, =12 —z]
<E=@gl+12- @ -yl+ly- (@ —=) (1)
S 2_P|j/g’ + |i‘ey + yhighex

An upper bound of the right hand side is computed using low precision and directed rounding
modes. If z is a divisor or radicand, the whole sign algorithm is applied recursively to z, resulting in
an approximation and error that are good enough to provide a positive lower bound on |z|. Apart
from the fact that the software floating-point arithmetic will not overflow or at least has a much larger
exponent range than double, these are the cases where the new approximation is significantly better
than the floating-point filter.

When this initial step has been done for the whole subDAG below v it results in an interval
I = [0 — ey, 0 + e,] containing v and it is checked whether I contains zero. If this is still the case
precision driven arithmetic is used to improve the interval I for v. Precision driven arithmetic allows
to prescribe the error e, of an approximation 2 before it is computed. The procedure works recursively
and requires to recompute the approximations of the children x and y with some prescribed error, it
stops at the leafs of the DAG where the error is always zero. Assume z = z - y and that we want to
guarantee e, < B. Looking at Equation (1) this can be done in the following way: First recursively
recompute £, enforcing e, < B/4ynn, then recompute ¢, enforcing e, < B/4/#| and finally compute
Z from Z and g with p bit precision in round-to-nearest, such that 277 < B/2jzg|. Note how the
usage of |Z| to bound e, makes it mandatory to first recompute #. This is the case for all binary
operations: the error bound implies an order in which the children must be recomputed. When Z has
been computed, e is simply set to either B or in case e, and e, are zero and the recomputation of 2
from 2 and g is exact, to zero. Many implementations of software floating-point arithmetic exist that
can be used in the sign computation algorithm. Therefore we made the arithmetic exchangeable as
ApprozimationPolicy. We discuss some details of the interface in Section 4.2.

Precision driven arithmetic not only allows to compute arbitrarily accurate approximations of
v, but also to prescribe the accuracy before the computation is started. Starting with the initially
computed error e,, the approximation ¢ is recomputed iteratively such that in the ¢-th iteration e,
is decreased by a factor of 27272". Asymptotically, the number of correct bits in ¢ is doubled with
every iteration. This does not suffice to compute the sign of v in case v is actually zero. We use
a separation bound sep(v) to detect those cases. The iteration stops when 2e, < sep(v). The sign
computation algorithm is adaptive, by computing several approximations of increasing quality it will
terminate quickly if v is far from zero. If v is actually zero the worst case running time is attained
which strongly depends on the separation bound. Many separation bounds are known and for several
of them there exist classes of expressions where they are the best known separation bound. Therefore
we also made the separation bound exchangeable as SeparationBound.

Not only is Original_leda_expression_dags parameterized by ApproximationPolicy, Separa-
tionBound and FilterPolicy, but these three policies provide basic tools required in any algorithm for
adaptive sign computation on expression dags.

4.1 FilterPolicy

The FilterPolicy is not actually required for sign computation but it can speed it up for easy cases,
adding to the adaptivity of the sign computation. The interface provided by FilterPolicy is one
for hardware floating-point interval arithmetic. An object represents an interval, the arithmetic
operations =+,-, /, &/ are available as well as several auxiliary functions. As of now FilterPolicy
provides the same interface as leda::interval. LEDA provides three different implementations of
interval arithmetic having this interface. Other models could be implemented based on the BOOST
interval library [3]. The dynamic floating-point filter from [5] does not need specific rounding modes
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to be set and hence might be faster to compute at the expense of less precise intervals. This is the
filter used in CORE: :Expr.

4.2 ApproximationPolicy

The approximation policy provides a software floating-point type Approzimation as well as approx-
imate arithmetical operations on this type. Furthermore it provides associated types FExponent,
used to represent the exponent stored with an approximation, Precision representing the number
of bits of an approximation and RoundingMode representing rounding modes. We provide two mod-
els Mpfr_approximation_policy based on MPFR [17] and Leda_approximation_policy based on
leda::bigfloat [14]. The arithmetic operations have the following interface:

(ApprozimationPolicy)=
static bool mul (Approximation& c,
const Approximation& a,
const Approximation& b,
const Precision p,
const RoundingMode rm);

computes a - b, rounds the result to at least p bits according to the rounding mode and stores it in c.
Returns true if no rounding occurred, that is if ¢ = a - b. a, b and ¢ may refer to the same variable.

