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Abstract
Straightforward summation of floating-point values is subject to rounding errors and often

produces an approximation s̃ whose sign differs from the sign of the actual value s, if s is close
to zero. The Exact Sign of Sum Algorithm (essa) presented by Ratschek and Rokne allows one
to compute the actual sign of a sum of floating-point values with floating-point arithmetic. We
present and discuss variations of Ratschek and Rokne’s original versions of essa. For one of our
new variants we can prove an upper bound on the number of required iterations which is smaller
than Ratschek and Rokne’s bound on the number of iterations for the original essa. We compare
several variants of essa experimentally. The paper contains all the relevant code. Thereby we
ensure reproducibility of our experiments.

1 Introduction

About decade ago, Ratschek and Rokne [14] presented a nice algorithm to compute the sign of a sum
of floating-point values exactly. They call their algorithm essa for Exact Sign of Sum Algorithm.
Gavrilova et al. [4] propose some modifications to essa and evaluate them experimentally. Sample
C-code for essa is presented in [14] and [16] and available on Rokne’s web pages [9].
Ratschek, Rokne and Gavrilova also discuss applications of their methods in computational geome-
try [14, 16]. Suggested applications include testing for and computing line segment intersections [6, 7],
2D convex hull [15], and 2D Delaunay Triangulation and Voronoi diagram [5].
In this report we present several variants of essa and compare them experimentally. We compare our
essa variants for randomly generated sums. In a recent paper [11] we compared the performance of
essa and other exact sign of sum algorithms in the context of computing 2D Delaunay triangulations.
For one of our new variants we can prove an upper bound on the number of required iterations which
is smaller than Ratschek and Rokne’s bound on the number of iterations for the original essa.
We use the literate programming paradigm [2, 8] in order to document the internals of our implementa-
tions. The source code is organized into small sections that are presented whenever most appropriate,
together with a description of underlying algorithmic ideas, critical technical knowledge and unusual
coding constructions, cf. [10].

2 Floating-point arithmetic preliminaries

Throughout the report we assume a binary floating-point arithmetic conforming to the IEEE 754
standard [1, 13]. We will first give a definition of floating-point numbers. Let 0 6= x ∈ R, then

msb(x) = 2blog2 |x|c
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gives the value of the most significant non-zero bit in a binary representation of x. If 0 6= x ∈ R
furthermore has a finite binary representation, then we define

lsb(x) = max{σ : x ∈ σZ, σ = 2k, k ∈ Z}.

By definition, lsb(x) gives the value of the least significant non-zero bit in the binary representation
of x. Floating-point numbers are a subset of R with a finite binary representation. We denote the
smallest (largest) power of two that can be represented in a floating-point format by fmin (fmax).
Furthermore a floating-point format can store at most t consecutive bits. We denote by εm the
quantity 2−t.

Definition 1.
Denote the set of floating-point numbers by F = F(t, fmin, fmax). F contains 0. Let 0 6= x ∈ R have a
finite binary representation, then x ∈ F if and only if

fmin ≤ lsb(x), msb(x) ≤ 1
2
ε−1
m lsb(x), msb(x) ≤ fmax.

An important example is IEEE double precision with t = 53, fmin = 2−1074, fmax = 21024 and
εm = 2−53. Let 0 6= x ∈ R, have a finite binary representation, then the exponent E and mantissa
m of x are given by E = blog2 |x|c and m = x/E. For a floating-point number u this exponent and
mantissa do not necessarily coincide with what is actually stored to represent u. Most floating-point
numbers have a mantissa of t bits, but if msb(u) is smaller than 1

2ε
−1
m fmin, less than t bits are available.

Floating-point numbers with msb(u) < 1
2ε
−1
m fmin are called denormalized.

After having fixed the set of numbers we need to discuss mathematical operations. With ⊕,	,�
we denote the floating-point operations corresponding to +,−, ·. IEEE 754 arithmetic is rounding
faithfully, i.e., the result of a floating-point operation is the mathematically exact result if it is itself
a floating-point number and one of the two neighboring floating-point numbers otherwise. When a
number is not between two floating-point numbers, it may also be rounded to ±∞. Which of those
numbers is taken is determined by the rounding mode. Let fl(.) denote the operation that rounds a
real number to F ∪ {±∞}. Then for x, y ∈ R:

x ≤ y ⇒ fl(x) ≤ fl(y) (1)
fl(x) < fl(y) ⇒ x < y (2)

Here Property (2) follows from Property (1), which is clear for faithful rounding. Overflow is said
to occur in F, when x is rounded to a different number in the modified floating-point set F′ with
fmax > msb(x). Overflow does not necessarily coincide with rounding x to ±∞, cf. Overton [13].
Assuming no overflow occurs we have

fl(x) = x(1 + δ) + η with |δ| < 2εm, |η| < fmin, δη = 0 (3)

For this Property we refer to the book by Overton [13]. When rounding x to fl(x) we either have t bits
available, then δ accounts for the rounding error, but it may also happen, that msb(x) < 1

2ε
−1
m fmin in

which case fmin is the smallest bit that can be stored. Then η accounts for the rounding error. Unless
the rounding mode is explicitly mentioned we only assume faithful rounding. When the rounding
mode is round-to-nearest, we can replace 2εm by εm in Property (3).
We collect some more properties. When we use a statement of the form “x ∈ σZ”, σ is always a power
of two. Such a statement tells us that x = 0 or σ ≤ lsb(x).

F ⊂ fminZ (4)
σ1 ≥ σ2 ⇒ σ1Z ⊆ σ2Z (5)

x, y ∈ σZ ⇒ x+ y ∈ σZ (6)

u, v ∈ σZ ∩ F
u⊕ v does not round to±∞

}
⇒ u⊕ v ∈ σZ (7)
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Property (4) and Property (5) are obvious. Property (6) is simply a ring property of σZ and we can
derive Property (7) from Property (5) and Property (6) because in the process of rounding u + v
to u ⊕ v, trailing bits are removed, i.e., either u + v = 0 or fmin ≤ σ ≤ lsb(u + v) ≤ lsb(u ⊕ v).
Property (7) allows to keep track of the lsb of floating-point numbers. To demonstrate the usefulness
of this notation and for later use we will now show that addition and subtraction are exact in case
the result falls in the range of denormalized numbers.

Lemma 2.
Let u, v ∈ F with msb(u+ v) ≤ 1

2ε
−1
m fmin. Then u+ v ∈ F and hence u⊕ v = u+ v.

Proof. We know u, v ∈ F and hence from Property (4) and Property (6) that u + v ∈ fminZ. If
u+ v = 0 the claim holds. Otherwise we have fmin ≤ lsb(u+ v) and

msb(u+ v) ≤ 1
2
ε−1
m fmin ≤

1
2
ε−1
m lsb(u+ v) ≤ fmax.

From Definition 1 then follows u+ v ∈ F.

From this result directly follows an improved version of Property (3) for addition and subtraction. If
no overflow occurs

u⊕ v = (u+ v)(1 + δ) with |δ| < 2εm (8)

where 2εm can be replaced by εm in round-to-nearest. Furthermore Lemma 2 shows that no nonzero
number is ever rounded to zero in an addition or subtraction. Together with Property (1) we have
for u, v ∈ F

sign(u+ v) = sign(u⊕ v) (9)

even in the case of overflow.
We want to compute the sign of a sum of floating-point numbers exactly, yet rounding error is
inherent to floating-point computations. Sterbenz Lemma [13, 18] gives a sufficient condition when a
floating-point subtraction is free from rounding error.

Lemma 3 (Sterbenz).
Let u, v ∈ F with 1

2 ≤
u
v ≤ 2. Then u− v ∈ F and consequently u	 v = u− v.

Proof. Note that u and v have the same sign. Assumption and conclusion do not change when
we switch the roles of u and v or when we replace u and v by −u and −v, so we can assume
0 < 1

2u ≤ v ≤ u. By Properties (5, 6) fmin ≤ min{lsb(u), lsb(v)} ≤ lsb(u − v). Furthermore
u− v ≤ u− 1

2u = 1
2u ≤ v ≤ u and thus

msb(u− v) ≤ min{msb(u),msb(v)} ≤ 1
2
ε−1
m min{lsb(u), lsb(v)} ≤ 1

2
ε−1
m lsb(u− v).

Finally msb(u− v) ≤ msb(u) ≤ fmax and therefore u− v ∈ F by Definition 1.

The name error-free transformation has been given to small algorithms, that let us rewrite expression
of floating-point numbers into mathematically equivalent expression [12]. Sterbenz Lemma is a key
tool in proving the correctness of error-free transformations.

3 Engineering essa

Let two sequences of positive floating-point numbers a = a1, . . . , am and b = b1, . . . , bn be given. essa
allows to compute the sign of

s =
m∑
i=1

ai −
n∑
j=1

bj .
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We will call a the positive summands and b the negative summands. The total number of summands
is denoted by l = m + n and may not exceed 1

2ε
−1
m . We further assume that at any time a1 is the

largest positive summand and b1 the largest negative summand. Using an error-free transformation
essa iteratively computes two new summands x and y with a1 − b1 = x+ y, but |x|+ |y| < a1 + b1.
The old summands a1 and b1 are removed from a and b and |x| and |y| are inserted into a and b,
according to the sign of x and y respectively. This step is iterated until the sum vanishes, or the
positive summands dominate the negative ones, or vice versa. The overall number of summands never
increases:

Lemma 4. Let l0 ≤ 1
2ε
−1
m be the sum of the initial values of m and n. At any stage of the algorithm

we have m+ n = l ≤ l0.

