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Template Little Numbers:

A Toolkit for More Userfriendly

Efficient Exact Geometric Computation∗

Jan Tusch

September 24, 2009

Abstract

Template Little Numbers (TLN) is a prototypical C++ toolkit to support exact geometric com-
putation, similar to Fortune and van Wyk’s LN [4] toolkit. However, TLN uses expression template
techniques and thus, in contrast to LN, does not require separate preprocessing of the C++ source
code. We present design and implementation of TLN and compare the efficiency of implementations
of geometric predicates derived from TLN with other approaches.

1 Introduction

Geometric algorithms are usually designed in a theoretical model of computation such as the Real-
RAM [9] which assumes that all computations with real numbers are exact. Algorithms implemented
by directly replacing the arithmetic of the model with floating-point arithmetic may not yield correct
results. They even may crash or loop [18, 10]. Exact geometric computing (EGC) is one way to
avoid problems caused by this discrepancy between a theoretical model of computation in which
the algorithms are proven to be correct, and the physical platforms on which the algorithms are
implemented on the other hand. The idea is to use extended precision arithmetic such that the
algorithm behaves as if all computations were exact. By using EGC we make sure that all decisions
done in the control flow of an algorithm are correct.

A straightforward way to implement EGC is to use software packages providing multiprecision
arithmetic. Such libraries provide number types, that can store values of arbitrary precision (ignoring
the limitation of a limited amount of memory etc.). Thus, if we replace the built-in bounded precision
hardware number types by such software number types the programmer can more or less directly
translate the description in the theoretical model of computation to a physical implementation of a
geometric algorithm.

Many algorithms in computational geometry evaluate the relative position of two or more ge-
ometric objects, such as points, lines and circles etc. Depending on the outcome of testing for a
particular configuration of these objects different branches of execution are pursued. Many tests in
geometric computation can be formulated as a predicate that returns the sign of a polynomial in the
coordinates of the involved geometric objects.

When implementing an algorithm to compute the sign of such polynomials, the programmer is
facing the following dilemma: machine arithmetic using hardware supported number types is fast
but error-prone where software multiprecision computations are exact but slow. Fortunately, many
platforms implement floating-point arithmetic conforming to the IEEE 754 standard, see [5] and the
references cited therein. Here, each basic operation, such as +,−, ∗ introduces a bounded relative
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error of the computed result. Hence, if the absolute value of the result computed using floating-point
arithmetic is large enough we can trust the sign of the result.

In this way we can avoid the expensive multiprecision computation by checking against an error
bound. This technique is called numerical filtering in general, or floating-point filter when floating-
point arithmetic is used. If the filter fails to certify the correctness of the sign we resort to some sort
of exact computation. A floating-point filter is called static if it does not depend on the values of the
variables of the polynomial. Since, the error made in each machine operation is a relative error this
requires an upper bound on the absolute value of the variables. Then the error-bound only depends
on the sequence of operations used in the computation. On the contrary, a dynamic filter uses the
values of the variable together with the floating-point approximation to compute the error bound. A
hybrid approach using both methods is called semi-static filter.

To apply these concepts in practice, tools [4, 2] have been developed that transform critical sec-
tions of the source code into code providing correct decisions using floating-filters and multiprecision
arithmetic for the C++ language. These tools are preprocessors searching the source code for spe-
cial statements that the programmer uses to annotate the critical sections of the code. We show
that reliable geometric predicates including numerical filtering and exact arithmetic can be realized
user-friendly without external tools by using the C++ Expression Templates of TLN.

TLN is a prototypic implementation based on the concepts described in [4]. It provides a user-
friendly way to reliably determine the sign of polynomial expressions in C++. The expressions can
contain the usual +,−, ∗ operations and variables. The type of a variable is the template class
integer<L>, where L is a constant that bounds the bitlength of the variable of this type. In other
words, the absolute value of any variable of type integer<L> is less than 2L. Thus, all variables
must be integers for which the maximum absolute values must be known at compile time. These
maximum values are used in a static filter which is more efficacious when the actual input values are
close to this upper bound.

The programmer uses integer<L> as if it were a multiprecision number type. Polynomial expres-
sions over variables of this type should be passed directly to the sign(...) function. This is due to
a limitation in the C++ language, that does not allow for automatic type deduction of the result type
in assignments.