With the exception that we do not require that the result is rounded to exactly p bits, this is prob-
ably the most natural interface for arbitrary precision floating-point arithmetic, but leda: :bigfloat
and MPFR provide a different interface. leda::bigfloat returns the result, MPFR writes it into a
variable passed by reference. More importantly however arithmetic operations in MPFR lack the ar-
gument for the precision of the operation. Instead each variable has an inherent precision and the
current precision of the result variable is used for the operation.

Both leda: :bigfloat and MPFR allow the result variable to equal one or both of the argument
variables. This allows to reduce the number of auxiliary variables in many cases, saving some memory
management. The MPFR interface however prevents operations where the result and one of the
operand variables are the same and the result precision is different from the operand precision. One
can increase the operand precision and therefore the result precision before the operation takes place,
but reducing it is not possible without creating an auxiliary variable. For this reason we allow the
result to be rounded to at least p bits and compute with higher precision in this case.

Next to the arithmetic operations, there are several auxiliary functions, e.g., to reduce the precision
of an approximation by rounding, to return the sign of an approximation or to convert an approxi-
mation into a double. The binary logarithm is frequently used in Original_leda_expression_dags,
e.g., to avoid expensive operations in the error computation.

(ApprozimationPolicy)+=
static Exponent floor_log2(const Approximation& a);
static Exponent ceil_log2(const Approximation& a);

return an integer lower and upper bound on log, |a|, for a # 0, respectively. Both bounds are almost
optimal in that they may differ by at most one.

Depending on the normal form used for a software floating-point type, one of the bounds can be
computed optimally more efficiently. If the mantissa is in [1,2), simply return the stored exponent as
an optimal upper bound, if the mantissa is an integer, return the stored exponent plus the precision
of the mantissa as an optimal lower bound. Computing the other bound optimally requires to check
if the mantissa has exactly one nonzero bit. Our interface allows to compute one bound from the
other, with non-optimal results only if the number is a power of two.
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4.3 SeparationBound

The term “separation bound” is used for the conditional lower bound sep(v) for a node v but it also
for the algorithm used to compute sep(v). In the latter sense known separation bounds consist of a
set of parameters for a node and a set of rules, how to update the parameters from a nodes children.
Our SeparationBound policy is a class that stores these parameters and implements the rules.

(SeparationBound)=
void set(const double x);

initializes the parameters for a node that represents x, i.e., a leaf node in the DAG.

(SeparationBound)+=
void multiplication(const SeparationBound& a,
const SeparationBound& b,
const Parameter& D);

computes and stores parameters for this node from the parameters of a and b using the rules for
multiplication. D must be an upper bound on the algebraic degree of the node.

(SeparationBound)+=
Parameter bound(const Parameter& D)const;

returns the actual separation bound sep(v) for this node. D must be an upper bound on the algebraic
degree of the node.

A SeparationBound does not implement the traversal algorithm required to compute the bound, it
must be provided by the class utilizing it. The algebraic degree is a quantity that plays an important
role in many separation bounds, unfortunately in the presence of common subexpressions computing it
recursively for each node from its children leads to weak degree bounds. Therefore it must be provided
to the separation bound. We provide several models that implement different bounds known from the
literature: Bfmss2_separation_bound [22]|, DM_separation_bound, LY_separation_bound [15] and
Sekigawa_separation_bound [23].