We will now present several variants of essa. They all follow the scheme above but use different
different error-free transformations to compute x and y.

3.1 Revised essa

We first present our revised version of essa. Here is the overall structure of the implementation.
Both a and b must provide enough space for up to l elements, cf. Lemma 4. The summands must be
stored in positions 1, . . . ,m and 1, . . . , n. In the main loop, first the termination criteria is checked.
The computation of x and y and the update of a and b occurs in the loop body. In Section 3.4 we will
wrap this and other essa implementations into a struct so we may use it as a template parameter
later.
〈revised essa 4.1〉≡
int revised_essa::
sign_of_sum(double *const a, double *const b, int m, int n)const{
〈build heap 4.2〉
while (true){
〈termination criteria 4.3〉
〈revised essa loop body 7.1〉

}
}

To assure that a1 and b1 are the largest positive and negative summand, we maintain a and b as a
heap. See Section 3.6 for our implementation of the heap operations. This is in contrast to the sample
implementation [9], where the summands are sorted initially and then maintained as a heap.
〈build heap 4.2〉≡
build_heap(a,m);
build_heap(b,n);

In the termination criteria it is checked whether one of the sets dominates the other one. While in the
original version [14] the termination criteria of essa uses exponent extraction, the sample code [9]
uses floating-point multiplication, as we do below. Note that the test if m is zero assures that a1 is
defined in the third line. If n is zero, then it does not matter that b1 is not defined in the third line.
If the algorithm proceeds to the last line, however, a1 and b1 are defined.
〈termination criteria 4.3〉≡
if ( ( m == 0 )&&( n == 0 ) ) return 0;
if ( m==0 ) return -1;
if ( a[1] > n*b[1] ) return 1;
if ( b[1] > m*a[1] ) return -1;

Lemma 5.
Consider the termination criteria. If l = m + n ≤ 1 the algorithm terminates immediately. If the
algorithm terminates, the returned result is correct. Let α = max{a1, b1} and β = min{a1, b1}. If the
algorithm does not return, then α < l · β.
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Proof. Assume the algorithm returns in the third line: a1 > n � b1 implies by Property (2), that
a1 > n · b1. From there it follows that

s =
m∑
i=1

ai −
n∑
j=1

bj ≥ a1 − n · b1 > 0

and the correct sign is returned. Analogously for line four. If essa does not return we know from
line three and by Property (3), ignoring overflow, that

a1 ≤ n� b1 = (1 + δ)n · b1 + η |δ| < 2εm, |η| < fmin, δη = 0.

We have n ≤ l − 1 since m > 0 and l ≤ 1
2ε
−1
m by Lemma 4, so we can derive

a1 < (1 + 2εm)n · b1 ≤ (1 + 2εm)(l − 1)b1 < l · b1 for η = 0
a1 < n · b1 + fmin ≤ (l − 1) · b1 + b1 = l · b1 for δ = 0.

If an overflow occured in the product n� b1 we still have a1 < n · b1 < l · b1, since a1 ≥ n · b1 implies
that no overflow occurs. In any case a1 < l · b1. From the fourth line we have analogously b1 < l · a1

and combining these two inequalities we get α < l · β.

The error-free transformation of a1 − b1 into x + y is performed by an algorithm derived from the
following theorem which is due to Dekker [3].

Theorem 6 (Dekker).
Let u, v ∈ F with |u| ≥ |v| and compute x, y in round-to-nearest as x = u ⊕ v and y = v 	 (x 	 u).
Then, if no overflow occurs x+ y = a+ b.

The theorem relies on the fact, that if x = u ⊕ v is computed in round-to-nearest, the exact error
u + v − x is a floating-point number. With the help of Sterbenz Lemma it can then be shown that
y = v 	 (x 	 u) actually computes this error. For faithful rounding it is not necessarily true that
u+ v−x is a floating-point number, but Lemma 5 allows us to show that this is still true in our case.
To compute y we need to distinguish the cases where a1 > b1 and a1 < b1. In our implementation we
replace u with a1 and v with −b1 and then remove all unary − operations.
〈revised essa compute x 5.1〉≡
const double x = a[1] - b[1];

〈revised essa compute y for a1 > b1 5.2〉≡
const double y = (a[1] - x) - b[1];

〈revised essa compute y for a1 < b1 5.3〉≡
const double y = a[1] - (b[1] + x);

Lemma 7. Let x and y be computed by the code above, then x+y = a1−b1. Let α = max{a1, b1} and
β = min{a1, b1}. Then |x| < α and |y| < 2εm ·l·β. If the computation is performed in round-to-nearest,
then |y| < εm · l · β.

This already shows that the algorithm will terminate because in each step a1 and b1 will be replaced
by numbers with smaller absolute value. Since positive floating-point numbers can not be arbitrarily
small, sooner or later zero values must be produced which will not be inserted into a or b again. The
number of summands will drop and the algorithm will terminate.

Proof. By Lemma 5 we have α < l · β so we can chose a small δ > 0 such that still α ≤ (l− δ)β. Let
s = a1 − b1 be the exact difference. If s = 0 the code above will compute x = 0 and y = 0 and the
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claim is true, so we assume s 6= 0 in the following. We have −b1 < s < a1 and hence |s| < α. Then

msb(s) ≤ msb(α)
≤ msb((l − δ)β)
≤ 2 msb(l − δ) msb(β)
= 2 msb(l − δ) min{msb(a1),msb(b1)}

≤ 2 msb(l − δ)1
2
ε−1
m min{lsb(a1), lsb(b1)} by Definition 1

≤ ε−1
m msb(l − δ) lsb(s) by Properties (5,6)

and therefore
log2

(
msb(s)
lsb(s)

)
≤ t+ blog2(l − δ)c.

This shows that s has a mantissa of at most t+ blog2(l− δ)c+ 1 ≤ 2t− 1 bits, since l− δ < 1
2ε
−1
m by

Lemma 4. We also know that

fmin ≤ min{lsb(a1), lsb(b1)} ≤ lsb(s) and msb(s) ≤ fmax. (10)

Assume s is not itself a floating-point number. With faithful rounding there are two directions where
s may be rounded to, towards zero or away from zero. Let x be the floating-point number next to
s closer to zero. Then x can be obtained by truncating the mantissa of s after t bits. Consequently
the rounding error y = s − x consists of the at most t − 1 trailing bits of s. Since the bounds from
Property (10) immediately apply to y, it is y ∈ F by Definition 1.

1

0

0

2εm msb(x) 1 00 0

x ∗ ∗∗ ∗ ∗

0

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗

∗ ∗∗

∗

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

∗

∗

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

∗

∗

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

· · ·

s

y = s− x

1

1

01

∗

Now let x be the floating-point number next to s that is further away from zero. Then for s > 0 there
is x = x+ 2εm msb(x) and y = s− x = y − 2εm msb(x). Thus also y ∈ F, since y has no non-zero bits
with a value lower than 2εm · 2εm msb(x). No matter where s is rounded to, the rounding error is a
floating-point number.
We now show that this error is computed by the code above. We consider the case a1 > b1. Then we
compute x = a1	b1 and y = (a1	x)	b1. In case b1 ≥ 1

2a1, by Sterbenz Lemma we have x = a1−b1
and consequently y = 0. In the other case b1 < 1

2a1, we have 1
2a1 = a1 − 1

2a1 < a1 − b1 and from
Property (1) follows 1

2a1 ≤ x. Furthermore we have x ≤ a1 and can apply Sterbenz Lemma to the
computation bv = a1 	 x, so bv = a1 − x. Finally we already know, that bv − b1 = a1 − x − b1 is a
floating-point number, so in the last step y = bv	b1 = bv−b1. For the case a1 < b1 the proof proceeds
analogously, after observing that x < 0 and b1⊕x = b1	 (−x). Thus we have shown a1− b1 = x+ y.
Finally we turn to the bounds on |x| and |y|. From −b1 < a1 − b1 < a1 follows |a1 − b1| < α and by
Property (1) |x| ≤ α. For |y| we have:

|y| = |a1 − b1 − x|
= |δ||a1 − b1| by Property (8)
< 2εm · α
< 2εm · l · β by Lemma 5

When computing in round-to-nearest we can replace 2εm by εm. Now assume |x| = α, then |y| = β
which is by Lemma 4 a contradiction to the bound on |y|.
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In the loop body, we compute x and y and update a and b. From Property (9) we know that
sign(x) = sign(a1− b1), so we can branch on sign(x) to decide which way to compute y. When x = 0
then also y = 0, so only the top elements of the two sequences are replaced by the last elements in
this case. Any case leaves us with a new top element in a and b, so we restore the heap property for
those.
〈revised essa loop body 7.1〉≡
〈revised essa compute x 5.1〉
if(x > 0.0){
〈revised essa compute y for a1 > b1 5.2〉
〈revised essa update a and b for a1 > b1 7.2〉

}else if(x < 0.0){
〈revised essa compute y for a1 < b1 5.3〉
〈revised essa update a and b for a1 < b1 7.3〉

}else{
a[1] = a[m–];
b[1] = b[n–];

}
restore_heap_from_top(a,m);
restore_heap_from_top(b,n);

In case x > 0 we insert x into a, replacing the top element and branch further on the sign of y. If
y > 0 we insert y at the bottom of a and immediately restore the heap property for y. Although the
top element has already been replaced by x and may violate the heap property, this works correctly
since y is smaller than x. The other cases are straightforward. At the end of the code chunk both a
and b have new top elements which may violate the heap property.
〈revised essa update a and b for a1 > b1 7.2〉≡
a[1] = x;

if(y > 0.0){
b[1] = b[n–];
a[++m] = y;
restore_heap_from_bottom(a,m);

}else if(y < 0.0){
b[1] = -y;

}else{
b[1] = b[n–];

}

The case x < 0 is symmetric to x > 0.
〈revised essa update a and b for a1 < b1 7.3〉≡
b[1] = -x;

if(y < 0.0){
a[1] = a[m–];
b[++n] = -y;
restore_heap_from_bottom(b,n);

}else if(y > 0.0){
a[1] = y;

}else{
a[1] = a[m–];

}

We will now give an upper bound on the number of iterations revised essa performs when run in
round-to-nearest.