The rest of the paper is organized as follows: After reviewing similar tools in section 2, we give
a brief introduction to C++ Expression Templates. We describe many details of the TLN implemen-
tation in section 4. In section 5 we present experimental results demonstrating the efficiency of TLN
compared to off-the-shelf multiprecision number types. We conclude with a discussion and mention
perspectives on how to extend and improve our prototype implementation in section 6.

2 Related Work

Fortune and van Wyk where among the first to demonstrate the effectiveness of numeric filters when
they developed LN – a preprocessor that generates code for geometric integer predicates and C++-
classes representing constructed geometric objects, e.g. intersection points [4]. Using LN requires to
learn a macro-language that the preprocessor can understand. TLN, however, solely uses C++ language
features to trigger the generation of exact evaluation and filter code. Clearly, C++ expression templates
cannot compete with the algorithmic power offered by a preprocessor, but provide an easy to use
user-interface.

EXPCOMP – another preprocessor in the spirit of LN was developed by Burnikel, Funke and Seel
[2]. Again the user has to annotate the source code to obtain exact results. EXPCOMP can generate
static and semi-static filters for integer and floating-point expressions.

Another interesting code generator for exact predicates was developed by Nanevski, Blelloch and
Harper [8]. They describe how to generalize the approach of Shewchuk [11] to evaluate the polynomial
expression adaptively. That is, the floating-point approximation is refined in several stages by reusing
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the results from the previous stage until the sign can be certified.
A comparison of our method with the results produced by the above tools is not possible, since

to our knowledge, none of the above code generators is publicly available.

3 C++ Expression Templates

C++ templates were born in the beginning of the 90s – primarily for the purpose of generic program-
ming. Further development led, among others to the Standard Template Library emerging from the
evolving capabilities of C++ templates, see [13, 12, 14] for the early history of the C++ language. In the
mid 90s, Todd Veldhuizen and David Vandevoorde independently discovered the potential of using
template techniques to speed up computations compared to conventional ways to code expression
evaluation in the C++ language [17, 15, 16].

A celebrated feature of C++ is operator overloading. Operator overloading is useful because the
developer can write programs using notation closer to the target domain, e.g. algebra. In this way
custom types look like types built into the language. For example, a multiprecision C++ libraries
overloads the operators corresponding to the supported operation on its number types to increase
readability of the code. However, this user-friendliness comes at the price of additional overhead
during execution of such code. For example consider an extended precision data type storing an
integer with two times the precision of a double variable. We store the high and low bits of the
number in two separate double variables:

struct DoubleDouble {
...
double high, low;
...

};

To make the type user-friendly one would overload the usual operators on such number type:

DoubleDouble operator+ (const DoubleDouble& a,
const DoubleDouble& b)

{
DoubleDouble result;
result.high = a.high + b.high;
result.low = a.low + b.low;
return result;

}

Now, suppose given three numbers a,b and c of type DoubleDouble. For the statement

DoubleDouble d = (a + b) + c;

the compiler generates the following sequence of operations

1. Evaluate a+b and store the result in a temporary variable, say tmp of type DoubleDouble

2. Evaluate tmp+c and store the result in a temporary variable of type DoubleDouble

3. Call the assignment operator of DoubleDouble (straightforward, omitted here) for d and this
temporary variable

Thus, to add six numbers we have allocated two temporary objects which can be a dramatic slowdown
if the objects are larger. The idea to avoid this overhead is lazy evaluation.

The problem is that the assignment operator does not know how the object on the right of the
= sign (RHS) is created. The solution is to evaluate RHS within the assignment using Expression
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Templates. To achieve lazy evaluation we record the construction of RHS in a binary expression type
tree. For a binary operation we have a template class

template <class L, class R, class Op>
struct BinXpr {
const L& l;
const R& r;
inline BinXpr(const L& ll, const R& rr): l(ll), r(rr) {}

};

and a class representing the operation +:

template struct plus {
static inline
double apply(double l, double r) {

return l + r;
}

};

The +-operator is overloaded to return the corresponding BinXpr<...> type object using partial
template specialization. We omit the details here. As a consequence the assignment in our example
is now instantiated with a RHS of type