5 Future Improvements

One of the goals of our research is to improve the efficiency of expression DAG based number types. The
main working point that still has to be addressed is the sign computation algorithm. The algorithm
in Original_leda_expression_dags closely resembles the one from leda::real. In CORE: :Expr a
different although similar algorithm is implemented [4]. Precision driven arithmetic requires that
some data is available from the child nodes, e.g., in Equation (1) an upper bound on [y| is re-
quired. Original_leda_expression_dags performs an initial step to ensure this data is available. In
CORE: :Expr this data is is requested from the child node as it is needed. Then the child node has sev-
eral options to provide the data e.g., from the floating-point filter or from the current approximation
but ultimately must trigger more computations on its subDAG. For example the sign function of a
multiplication node simply returns the product of the signs of its children. Altogether in CORE: : Expr
there are six functions, returning the sign, an upper and lower bound, guiding the precision driven
arithmetic and approximating a node with a prescribed absolute or relative error that all may call
each other recursively. This approach tries to reduce the amount of floating-point operations, how-
ever at the cost of more DAG traversal. An optimal implementation of sign computation is as of yet
unknown.

5.1 Sign Computation and Common Subexpressions

One idea to improve the efficiency of sign computation is to restructure the DAG before starting
to compute. Higham [9, 10] analyzes several summation methods for fixed precision floating-point
arithmetic. Some of those methods use a static summation order while others are dynamic i.e.,
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they depend on intermediate results. Higham examines the accuracy of those methods and makes
suggestions which methods to use. When computing with precision driven arithmetic, the accuracy
of any intermediate result is fixed before it is computed. Our hope is that those methods which lead
to high accuracy when using a fixed precision will lead to small precision requirement in case of fixed
accuracy.

When computing a sum inside a program with a simple loop, the expression DAG will take the
form of a linear list. Restructuring the sum by simple application of associativity or commutativity
can lead to a more balanced DAG or a DAG where the intermediate nodes have a small absolute value,
resembling the methods considered by Higham. We made some initial experiments by checking the

identity for the geometric sum
it
D ot = — (2)
1=0

We manually rearranged the sum on the left hand side and soon observed large differences in the
running time. Finally we reduced the phenomenon to the following two functions.

(geometric sum)= (geometric sum)+=
template <class NT> template <class NT>
void geometric_sum_slow(const int n){ void geometric_sum_fast(const int n){
NT s = 0; NT s = 0;
NT r(1.2398793486823876843) ; NT r(1.2398793486823876843) ;
NT ri = 1; NT ri = 1;
for(int i=0;i<n;i++){ for(int i=0;i<n;i++){
s =s + ri; s =s + ri;
ri =ri *x r; ri =ri *x r;
} }
NT sprime = ( NT(1)-ri )/( NT(1)-r ); NT sprime = ( NT(1)-ri )/( NT(1)-r );
assert(s == sprime); assert(sprime == s);
} }

Note that they differ in the last line only! In one DAG s is the left child of the root node and s’
is the right child, while its vice versa in the other DAG. Here are some measured running times for
those functions when called with n = 64.

geometric_sum_fast(64) ... (0.02)
geometric_sum_slow(64) ... (0.14)

Our design allows us to easily measure the amount of work being done by the software floating-
point arithmetic. The approximation policy Approximation_policy_statistics wraps around any
other approximation policy and keeps a record of all calls. To a multiplication of two numbers with
precision p; and ps, rounding the result to precision p3, we assigned the cost ¢- (p1 + p2) log(p1 + p1)-
The histogram in Figure 9 shows how often a multiplication with a certain cost is performed for both
of the functions above and n = 64.

The effect that the cost for some sign computation changes drastically with small code changes
makes the behavior of Real_algebraic unpredictable. We would like to attain the smaller running
time for either way to assert Equation (2).

To investigate the cause for the difference we recall how precision driven arithmetic in works. To
recompute the approximation Z of some node z with prescribed absolute error e,, first the approxi-
mation of its right child x must be recomputed with some prescribed error e,, then the left child y
is handled. This is the source of the difference in running times. Consider some node u which is a
descendant of both x and y. The algorithm reaches u for the first time coming from x and recomputes
4 with some error e,. Later it may arrive at u again, coming from y. Now an approximation with
error e}, is requested. If e, < e/, then @ can be used as is, but if not we need to recompute @ and
all its descendants! This is what occurs in geometric_sum_slow() while in geometric_sum_fast ()
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Figure 9: Cost for all floating-point multiplications arising from checking Equation (2).

we are lucky and compute common subnodes at the first time with sufficient accuracy for all later
requests.