Theorem 8.
Run revised essa with initially l ≤ 1

2ε
−1
m summands in round-to-nearest. Then the algorithm termi-
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nates after at most

χ(l) · l2 where χ(l) =
1
2

⌈
t+ log2 l

t− log2 l

⌉
iterations of the main loop.

Ratschek and Rokne [14] show that original essa terminates after at most t · l2 iterations, cf. The-
orem 9. We remark that χ(l) < t for l ≤ 1

2ε
−1
m so our bound is an improvement. Furthermore for

IEEE 754 double precision arithmetic we have χ(l) ≤ 1 for l ≤ 217. This should include nearly all
applications. There are however examples, where original essa needs less iterations, cf. Section 4.1.
Our proof of the bound closely follows the proof of the upper bound for the original essa by Ratschek
and Rokne. Instead of working with the exponents of numbers we look at their actual values and
exploit the better reduction of a single value in one iteration.

Proof. For l = 1 the algorithm does not perform an iteration, so we can assume l ≥ 2. We consider
the input numbers a1, . . . , am and b1, . . . , bn as a single sequence of variables c1, c2, . . . , cl. Let σ be
the smallest lsb in the sequence and let it be attained by cη:

σ = min{lsb(ci) : i = 1, . . . , l} = lsb(cη)

By Property (5) it follows that ci ∈ σZ for i = 1, . . . , l. When we compute x + y = ci − cj in an
iteration, we replace α = max{ci, cj} with |x| and β = min{ci, cj} with |y| in the sequence. Since
x and y are computed using the operations ⊕,	 only, by Property (7) after such an operation still
ci ∈ σZ for i = 1, . . . , l. By replacing α and β with |x| and |y|, the size of the elements in the sequence
is gradually reduced. We denote by cri the value of ci after it has played r times the role of β. As
soon as all elements are smaller than ε−1

m σ, all computations x+ y = ci− cj will result in y = 0. This
holds in the case ci − cj = 0. Otherwise we have

msb(ci − cj) ≤ msb(max{ci, cj}) since ci, cj > 0

≤ 1
2
ε−1
m σ since max{ci, cj} < ε−1

m σ

≤ 1
2
ε−1
m lsb(ci − cj) by Property (6)

and fmin ≤ σ ≤ lsb(ci − cj), again by Property (6), and msb(ci − cj) ≤ msb(max{ci, cj}) < fmax, so
by Definition 1 we have ci − cj ∈ F, x = ci 	 cj = ci − cj and y = 0.
When an element plays the role of β in a computation, its absolute value is reduced by a factor of
εm · l by Lemma 7. We will now count how often an element must play the role of β to be reduced
to ε−1

m σ. We do not count when an element plays the role of α, since then another element plays the
role of β. Also, when an element plays the role of α it is not increased so this does not invalidate the
analysis.
Assume that at the start of the algorithm the sequence is ordered, i.e., c1 ≥ c2 ≥ . . . ≥ cl. We can
further assume, that the quotient of two consecutive numbers is not too large, precisely we assume

ci ≤ l · ε−1
m · ci+1 (11)

To justify this assumption, let µ be the lowest index such that the assumption is not fulfilled:

cµ > l · ε−1
m · cµ+1. (12)

Let σ̂ = min{lsb(ci) : i = 1, . . . , µ} = lsb(cη̂). The algorithm will now reduce the ci values, however
as long as an operation x + y = ci − cj only involves elements with i, j ≤ µ, we have ci ∈ σ̂Z for
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i = 1, . . . , µ, none of the numbers will ever be smaller than cµ+1:

cri ≥ σ̂ = lsb(cη̂) by 0 6= cri ∈ σ̂Z
≥ 2εm ·msb(cη̂) by Definition 1
> εm · cη̂
≥ εm · cµ
> l · cµ+1 by Property (12)

There are now two possibilities:

• The algorithm only considers elements ci, cj with i, j ≤ µ until all these elements are zero and
then proceeds with elements with larger index. In this case we can divide all ci, i > µ by an
appropriate power of two, such that cµ ≤ l · ε−1

m · cµ+1 but still cµ > ε−1
m · cµ+1. This will not

change the course of the algorithm.

• At some point the algorithm considers for the first time two elements cri with i ≤ µ and cj = c0j
with j > µ. Then the algorithm will terminate, because cri > l · cµ+1 ≥ l · cj but Lemma 5
guarantees cri < l · cj . This is not a worst case, the algorithm would perform more steps if the
gap was smaller.

Having justified the assumption we proceed with counting how often ci must play the role of β to be
smaller than ε−1

m σ. We have cl ≤ cη < ε−1
m σ and therefore

cki
i < (εm · l)kici by Lemma 7

≤ (εm · l)ki(l · ε−1
m )l−icl by Property (11)

< (εm · l)ki(l · ε−1
m )l−iε−1

m σ

so cki
i < ε−1

m σ if (εm · l)ki(l · ε−1
m )l−i ≤ 1. This is the case if

ki ≥ (l − i)
⌈
t+ log2 l

t− log2 l

⌉
= (l − i) · 2χ(l).

The right hand side must be rounded up, because only an integral number of iterations can be
performed. When all summands are smaller than ε−1

m σ, at most l additional iterations are required,
so finally the total number of iterations is bounded by

l +
l∑

i=1

ki = l + 2χ(l) ·
l∑

i=1

(l − i)

= l + 2χ(l) · l · (l − 1)
2

≤ χ(l) · l + χ(l) · (l2 − l) assuming l ≥ 2

= χ(l) · l2

which finishes the proof.

3.2 Original essa

In this section we provide an implementation of the original essa. For a detailed discussion of the al-
gorithm, we refer the interested reader to the paper by Ratschek and Rokne [14]. Our implementation
basically follows the paper and the sample implementation [9]. We mention some differences.

• We do not sort the summands initially but put them in heap order only.
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• Unlike the paper [14] but following the sample implementation [9] we do not use exponent
extraction for the termination criteria.

• We integrate the code for updating a and b into the code for the error-free transformation. This
saves some comparisons and allows to eliminate some variables, by storing results in their final
position immediately.

Again we start with the overall structure of the implementation. The same requirements apply: a
and b must provide enough space for up to l elements. The summands must be stored in positions
1, . . . ,m and 1, . . . , n. Note that we reuse some code chunks, especially the termination criteria, so
Lemma 5 is valid. In the main loop original essa modifies the two sequences a and b by an error-free
transformation.
〈original essa 10.1〉≡
int original_essa::
sign_of_sum(double *const a, double *const b, int m, int n)const{
〈build heap 4.2〉
while (true){
〈termination criteria 4.3〉
〈original essa loop body 10.3〉

}
}

The error-free transformation used in the original essa is based on knowing the exponents of a1 and
b1. We use double frexp( double x, int* e) to extract the exponent. Note that frexp returns
the mantissa in the range [12 , 1) and the corresponding exponent. Thus we have E = blog2(a1)c + 1
and F = blog2(b1)c+ 1. We do not decrement the exponents immediately, since this does not affect
exponent comparison, but decrement only on demand later on.
〈exponent extraction 10.2〉≡
int E,F;
frexp(a[1],&E);
frexp(b[1],&F);

We distinguish cases based on the exponents.
〈original essa loop body 10.3〉≡
〈exponent extraction 10.2〉
if (E == F){
〈E = F 10.4〉

}else if (E > F){
〈E > F 11.1〉

}else{ // (E < F)
〈E < F 12.2〉

}

If both leading summands have the same exponent, we can compute their difference exactly, i.e.
x = a1	 b1 = a1− b1. By Property (9) we can compare a1 and b1 to determine the sign of x. We get
at most one new summand, reducing the total number of summands.
〈E = F 10.4〉≡
if ( a[1] > b[1] ){
a[1] -= b[1];
b[1] = b[n–];

}else if( a[1] < b[1] ){
b[1] -= a[1];
a[1] = a[m–];

}else{
a[1] = a[m–];
b[1] = b[n–];

}
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restore_heap_from_top(a,m);
restore_heap_from_top(b,n);

In the next case we have E > F and consequently a1 > b1. We compute x = (a1	u) and y = (u	b1)
where u = 2dlog2 b1e. The function double ldexp(double x, int e) returns x2e. We use it to
compute u = 2F−1. If b1 = u, we subtract u from a1 and get rid of one summand.

· · ·

1 0 00 · · ·u

1

b1

∗a1 ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

1 0 00

∗

〈E > F 11.1〉≡
double u = ldexp(1.0,F-1);
if( b[1] == u ){
a[1] -= u;
restore_heap_from_top(a,m);

}

If b1 6= u, we set u = 2F and compute a1 − u and u − b1. In this case u > 2F−1 and hence the
exponent of u− b1 is smaller than the exponent of b1.