BinXpr< BinXpr< DoubleDouble,
DoubleDouble> , plus >,

DoubleDouble , plus >

What is left is to implement the assignment by evaluating the high and low part of the result of the
expression:

template <class Expression>
DoubleDouble& DoubleDouble::operator= (const Expression& e){
high = evalHigh(e);
low = evalLow(e);

}

The actual evaluation is implemented recursively using the function template

template <class L, class R, class Op>
static inline double evalHigh(const BinXpr<L,R,Op>& e){
return Op::apply( e.l, e.r );

}

for binary expressions. Recursion stops when a leaf of the expression type tree is reached. Therefore,
we give a specialization for the type DoubleDouble:

template <>
static inline double evalHigh(const DoubleDouble& d){
return d.high;

}

Similarly evalLow is implemented. The careful reader may insist that instead of creating two tempo-
rary objects the compiler creates a tree of nested types: So what is the benefit of doing all this? Most
likely the compiler will inline all the function calls including constructors and operators because they
are very short and simple. When a function is inlined, the compiler, instead of copying the arguments
on the execution stack and making a function call, virtually pastes the code of the function body at
the place of the call. Thus, the resulting code will be broken down to something like
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high = (a.high + b.high ) + c.high;
low = (a.low + b.low ) + c.low;

Clearly, the benefit we obtain depends on the code optimization algorithms implemented in the
compiler, i.e., the strategy on when to inline function calls. Experiments have shown, that vector
and matrix expressions evaluated with C++ Expression Templates can be evaluated efficiently [17]
as long as the objects are not too large, e.g., when the maximum inlining depth of the compiler is
reached.

4 The TLN Library

The design of TLN was mainly pointed to two objectives: user-friendliness and performance. However,
sometimes these goals are competing in the sense that, an increase in performance can only be
achieved by providing additional information.

The user interface consists of two main parts:

• function and number types used for sign computation

• selection of filter and evaluation algorithms

The latter is implemented by a so-called policy class that can be passed to the sign evaluation
function. The policy class contains type definitions of classes responsible for the numerical filtering
and exact evaluation of the code. By providing her own policy class, the user can thereby exchange
parts of the sign evaluation procedure. For example, the user in this way can deactivate the filter by
changing the filter type of the policy class. Currently, only the exact evaluation algorithm described
below is available. We provide reasonable defaults to satisfy the programmer who does not want to
care about the details of the implementation, as long as the implementation is reliable and sufficiently
efficient. The function and number types used for sign computation are described in the following.

The simplest polynomial expressions are variables and constants, each having a maximum bitlength
that is known at compile time. These variables are instances of the template

template <unsigned int BIT_LEN >
struct integer {

...
typedef double NT;
NT value;
....

};

where BIT LEN is an upper bound on the number of bits of the value of the variable.
The computation of the sign of a polynomial over such variables is triggered by the function

template tln::sign(...). The actual sign computation is performed by the Filter class defined
in the provided Policy class.

template <typename Exp, typename Policy>
TLN_INLINE int sign(const Exp& e, const Policy&){

typedef typename expression_traits<Exp>::type Expression;
typedef typename Policy::Filter Filter;

return Filter::sign(e,policy);
}
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If only the polynomial expression to be evaluated is given, we use a default policy to compute the
sign:

template <typename Exp>
TLN_INLINE int sign(const Exp& e){

...
typedef typename expression_traits<Exp>::category Expr_Category;
typedef tln_default_eval_policy<Expr_Category> Policy;

return sign(e,Policy());
}

Finally, we give an example of a common predicate in 2-dimensional computational geometry. Given
three points p, q and r with integer coordinates of bitlength at most 50, we determine on which side
of directed line from p to q the point r is located:

const tln::integer<50> px = p.x();
const tln::integer<50> py = p.y();
const tln::integer<50> qx = q.x();
const tln::integer<50> qy = q.y();
const tln::integer<50> rx = r.x();
const tln::integer<50> ry = r.y();

int d = tln::sign( (qx-px)*(ry-py) - (rx-px)*(qy-py) );

std::cout << "r is ";
switch(d){
case 1: std::cout << "right" << std::endl;
case 0: std::cout << "on" << std::endl;
case -1: std::cout << "left" << std::endl;

};

The above example will be used in the following to illustrate most of the implementation details.