While commutativity allows to interchange x and y and hence recompute either & or g first, it is
not clear how to choose. Neither is clear if the choice can be made in a way that avoids recomputation
for any node in the DAG. Instead the solution is to refine Equation (1):

CP S 27p|f??)’ + ’ﬁ:‘ey + yhighex
< 27P|zg| + (12| + ex)ey + Ynignea (3)

= 27P|2Y| 4+ Tuigmy + Ynignz + €€y

Now we can select e, and e, such that e, < B/ dypign, ey < Bfazyign, and ezey < B/4. Then we can
recompute & and ¢. This can now be done in parallel or at a later time, i.e., after other parents of x
and y have registered their accuracy requirement on x and y. Finally we recompute Z with precision
p such that 27P < B/4/#j| to ensure e, < B.

Yap [27] has given estimates similar to Equation (3) for the operations =+, -, // , assuming =+, -
are performed exactly. It is not hard to generalize them to approximate arithmetic and derive an
estimate for ¢/ . For / and &/ lower bounds on the denominator and radicand are needed, for these
nodes we can not avoid to compute their sign in the initialization step as before. A node v can
be approximated with some prescribed error as follows. First all descendants u of v are visited in
topological order, propagating the accuracy requirement downwards. Then they are visited in reverse
topological order and 4 is recomputed if necessary.

Compared to the original approach in Original_leda_expression_dags this algorithm minimizes
the number of node reevaluations. There is only a difference however if there are common subex-
pressions and the DAG is not actually a tree. Furthermore there is a certain overhead for computing
the topological order of the nodes. Therefore experimentation is needed to evaluate both approaches.
But even if the DAG is a tree, this scheme allows to handle several nodes in parallel. This is another
approach that should be followed and evaluated.

5.2 Modularization of the sign computation algorithm

To facilitate the implementation of several similar or totally unrelated sign computation algorithms we
would like to modularize it more. We already made the basic tools for such an algorithm exchangeable,
but there are still many options in the algorithm itself. Some of them affect the data representation in

21



a node. The new sign computation scheme from the previous section requires a field in each node that
stores the accuracy requirement for a node. The algorithm from Original_leda_expression_dags
does not require such a field since a node is directly recomputed when the accuracy requirement
changes. Both algorithms employ different traversal strategies. The algorithm used in CORE: :Expr
is again totally different. On the other hand all three algorithms can use the same set of basic
data inside a node and the same error estimate Equation (3). We intend to modularize the sign
computation in the following way. First algorithms are separated from the DAG implementation.
The DAG implementation is only used to store data and provides some basic functions to access and
manipulate the stored data.

All algorithms traverse the DAG in some way and perform operations on each visited node and in
some cases its children. To make algorithms or parts of them reusable we intend to implement them
by means of visitors [8] that are applied to each node of a DAG by some traversal algorithm. A policy
to compute a separation bound then would consist of a set of parameters that must be added as data
fields to the DAG node, a traversal algorithm, that might as well need additional data in the DAG
node and a set of visitors that compute the parameters for each node type. A visitor may use the
default interface of a node as well as the data fields / interface that was added to make the visitor
applicable. This kind of modularization separates the traversal algorithms from the operations that
are performed on a node, making them reusable but at the cost of higher code complexity.

6 Conclusion

Our new flexible allows one to easily create different instantiations of Real_algebraic and to compare
them experimentally. We demonstrate the feasibility of our design by implementing multiple models
for most of the concepts arising in our design. Experiments show that we achieve this flexibility at
no extra cost: Real_algebraic is as efficient as previous, less flexible approaches when assembled
analogously to its static predecessors. With Local_double_sum implemented and evaluated several
new strategies to increase efficiency by postponing DAG creation. Our new approaches are promising
yet not fully exploited. Future work will address expression DAG evaluation algorithms.
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