· · ·

1 ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

u

b1

1 0 00

a1

There is a caveat. We might have a1 = u and thus get a zero value, so we check for this case explicitly.

· · ·

1 ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

1 0 00 · · ·

u

b1

1 0 00

a1

The subtraction a1−u is error-free, if the leading bit of u overlaps the mantissa of a1, i.e., if E−F < t.
By Lemma 5 we have a1 < l · b1 and hence E − F = blog2(a1)c − blog2(b1)c < log2(l) + 1 ≤ t. So
there is no rounding error.
〈E > F 11.1〉+≡
else {
u *= 2.0;
if ( a[1] != u ){
a[1] -= u;
restore_heap_from_top(a,m);
a[++m] = u - b[1];
restore_heap_from_bottom(a,m);

}else{
a[1] = u - b[1];
restore_heap_from_top(a,m);

}
}

11



We inserted all new summands into a, the sequence b contains now one summand less. Note that we
can not delay restoring the heap property for the new top elements as in revised essa, since x may
be smaller than y.
〈E > F 11.1〉+≡
b[1]=b[n–];
restore_heap_from_top(b,n);

The final case E < F is symmetric to the previous one, here the size of a is reduced.
〈E < F 12.2〉≡
double u = ldexp(1.0, E-1);
if ( a[1] == u ){
b[1] -= u;
restore_heap_from_top(b,n);

}else{
u *= 2.0;
if ( b[1] != u ){
b[1] -= u;
restore_heap_from_top(b,n);
b[++n] = u - a[1];
restore_heap_from_bottom(b,n);

}else{
b[1] = u - a[1];
restore_heap_from_top(b,n);

}
}
a[1]=a[m–];
restore_heap_from_top(a,m);

Ratschek and Rokne give an upper bound on the number of iterations original essa performs.

Theorem 9.
Run original essa with initially l ≤ 1

2ε
−1
m summands. Then the algorithm terminates after at most

t · l2 iterations of the main loop.

3.3 Modified essa

Gavrilova et al. [4] propose a modification to the error-free transformation of original essa in case the
exponents of a1 and b1 differ. We now discuss this modification for the case a1 > b1. In original essa
the value u can be almost twice as large as b1. This has the negative effect that more than necessary
is subtracted from a1. The idea here is to compute a smaller u such that x = a1 	 u and y = u	 b1
can be computed without rounding error.

∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗

01 0∗ ∗

∗

∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

1 ∗

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗

1 00 0 0 · · ·

1

0∗ 0 0 · · ·

2εm msb(a1)

a1

bhi

1

blo

b1

∗

1

Gavrilova et al. propose to split b into bhi and blo by cutting of b1 after the bit with value 2εm msb(a1).
Setting u = bhi is possible, but in this case x = a1 − bhi > 0 and y = bhi − b1 = −blo ≤ 0,
which in general keeps the number of both the positive and negative summands constant. Therefore
they alternatively suggest to set u = bhi + 2εm msb(a1). Gavrilova et al. remark “[...] that despite
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having knowledge and programming tools sufficient enough for implementing bit manipulations in the
program, we use standard processor floating-point operations, which work faster than an equivalent
software implementation.”, however no implementation for computing u is given. Our implementation
uses frexp/ldexp to compute msb(a1). (Rump et al. [17] give a way to compute the msb of a number
using only ⊕,	,�, however it might overflow and involves a branch).
Here is how we compute u. msb(a1)+b1 is rounded to msb(a1)⊕b1 after the bit with value 2εm msb(a1),
the final subtraction of msb(a1) is free from rounding error by Sterbenz Lemma. When run in round-
towards-zero or round-down we get u = bhi, when run in round-up we get u = bhi + 2εm msb(a1). In
round-to-nearest we may get any of these results.
〈modified E > F 13.1〉≡
const double msba = ldexp(1.0,E-1);
const double u = (msba+b[1])-msba;

We know x = a1 − u ≥ 0, however y may have any sign. Depending on the rounding mode, there are
more restrictions on the sign of x and y and the code may be simplified. We implement a complete
version nevertheless and start with the case a1 > u.
〈modified E > F 13.1〉+≡
if(a[1] > u){
a[1] -= u;
restore_heap_from_top(a,m);
if(u > b[1]){
a[++m] = u - b[1];
restore_heap_from_bottom(a,m);
b[1] = b[n–];

}else if(u < b[1]){
b[1] -= u;

}else{
b[1] = b[n–];

}
restore_heap_from_top(b,n);

}

The remaining case is a1 = u. It may occur, e.g., when b1 = msb(a1)− 2εm msb(a1) and the rounding
mode is round-up. a1 < u can not occur however.
〈modified E > F 13.1〉+≡
else{ //(a[1] == u)
if(u > b[1]){
a[1] = u - b[1];
b[1] = b[n–];

}else if(u < b[1]){
a[1] = a[m–];
b[1] -= u;

}else{
a[1] = a[m–];
b[1] = b[n–];

}
restore_heap_from_top(a,m);
restore_heap_from_top(b,n);

}

In case E < F and therefore a1 < b1 we proceed analogously.
〈modified E < F 13.4〉≡
const double msbb = ldexp(1.0,F-1);
const double u = (msbb+a[1])-msbb;
if(b[1] > u){
b[1] -= u;
restore_heap_from_top(b,n);

13



if(u > a[1]){
b[++n] = u - a[1];
restore_heap_from_bottom(b,n);
a[1] = a[m–];

}else if(u < a[1]){
a[1] -= u;

}else{
a[1] = a[m–];

}
restore_heap_from_top(a,m);

}else{ //(b[1] == u)
if(u > a[1]){
b[1] = u - a[1];
a[1] = a[m–];

}else if(u < a[1]){
b[1] = b[n–];
a[1] -= u;

}else{
b[1] = b[n–];
a[1] = a[m–];

}
restore_heap_from_top(b,n);
restore_heap_from_top(a,m);

}

We complete the implementation reusing code chunks from original essa and revised essa.
〈modified essa loop body 14.1〉≡
〈exponent extraction 10.2〉
if (E == F){
〈E = F 10.4〉

}else if (E > F){
〈modified E > F 13.1〉

}else{ // (E < F)
〈modified E < F 13.4〉

}

The requirements are the same as for original and revised essa: a and b must provide enough space
for up to l elements and the summands must be stored in positions 1, . . . ,m and 1, . . . , n.
〈modified essa 14.2〉≡
int modified_essa::
sign_of_sum(double *const a, double *const b, int m, int n)const{
〈build heap 4.2〉
while (true){
〈termination criteria 4.3〉
〈modified essa loop body 14.1〉

}
}

3.4 A simpler interface and wrapping essa

For simplicity and to achieve interface compatibility with other floating-point summation algorithms,
we provide another to our essa variants. The following function computes the sign of s =

∑l−1
i=0 ai.

Here the summands must be stored at positions 0, . . . , l − 1 and may have any sign. Still l may not
exceed 1

2ε
−1
m .

〈simpler interface for essa 14.3〉≡
inline int
sign_of_sum(double *const a,const int l)const{
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〈set up positive and negative summands 15.1〉
〈compute and return sign 15.2〉
}

The function proceeds by redistributing the contents of a to two arrays a and b according to their
sign. Positive summands are kept in a, negative summands are negated and moved to b.
〈set up positive and negative summands 15.1〉≡
double *b = new double[l];
int m=0,n=0;
for(int i=0;i<l;i++){

if(a[i] > 0.0) a[m++] = a[i];
else if(a[i] < 0.0) b[n++] = -a[i];

}

Then the requirements for our sign_of_sum functions from above are met and the one residing in the
same struct is called. The pointers for a and b have to be modified so that the summands are in the
positions starting from 1.
〈compute and return sign 15.2〉≡
const int s = sign_of_sum(a-1,b-1,m,n);
delete[] b;
return s;

Finally we put revised essa, original essa and modified essa into stateless structs, which allows to
use them as template parameter.
〈revised essa struct 15.3〉≡
struct revised_essa{
int sign_of_sum(double *const a, double *const b, int m, int n)const;
〈simpler interface for essa 14.3〉

};

〈original essa struct 15.4〉≡
struct original_essa{
int sign_of_sum(double *const a, double *const b, int m, int n)const;
〈simpler interface for essa 14.3〉

};

〈modified essa struct 15.5〉≡
struct modified_essa{
int sign_of_sum(double *const a, double *const b, int m, int n)const;
〈simpler interface for essa 14.3〉

};

The essa variants are bundled into files. The header contains the struct definitions and with them
the simpler interface so it can be inlined.
〈variants_of_essa.hpp 15.6〉≡
#ifndef VARIANTS_OF_ESSA_HPP
#define VARIANTS_OF_ESSA_HPP

〈revised essa struct 15.3〉
〈original essa struct 15.4〉
〈modified essa struct 15.5〉

#endif//VARIANTS_OF_ESSA_HPP

The actual implementations of the sign_of_sum functions are compiled separately. This assures that
the heap maintenance functions are inlined.
〈variants_of_essa.cpp 15.7〉≡
#include <cmath>
#include "variants_of_essa.hpp"
#include "heap_maintenance_for_essa.hpp"
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〈revised essa 4.1〉
〈original essa 10.1〉
〈modified essa 14.2〉

3.5 Running essa in a specified rounding mode

We can run any of our essa implementations in any rounding mode, but the algorithms will behave
differently. Therefore we create a wrapper function, that uses cgal functionality to set and reset the
rounding mode of the CPU, then call a variant of essa.
〈essa with rounding mode 16.1〉≡
inline int
sign_of_sum(double *const a, double *const b,const int m,const int n)const{
CGAL::FPU_CW_t rounding_mode = CGAL::FPU_get_and_set_cw(ROUNDING_MODE);
int s = ESSA().sign_of_sum(a,b,m,n);
CGAL::FPU_set_cw(rounding_mode);
return s;

}

ROUNDING_MODE and ESSA are template parameters to the struct which encapsulates this function.
It provides the same interface as the other essa implementations.
〈essa with rounding mode struct 16.2〉≡
template <class ESSA,CGAL::FPU_CW_t ROUNDING_MODE=CGAL_FE_TONEAREST>
struct essa_with_rounding_mode{
〈essa with rounding mode 16.1〉
〈simpler interface for essa 14.3〉

};

We put the struct into a header file. CGAL/Interval_nt.h provides the functionality for setting the
rounding mode.
〈essa_with_rounding_mode.hpp 16.3〉≡
#ifndef ESSA_WITH_ROUNDING_MODE_HPP
#define ESSA_WITH_ROUNDING_MODE_HPP

#include <CGAL/basic.h>
#include <CGAL/Interval_nt.h>

〈essa with rounding mode struct 16.2〉

#endif//ESSA_WITH_ROUNDING_MODE_HPP

3.6 Heap maintenance

Next we describe heap maintenance. We use the same functions for heap manipulation for all our
essa variants. The function build_heap creates the heap bottom-up in linear time.
〈heap maintenance 16.4〉≡
inline void
build_heap(double *const a,const int n){
int l = n » 1;
while ( l >= 1 ){
int i = l;
int j = l « 1;
const double top = a[l–];
〈walk down and establish heap property 17.1〉

}
}
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〈walk down and establish heap property 17.1〉≡
while (j <= n){
if( j < n && a[j] < a[j+1] ) ++j;
if( top >= a[j] ) break;

a[i] = a[j];
i = j;
j «= 1;

}
a[i] = top;

The function restore_heap_from_top restores the heap property for the top element a1 by pushing
it downwards in the heap.
〈heap maintenance 16.4〉+≡
inline void
restore_heap_from_top(double *const a,const int n){
int i = 1;
int j = 2;
const double top = a[1];
〈walk down and establish heap property 17.1〉

}

The function restore_heap_from_bottom restores the heap property for a leaf ai in the heap, by
pushing it upwards in the heap.
〈heap maintenance 16.4〉+≡
inline void
restore_heap_from_bottom(double *const a,int i){
int j = i » 1;
const double last = a[i];
while (j > 0 && a[j] < last){
a[i] = a[j];
i = j;
j »= 1;

}
a[i]= last;

}

Heap maintenance is put into a file.
〈heap_maintenance_for_essa.hpp 17.4〉≡
#ifndef HEAP_MAINTENANCE_FOR_ESSA_HPP
#define HEAP_MAINTENANCE_FOR_ESSA_HPP

〈heap maintenance 16.4〉

#endif//HEAP_MAINTENANCE_FOR_ESSA_HPP

4 Examples and experiments

Original essa as described by Ratschek and Rokne has the property that the sequence with the
smaller leading element has an element less in the next iteration. For revised essa we can achieve
this by running it in round-towards-zero, for modified essa by running it in round-up. Then either
y = 0 or y has the same sign as x. If a1 > b1 an element is removed from b but none is inserted.
Similarly the size of a is reduced if b1 > a1. This property might force termination, as the length of
the sequences has a large influence in the termination criteria. On the other hand the sequence whose
length is reduced might actually be the dominant one. Thus it is unclear whether this property is
beneficial.
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4.1 Examples

To illustrate how the variants of essa work and to show that they perform a different number of
iterations, we give two examples. In Table 1 original essa needs less iterations than our revised essa
in the default rounding mode. To construct such an example we exploit the fact that in the original
essa both results of an operation always have the same sign, while the roundoff error in our revised
version may have any sign. This is not the case when running revised essa in round-towards-zero
and consequently it needs as many steps as original essa in this example. In Table 2 both variants
of revised essa need one iteration, while original essa needs four.

4.2 Test data generation

To test the performance of our essa variants, we need some input data. Instead of using data from
a certain application or predicate, we decided to create artificial data. Using artificial data covering
a broad range (hopefully) allows us to draw conclusions for a majority of applications. We will
shortly mention two generators for random sums, taken from the literature, and then describe our
own solution. Our goal is to generate sums with varying exponent ranges, including zero sums, as
they correspond to degenerate constellations in geometric algorithms which occur occasionally.
To test the original essa, Ratschek and Rokne [14] generate sums with 10000 summands, using
floating-point numbers with a mantissa of 24 bits and an exponent in the range of [−127, 127]. To
generate easy examples, simply 10000 numbers are taken from that range. To generate harder sums,
a number c is selected, then −c is inserted eight times into the sum, together with 8c, keeping the sum
zero. This is repeated 1111 times, resulting in 9999 summands. Finally ±2−60 is inserted and the
summands are shuffled, so the sum of the now 10000 summands is ±2−60. The latter scheme can be
generalized by varying the final summand and therefore the value of the sum. We think however, that
the property of 9 or any fixed number of summands canceling out exactly, rarely occurs in practice.
Furthermore this could penalize one algorithm and help another one in an unapparent way, so we
refrained from using this scheme.
Ogita et al. [12] propose a generator for random dot products with a prespecified condition number.
The generator can also be used to generate sums, by transforming the dot product into a sum. Such
a transformation however also imposes a structure on the sum and a generator for sums is easy to
derive and just as easy to implement. The following function returns in a a sum with n summands
and a condition of approximately 2c. Naturally a must provide space for n summands.
〈random sum generation 18.1〉≡
void
generate_random_sum(double *const a,const int n,const int c){
CGAL::MP_Float sum(0);
const int m = n/2;
〈generate first part of sum 18.2〉
〈generate second part of sum 21.1〉
random_integer_generator rig;
std::random_shuffle(a,a+n,rig);

}

The first half of the summands are generated as ±α · 2e with α uniformly drawn from [0, 1] and e
uniformly drawn from 0, . . . , c. It is assured, that 0 and c actually occur as exponent.
〈generate first part of sum 18.2〉≡
for(int i=1;i<m-1;i++){

const int e = static_cast<int>(drand48()*c);
a[i] = ldexp((2*drand48()-1),e);
sum += CGAL::MP_Float(a[i]);

}
a[0] = ldexp((2*drand48()-1),0);
a[m-1] = ldexp((2*drand48()-1),c);
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sum += CGAL::MP_Float(a[0]);
sum += CGAL::MP_Float(a[m-1]);

To generate the second half, for each summand first an accurate floating-point approximation s of
the already generated sum is computed. Then s	 α · 2e is inserted as a summand, with α chosen as
before and e decreasing linearly from c to 0.
〈generate second part of sum 21.1〉≡
for(int i=m;i<n;i++){
const double factor = 1.0 - static_cast<double>(i-m)/static_cast<double>(n-m-1);
const int e = static_cast<int>(factor * c);
a[i] = ldexp((2*drand48()-1),e)-CGAL::to_double(sum);
sum += CGAL::MP_Float(a[i]);

}

Here is how we create zero sums. We select a random summand and compute a best floating-point
approximation s′ to the sum of the remaining summands. We replace the selected summand by −s′
and iterate until the overall sum is zero.
〈random sum generation 18.1〉+≡
void
modify_sum_to_zero(double *const a,const int n){
CGAL::MP_Float sum(a[0]);
for(int i=1;i<n;i++) sum += CGAL::MP_Float(a[i]);

random_integer_generator rig;
while(CGAL::to_double(sum) != 0.0){
const int i = rig(n);
sum -= CGAL::MP_Float(a[i]);
a[i] = -CGAL::to_double(sum);
sum += CGAL::MP_Float(a[i]);

}
}

To assert reproducibility we use our own random integer generator for shuffling the summands.
〈random integer generator 21.3〉≡
struct random_integer_generator{
inline int
operator()(const int n){
double d = drand48();
while(d == 1) d = drand48();
return static_cast<int>(floor(n*d));

}
};

〈sum_generators.hpp 21.4〉≡
#ifndef SUM_GENERATORS_H
#define SUM_GENERATORS_H

double
generate_random_sum(double *const a, const int n,

const int c);

double
modify_sum_to_zero(double *const a, const int n);
#endif

〈sum_generators.cpp 21.5〉≡
#include <cstdlib>
#include <cmath>
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#include <algorithm>

#include <CGAL/basic.h>
#include <CGAL/MP_Float.h>

〈random integer generator 21.3〉
〈random sum generation 18.1〉

4.3 Experimental results

We performed experiments on a notebook with an Intel Core 2 Duo T5500 processor with 1.66
Ghz, using g++ 4.3.2 and cgal 3.3.1. Using the generator from above, we generate 10000 sums
with l summands and approximate condition number c for l ∈ {16, 23, 64, 128, 256, 515} and c ∈
{4, 8, 16, 23, 64, 128}. We measure running time, as well as the number of iterations of the essa
main loop for each sum. Figure 1 and Figure 2 show the average running time in milliseconds for
computing 10 times the sign of each sum. Figure 3 shows the minimum, average and maximum
number of steps needed to compute the sign. We repeat the experiment, after modifying each sum
to have a value of zero. Note that this changes the condition number to ∞ and essa is required to
eliminate all summands. The results are shown in Figure 4, Figure 5 and Figure 6. As competitors
we use original essa, modified essa in round-up, revised essa (in round-to-nearest) and revised essa
in round-towards-zero.
Revised essa distributes new summands to both sequences, while all other three competitors move
both new summands to the sequence which previously had the larger leading summand. However
revised essa and revised essa in round-towards-zero are nearly indistinguishable, both with respect
to running time and number of iterations. Controlling where new summands are moved to does not
seem to have a large impact.
With respect to running time, modified essa is an improvement over original essa but revised essa
is a clear winner. This seems partly to be caused by using standard floating-point operations only,
since modified essa and revised essa are similar with respect to the number of iterations used. The
number of iterations of original essa also shows why it performs badly. It has a larger variance and in
general is larger than for any other essa variant. For many summands and large condition numbers
its minimum is larger than the maximum number of iterations for any other essa variant.
The performance of revised essa seems to be invariant with respect to the condition number, both
in the number of iterations and the running time. It rarely uses more than l iterations, leaving
a large gap to the bound from Theorem 8. While the same holds for the number of iterations of
modified essa, its running time increases with the condition number. The reason is probably that
modified essa is not as good in reducing the number of summands, this makes heap maintenance
more expensive.

5 Conclusion

Our revised essa is clearly an improvement over previously existing essa variants. Revised essa
reduces the number of summands if and only if the subtraction of both leading elements can be per-
formed without rounding error. It also maximizes the cancellation in each iteration. Both properties
lead to a more compact representation of the sum in each step, which helps to meet the termination
criteria early. It is however not competitive to other algorithms that allow to compute the sign of
a sum of floating-point numbers exactly [11]. These algorithms avoid branches in their inner loops,
which are essential for the heap maintenance in essa. Unlike these algorithms however revised essa
is completely immune to overflow and underflow and runs correctly in any rounding mode. It might
therefore have applications where these properties are required.
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Figure 1: Running times for nonzero sums. The x-axis is labeled with the number of summands.
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Figure 4: Running times for zero sums. The x-axis is labeled with the number of summands.
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A Additional code

A.1 Checking essa

The next chunk can be inserted in any of the essa variants. It checks, that both heaps contain only
positive elements and that the topmost elements a1 and b1 are the largest in a and b respectively.
〈assert a and b 30.1〉≡
for (int i=2; i<=m; i++)
{ if ( (a[1] < a[i]) || (a[i] <= 0) )
{ std::cout « "i: " « i « " m: " « m « " n: " « n « std::endl;
for (int j=1;j<=m;j++) { std::cout « a[j] « std::endl; }

}
assert( (a[1] >= a[i]) );
assert( (a[i] > 0) );

}
for (int i=2;i<=n;i++)
{ if ( (b[1] < b[i]) || (b[i] <= 0) )
{ std::cout « "i: " « i « " n: " « n « " m: " « m « std::endl;
for (int j=1;j<=n;j++) { std::cout « b[j] « std::endl; }

}
assert( (b[1] >= b[i]) );
assert( (b[i] > 0) );

}

The next chunk contains a function that checks that all essa variants return the same sign for a given
sum. The sum given to the function is not modified.
〈assert consistency of essa variants 30.2〉≡
void
assert_essa(const double *const c, const int l){
double* cc = new double[l];

copy_sum(cc,c,l);
int s1 = revised_essa().sign_of_sum(cc,l);
copy_sum(cc,c,l);
int s2 = revised_essa_in_round_toward_zero().sign_of_sum(cc,l);
copy_sum(cc,c,l);
int s3 = original_essa().sign_of_sum(cc,l);
copy_sum(cc,c,l);
int s4 = modified_essa_in_round_up().sign_of_sum(cc,l);
copy_sum(cc,c,l);
int s5 = modified_essa_in_round_toward_zero().sign_of_sum(cc,l);

if( s1 != s2 || s2 != s3 || s3 != s4 || s4 != s5 ){
std::cout « "ESSA variants inconsistent, exiting." « std::endl

« s1 « " " « s2 « " " « s3 « " " « s4 « " " « s5
« std::endl « std::endl;

std::cout.precision(20);
for(int i =0;i<l;i++) std::cout « c[i] « std::endl;
exit(1);

}

delete[] cc;
}
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A.2 Counting and verbose versions of all essa variants

Here we give modified versions of all three essa variants. They are augmented with code for printing
the content of the heaps and the results of the error-free transformations. Additionally they do not
return the sign, but the number of iterations taken by the algorithm.
To count the number of iterations a variant of essa takes, we need a counter and a modified termi-
nation criteria.
〈counter for steps of essa 31.1〉≡
int steps = 0;

〈termination criteria returning steps 31.2〉≡
if ( m == 0 || n == 0 || a[1] > n*b[1] || b[1] > m*a[1] ) return steps;
steps++;

Here we have all three essa variants again, composed of the same chunks as above. Again we
encapsulate the functions into a struct.
〈counting original essa 31.3〉≡
int
sign_of_sum(double *const a, double *const b, int m, int n)const{
〈counter for steps of essa 31.1〉
〈build heap 4.2〉
while (true){
〈print a and b 33.2〉
〈termination criteria returning steps 31.2〉
〈print a-b=a-u+u-b 34.2〉
〈original essa loop body 10.3〉

}
}

〈counting original essa struct 31.4〉≡
struct counting_original_essa{
〈counting original essa 31.3〉
〈simpler interface for essa 14.3〉

};

〈counting modified essa 31.5〉≡
int
sign_of_sum(double *const a, double *const b, int m, int n)const{
〈counter for steps of essa 31.1〉
〈build heap 4.2〉
while (true){
〈print a and b 33.2〉
〈termination criteria returning steps 31.2〉
〈print a-b=a-u+u-b modified 34.3〉
〈modified essa loop body 14.1〉

}
}

〈counting modified essa struct 31.6〉≡
struct counting_modified_essa{
〈counting modified essa 31.5〉
〈simpler interface for essa 14.3〉

};
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〈counting revised essa 32.1〉≡
int
sign_of_sum(double *const a, double *const b, int m, int n)const{
〈counter for steps of essa 31.1〉
〈build heap 4.2〉
while (true){
〈print a and b 33.2〉
〈termination criteria returning steps 31.2〉
〈print a-b=x+y 33.3〉
〈revised essa loop body 7.1〉

}
}

〈counting revised essa struct 32.2〉≡
struct counting_revised_essa{
〈counting revised essa 32.1〉
〈simpler interface for essa 14.3〉

};

The essa variants are bundled into one file.
〈counting_variants_of_essa.hpp 32.3〉≡
#ifndef COUNTING_VARIANTS_OF_ESSA_HPP
#define COUNTING_VARIANTS_OF_ESSA_HPP

#include <cmath>
#include "heap_maintenance_for_essa.hpp"

〈includes for output 32.4〉
〈double to binary string conversion 32.5〉

〈counting original essa struct 31.4〉
〈counting modified essa struct 31.6〉
〈counting revised essa struct 32.2〉

#endif//COUNTING_VARIANTS_OF_ESSA_HPP

A.3 Printing informations from within essa

The code chunks are useful to print information from the various essa variants. They are inserted
into the code, but do nothing unless ESSA_VERBOSE is defined.
〈includes for output 32.4〉≡
#ifdef ESSA_VERBOSE
#include <algorithm>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <bitset>

#endif //ESSA_VERBOSE

The following code converts a double into a string showing its binary representation such that it is
usable in a tex file.
〈double to binary string conversion 32.5〉≡
#ifdef ESSA_VERBOSE

union ieee_double{
double d;
unsigned long long l;
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ieee_double(const double a):d(a){};
};
#endif//ESSA_VERBOSE

〈double to binary string conversion 32.5〉+≡
#ifdef ESSA_VERBOSE
std::string tex_string(const ieee_double dble){

std::ostringstream tex;
tex « "\\verb2";

unsigned long low = (dble.l & 0xFFFFFFFFULL);
unsigned long high = (dble.l & 0xFFFFF00000000ULL) » 32;
int bexp = (dble.l & 0x7FF0000000000000ULL) » 52;
int bsig = (dble.l & 0x8000000000000000ULL) » 63;

if(bexp == 2047){
if(high == 0 && low == 0){
if ( bsig == 1 ) { tex « "-"; } else { tex « "+"; }
tex « "inf" « std::setw(52) « 2 « "$\\hphantom{_2}$& ";

}else{
tex « " NaN" « std::setw(52) « 2 « "$\\hphantom{_2}$& ";

}
return tex.str();

}else if(bexp == 0 && high == 0 && low == 0){
tex « " 0" « std::setw(54) « 2 « "$\\hphantom{_2}$& ";
return tex.str();

}

std::bitset<32> L(low);
std::bitset<20> H(high);
int expo = (bexp == 0) ? -1022 : bexp - 1023;

if ( bsig == 1 ) { tex « "-"; } else { tex « " "; }
if ( bexp == 0 ) { tex « "0."; } else { tex « "1."; }
tex « H « L « "2$_2$ & $\\cdot 2^{" « std::setw(5) « expo « "}$";

return tex.str();
}
#endif//ESSA_VERBOSE

A chunk for printing the contents of both heaps. Modifies, i.e., sorts the heaps.
〈print a and b 33.2〉≡
#ifdef ESSA_VERBOSE
std::sort(a+1,a+m+1,std::greater<double>());
for (int j=1;j<=m;j++) {
std::cout « "$a_" « j « "=\\,$ & "

« tex_string(a[j]) « "\\\\" « std::endl; }
std::sort(b+1,b+n+1,std::greater<double>());
for (int j=1;j<=n;j++) {
std::cout « "$b_" « j « "=\\,$ & "

« tex_string(b[j]) « "\\\\" « std::endl; }
std::cout « std::endl;
#endif//ESSA_VERBOSE

A chunk for printing the results of the error-free transformation from revised essa.
〈print a-b=x+y 33.3〉≡
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#ifdef ESSA_VERBOSE
{ double s = a[1] - b[1];
double t = 0.0;

if(s > 0.0) t = (a[1] - s) - b[1];
else if(s < 0.0) t = a[1] - (b[1] + s);
〈print s and t 34.1〉

}
#endif//ESSA_VERBOSE

The actual output code.
〈print s and t 34.1〉≡
std::cout « "$ x=\\,$ & " « tex_string(s) « "\\\\" « std::endl

« "$ y=\\,$ & " « tex_string(t) « "\\\\" « std::endl
« std::endl « std::endl;

A chunk for printing the results of the error-free transformation from original essa.
〈print a-b=a-u+u-b 34.2〉≡
#ifdef ESSA_VERBOSE
{
〈exponent extraction 10.2〉
double s,t;
if (E == F){
s = a[1] - b[1];
t = 0.0;

}else if (E > F){
double u = ldexp(1.0,F-1);
if( b[1] != u ) u *= 2;
s = a[1] - u;
t = u - b[1];

}else{ // (E < F)
double u = ldexp(1.0, E-1);
if ( a[1] != u ) u *= 2;
s = u - b[1];
t = a[1] - u;

}
〈print s and t 34.1〉

}
#endif//ESSA_VERBOSE

A chunk for printing the results of the error-free transformation from modified essa.
〈print a-b=a-u+u-b modified 34.3〉≡
#ifdef ESSA_VERBOSE
{
〈exponent extraction 10.2〉
frexp(a[1],&E);
frexp(b[1],&F);
double s,t;
if(E == F){
s = a[1] - b[1];
t = 0.0;

}else if (E > F){
const double msba = ldexp(1.0,E-1);
const double u = (msba+b[1])-msba;
s = a[1] - u;
t = u - b[1];

}else{ // (E < F)
const double msbb = ldexp(1.0,F-1);
const double u = (msbb+a[1])-msbb;
s = u - b[1];
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t = a[1] - u;
}
〈print s and t 34.1〉

}
#endif//ESSA_VERBOSE

We use the code above to print the examples from Section 4.1.
〈examples.cpp 35〉≡
#include <cmath>

#define ESSA_VERBOSE
#include "essa_with_rounding_mode.hpp"
#include "counting_variants_of_essa.hpp"

typedef essa_with_rounding_mode<counting_modified_essa,CGAL_FE_UPWARD>
counting_modified_essa_in_round_up;

using namespace std;

〈copy sum 36.1〉

void run_essa(const double *const c,const int l){
double* cc = new double[l];

copy_sum(cc,c,l);
cout « "revised_essa" « endl;
counting_revised_essa().sign_of_sum(cc,l);

copy_sum(cc,c,l);
cout « "original_essa" « endl;
counting_original_essa().sign_of_sum(cc,l);

copy_sum(cc,c,l);
cout « "modified_essa_in_round_up" « endl;
counting_modified_essa_in_round_up().sign_of_sum(cc,l);

delete[] cc;
}

int main(int /*argc*/, char * /*argv*/[]){

double a[6] = { ldexp(5217238486728575.,5),
ldexp(5217238486728575.,5),
ldexp(8591413602653375.,1),
-ldexp(6980364834504767.,5),
-ldexp(8564466927325181.,3),
-ldexp(4523292875232383.,0)};

run_essa(a,6);

double b[6] = { ldexp(1.,0),
ldexp(1.,0),
-ldexp(1.,-2)-ldexp(1.,-54),
-ldexp(1.,-2),
-ldexp(1.,-54),
-ldexp(1.,-54)};

run_essa(b,6);
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double c[4] = { ldexp(1.,1)+ldexp(1.,-50)+ldexp(1.,-51),
-ldexp(1., 0)-ldexp(1.,-51)-ldexp(1.,-52),
-ldexp(1.,-1)-ldexp(1.,-52),
-ldexp(1.,-1)-ldexp(1.,-52)};

run_essa(c,4);

return 0;
}

A.4 Performing Experiments

〈copy sum 36.1〉≡
inline void
copy_sum(double *const dest,const double *const source,const int n){
for(int i=0;i<n;i++) dest[i] = source[i];

}

〈experiments.cpp 36.2〉≡
#include <fstream>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <vector>
#include <iterator>

#include <CGAL/Timer.h>
#include <CGAL/Threetuple.h>

#include "sum_generators.hpp"
#include "variants_of_essa.hpp"
#include "counting_variants_of_essa.hpp"
#include "essa_with_rounding_mode.hpp"

using namespace std;

〈typedefs for essa in special rounding mode 39.3〉
〈copy sum 36.1〉
〈assert consistency of essa variants 30.2〉
〈summands and condition number parameters 36.3〉

〈summands and condition number parameters 36.3〉≡
int num_sums;
int repetitions;
int max_summands;
vector<int> summands;
vector<int> exponents;

〈summands and condition number parameters 36.3〉+≡
string trimline(string s){
s.erase(s.find_first_of(’#’));
if(s.length() == 0) return s;
if(s.at(0) == ’ ’) s.erase(0,s.find_first_not_of(’ ’));
if(s.length() == 0) return s;
if(s.at(s.length()-1) == ’ ’) s.erase(s.find_last_not_of(’ ’)+1);
return s;

}

36



〈get line from config file 37.1〉≡
getline(cfg,line);
if(cfg.fail()){

cout « "Error while reading ’" « filename « "’." « endl;
exit(1);

}
linestrm.clear();
linestrm.str(trimline(line));

〈error while parsing line 37.2〉≡
if(linestrm.fail()){
cout « "Error while reading ’" « filename

« "’ in line ’" « line « "’." « endl;
exit(1);

}

〈summands and condition number parameters 36.3〉+≡
void read_config_file(string filename){
ifstream cfg(filename.c_str());
if(!cfg){
cout « "Could not open ’" « filename « "’ for reading." « endl;
exit(1);

}

string line;
stringstream linestrm;

〈get line from config file 37.1〉
linestrm » num_sums;
〈error while parsing line 37.2〉

〈get line from config file 37.1〉
linestrm » repetitions;
〈error while parsing line 37.2〉

〈get line from config file 37.1〉
while(!linestrm.eof()){
int s;
linestrm » s;
〈error while parsing line 37.2〉
summands.push_back(s);

}
max_summands = *max_element(summands.begin(),summands.end());

〈get line from config file 37.1〉
while(!linestrm.eof()){
int s;
linestrm » s;
〈error while parsing line 37.2〉
exponents.push_back(s);

}

cfg.close();
}

〈experiments.cpp 36.2〉+≡
void
flush_results(vector<vector<vector<double> > >& results,
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string zname,
vector<int>& znumbers,
vector<int>& xnumbers,
bool transpose = false){

for(size_t i=0;i<znumbers.size();i++){

stringstream filename;
filename « "results_" « zname « "_"

« setfill(’0’) « setw(5) « znumbers[i] « "_"
« setw(5) « num_sums « "_"
« setw(5) « repetitions;

cout « filename.str() « endl;
ofstream ostrm(filename.str().c_str());
ostrm.setf(ofstream::fixed);
ostrm.precision(2);

ostrm « "# " « zname « "=" « znumbers[i]
« " sums=" « num_sums
« " repetitions=" « repetitions « endl;

for(size_t j=0;j<xnumbers.size();j++){
ostrm « setw(3) « j « " " « setw(5) « xnumbers[j] « " ";

vector<double>& ynumbers = transpose ? results[j][i] : results[i][j];

for(size_t k=0;k<ynumbers.size();k++)
ostrm « setw(6) « ynumbers[k] « " ";

ostrm « endl;
}

}
}

〈experiments.cpp 36.2〉+≡
template <class SSA> double
measure_time(vector<double*>& sums,const int num_summands){

double *sum = new double[num_summands];
CGAL::Timer tmr;
tmr.start();

for(size_t i=0;i<sums.size();i++){
for(int j=0;j<repetitions;j++){
copy_sum(sum,sums[i],num_summands);
SSA().sign_of_sum(sum,num_summands);

}
}

tmr.stop();
delete[] sum;
return tmr.time();

}

〈experiments.cpp 36.2〉+≡
template <class SSA> CGAL::Threetuple<double>
measure_steps(vector<double*>& sums,const int num_summands){
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double *sum = new double[num_summands];
CGAL::Threetuple<double> steps(0,53.0*num_summands*num_summands,0);

for(size_t i=0;i<sums.size();i++){
copy_sum(sum,sums[i],num_summands);
const double s = SSA().sign_of_sum(sum,num_summands);
steps.e0 += s;
steps.e1 = min(steps.e1,s);
steps.e2 = max(steps.e2,s);

}

steps.e0 /= sums.size();
delete[] sum;
return steps;

}

〈generate nonzero sums 39.1〉≡
for(size_t k=0;k<sums.size();k++){
generate_random_sum(sums[k],summands[i],exponents[j]);
assert_essa(sums[k],summands[i]);

}

〈modify sums to zero 39.2〉≡
for(size_t k=0;k<sums.size();k++){
modify_sum_to_zero(sums[k],summands[i]);
assert_essa(sums[k],summands[i]);

}

〈typedefs for essa in special rounding mode 39.3〉≡
typedef essa_with_rounding_mode<revised_essa,CGAL_FE_TOWARDZERO>

revised_essa_in_round_toward_zero;
typedef essa_with_rounding_mode<modified_essa,CGAL_FE_UPWARD>

modified_essa_in_round_up;
typedef essa_with_rounding_mode<modified_essa,CGAL_FE_TOWARDZERO>

modified_essa_in_round_toward_zero;

typedef essa_with_rounding_mode<counting_modified_essa,CGAL_FE_UPWARD>
counting_modified_essa_in_round_up;

typedef essa_with_rounding_mode<counting_revised_essa,CGAL_FE_TOWARDZERO>
counting_revised_essa_in_round_toward_zero;

〈perform experiments for sums 39.4〉≡
*resi++ = measure_time<modified_essa_in_round_up >(sums,summands[i]);
*resi++ = measure_time<original_essa >(sums,summands[i]);
*resi++ = measure_time<revised_essa >(sums,summands[i]);
*resi++ = measure_time<revised_essa_in_round_toward_zero>(sums,summands[i]);

steps = measure_steps<counting_modified_essa_in_round_up >(sums,summands[i]);
*resi++ = steps.e0; *resi++ = steps.e1; *resi++ = steps.e2;
steps = measure_steps<counting_original_essa >(sums,summands[i]);
*resi++ = steps.e0; *resi++ = steps.e1; *resi++ = steps.e2;
steps = measure_steps<counting_revised_essa >(sums,summands[i]);
*resi++ = steps.e0; *resi++ = steps.e1; *resi++ = steps.e2;
steps = measure_steps<counting_revised_essa_in_round_toward_zero>(sums,summands[i]);
*resi++ = steps.e0; *resi++ = steps.e1; *resi++ = steps.e2;
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〈experiments.cpp 36.2〉+≡
int main(int argc, char* argv[]){

if(argc < 2){
cout « "usage: " « argv[0] « " config_file" « endl;
exit(1);

}

read_config_file(argv[1]);
cout « "num_sums: " « num_sums

« " repetitions: " « repetitions « endl;

unsigned short seed[3] = {0x7d1b, 0xa934, 0xbf10};
time_t s = time(0);
seed[0] = s » 16;
seed[2] = (s & 0x0000FFFF);
seed48(seed);

vector<double*> sums(num_sums);
for(size_t i=0;i<sums.size();i++) sums[i] = new double[max_summands];

vector<vector<double> > tmp2(exponents.size(),vector<double>());
vector<vector<vector<double> > > results(summands.size(),tmp2);
tmp2.resize(0);

for(int i=static_cast<int>(summands.size())-1;i>=0;i–){
//for(int i=0;i<summands.size();i++){
cout « setw(5) « summands[i] « " :" « flush;
for(int j=static_cast<int>(exponents.size())-1;j>=0;j–){
//for(int j=0;j<exponents.size();j++){
cout « setw(5) « exponents[j] « flush;

CGAL::Threetuple<double> steps;
back_insert_iterator<vector<double> > resi(results[i][j]);

〈generate nonzero sums 39.1〉
〈perform experiments for sums 39.4〉
〈modify sums to zero 39.2〉
〈perform experiments for sums 39.4〉

}
cout « endl;

}

flush_results(results,"summands",summands,exponents,false);
flush_results(results,"exponent",exponents,summands,true);

for(size_t i=0;i<sums.size();i++) delete[] sums[i];

return 0;
}

A.5 Plotting experimental results

〈plotting.cpp 40.2〉≡
#include <iostream>
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#include <fstream>
#include <sstream>
#include <iomanip>
#include <vector>

using namespace std;

〈summands and condition number parameters 36.3〉

〈plotting.cpp 40.2〉+≡
void
plot(string zname, int znumber, vector<int>& xitems,

string type, int offset, bool plotkey){

stringstream infile;
infile « "results_" « zname « "_"

« setfill(’0’) « setw(5) « znumber « "_"
« setw(5) « num_sums « "_"
« setw(5) « repetitions;

stringstream outfile;
outfile « "images/" « type « "_" « zname « "_"

« setfill(’0’) « setw(5) « znumber « ".tex";

ofstream gpfile("tmp.gp");

〈gnuplot setup 41.2〉

if(type == "zero_times" || type == "nonzero_times"){
〈gnuplot plotting times 42.1〉

}else{
〈gnuplot plotting steps 42.2〉

}

gpfile.close();
if(system("gnuplot tmp.gp")) exit(1);
cout « outfile.str() « endl;

}

〈gnuplot setup 41.2〉≡
gpfile « "set terminal epslatex color size 8.3cm, 5.5cm font \"\" 8" « endl

« "set lmargin 4" « endl
« "set output \"tmp.tex\"" « endl
« "set key off" « endl
« endl
« endl
« "set style line 1 lt 1 lw 2 lc rgb ’#33ff33’ pt 9" « endl
« "set style line 2 lt 1 lw 2 lc rgb ’#009900’ pt 7" « endl
« "set style line 3 lt 1 lw 2 lc rgb ’#ff9933’ pt 2" « endl
« "set style line 4 lt 1 lw 2 lc rgb ’#ff3300’ pt 1" « endl
« "set style line 5 lt 1 lw 2 lc rgb ’#8f008f’ pt 5" « endl
« endl;

gpfile « "set xtics (";
for(size_t j=0;j<xitems.size()-1;j++) gpfile « "\"" « xitems[j] « "\" " « j « ",";
gpfile « "\"" « xitems[xitems.size()-1] « "\"" « xitems.size()-1 « ") nomirror" « endl;

if(type == "zero_steps" || type == "nonzero_steps"){
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if(zname == "summands") gpfile « "set ytics autofreq " « znumber/2 « endl;
else gpfile « "set ytics autofreq " « xitems[xitems.size()/2] « endl;

}

〈gnuplot plotting times 42.1〉≡
if(plotkey){
gpfile « "set key left top Left reverse invert spacing 1.2" « endl;

}else{
gpfile « "set label \"";
if(zname == "summands") gpfile « znumber « " " « zname;
if(zname == "exponent") gpfile « "exponent range 0..." « znumber;
gpfile « "\" at first 0, graph 0.9" « endl;

}
gpfile « "set xrange [" « -0.2 « ":" « xitems.size()-0.8 « "]" « endl

« "set yrange [0:] writeback" « endl
« endl
« "set output \"" « outfile.str() « "\"" « endl
« "plot \’" « infile.str() « "\’ using 1:" « offset+3
« " title \"\\\\footnotesize \\\\rtzESSA\" with linespoints ls 3,\\" « endl
« " \’" « infile.str() « "\’ using 1:" « offset+2
« " title \"\\\\footnotesize \\\\revESSA\" with linespoints ls 4,\\" « endl
« " \’" « infile.str() « "\’ using 1:" « offset+0
« " title \"\\\\footnotesize \\\\modESSA\" with linespoints ls 5,\\" « endl
« " \’" « infile.str() « "\’ using 1:" « offset+1
« " title \"\\\\footnotesize \\\\impESSA\" with linespoints ls 2 " « endl
« endl;

〈gnuplot plotting steps 42.2〉≡
if(plotkey) gpfile « "set key left bottom Left reverse invert spacing 1.2" « endl;
gpfile « "set label \"";
if(zname == "summands") gpfile « znumber « " " « zname;
if(zname == "exponent") gpfile « "exponent range 0..." « znumber;
gpfile « "\" at first 0, graph 0.9" « endl;
gpfile « "set xrange [" « -0.4 « ":" « xitems.size()-0.6 « "]" « endl

« "set yrange [0:]" « endl
« endl
« "set output \"" « outfile.str() « "\"" « endl
« "plot \’" « infile.str() « "\’ using ($1+0.21):"
« offset+9 « ":" « offset+10 « ":" « offset+11
« " title \"\\\\footnotesize \\\\rtzESSA\" with errorbars ls 3,\\" « endl
« " \’" « infile.str() « "\’ using ($1+0.07):"
« offset+6 « ":" « offset+7 « ":" « offset+8
« " title \"\\\\footnotesize \\\\revESSA\" with errorbars ls 4,\\" « endl
« " \’" « infile.str() « "\’ using ($1-0.07):"
« offset+0 « ":" « offset+1 « ":" « offset+2
« " title \"\\\\footnotesize \\\\modESSA\" with errorbars ls 5,\\" « endl
« " \’" « infile.str() « "\’ using ($1-0.21):"
« offset+3 « ":" « offset+4 « ":" « offset+5
« " title \"\\\\footnotesize \\\\impESSA\" with errorbars ls 2 " « endl
« endl;

〈plotting.cpp 40.2〉+≡
int main(int argc,char*argv[]){

if(argc < 2){
cout « "usage: " « argv[0] « " configfile" « endl;
return 1;

}
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read_config_file(argv[1]);

string types[4] = {"nonzero_times","nonzero_steps","zero_times","zero_steps"};
int offsets[4] = { 3, 7, 19, 23};

for(int j = 0;j<4;j++){
for(size_t i=0;i<summands.size();i++)
plot("summands",summands[i],exponents,types[j],offsets[j],

summands[i] == summands[summands.size()-1]);

for(size_t i=0;i<exponents.size();i++)
plot("exponent",exponents[i],summands,types[j],offsets[j],

exponents[i] == exponents[exponents.size()-1]);
}
return 0;

}
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