4.1 Implementation Details

The exact sign computation is executed on expression trees:

• Each variable is an expression.

• If Ta and Tb are expressions, then Ta ◦ Tb with ◦ ∈ { +,−, ∗ } and −Ta are expressions.

The leaves of an expression tree are thus variables and the internal nodes are operations. For our
example we have the expression tree shown at the top of Figure 1. To obtain such an expression tree
at compile time we provide C++-operators to construct the tree in a bottom-up fashion. According to
the definition of an expression we have two types of operations: (1) binary operations and (2) unary
operations. A binary operation a ◦ b, where a and b are of type A and B, respectively, is represented
by the template class as already described in section 3

template <typename A, typename B, typename Op>
struct BinXpr {

typedef BinXpr<A,B,Op> type;
typedef Op op_type;
typedef A a_type;
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tln::BinXpr<
tln::BinXpr<

tln::BinXpr< tln::integer<50>, tln::integer<50>, tln::diff >,
tln::BinXpr< tln::integer<50>, tln::integer<50>, tln::diff >,
tln::prod >,

tln::BinXpr<
tln::BinXpr< tln::integer<50>, tln::integer<50>, tln::diff >,
tln::BinXpr< tln::integer<50>, tln::integer<50>, tln::diff >,
tln::prod >,

tln::diff >

Figure 1: Expression tree (top) for the 2-dimensional orientation test and the corresponding C++
template type (bottom) representing this tree.

typedef B b_type;

TLN_INLINE
BinXpr(const a_type& a_, const b_type& b_): a(a_), b(b_){}

const a_type& a;
const b_type& b;

};

Note that we store only const references to the subexpressions since the compiler may thus avoid the
actual instantiation of an object of the constructed tree. In this way, each operation is represented
by a C++-type. For addition we implemented

struct plus {
template <typename T>
TLN_INLINE static T apply(const T& a, const T& b) {

return a + b;
}

};

The static member function apply is used to compute the result of the operation using the built-in
type T. Its result will be used in the static filter.

To construct an expression tree we overload the corresponding C++-operators. For example, the
type of the sum of two expressions is obtained by:

template <typename A, typename B>
TLN_INLINE BinXpr< typename tln::expression_traits<A>::type,

typename tln::expression_traits<B>::type,plus >
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operator+ (const A& a, const B& b)
{

return BinXpr< typename tln::expression_traits<A>::type,
typename tln::expression_traits<B>::type,
plus > (a,b);

}

The class template expression traits is used to make some type checking. We thereby make sure
that we use the operator for valid subexpressions only. Usually expression traits<A>::type has
type A. Similarly we provide a class template UnaryXpr for unary expression and the classes diff,
prod and negate together with their corresponding C++-operators for subtraction, multiplication and
negation, respectively.

For the example predicate , the compiler instantiates the sign function with an argument of the
type given at the bottom of Figure 1.

We will now see how we can compute a static error bound used in the floating-point filter for
such expressions.

4.1.1 Computing Approximation and Error Bounds

An approximation for a given expression is computed using the C++ built-in double precision floating-
point type double. Remember, that we want to avoid the creation of an object of the given expression
type. Hence, instead of writing a member function of the BinXpr class, we implemented a static
function template approximateResult(...), for which we give specializations depending on the
structure of the expression. The leaves of the expression tree store the exact value of the variable in
a double. The approximation is obtained by using this value, which is in fact exact. For internal
nodes (operations) of the expression tree we recursively compute the approximate result for the
subtrees and apply the operator to the result(s). Finally, we obtain the approximate result of the
expression as if it would have been evaluated using doubles.

template <typename Expr> TLN_INLINE
static double approximateResult(const Expr& e);

template <unsigned int BIT_LEN> TLN_INLINE
static double approximateResult(const integer<BIT_LEN>& e){
return e.value;

}

template <typename A, typename B, typename Op > TLN_INLINE
static double approximateResult(const BinXpr<A,B,Op>& e){
return Op::apply(approximateResult(e.a), approximateResult(e.b));

}

template <typename E, typename Op > TLN_INLINE
static double approximateResult(const UnaryXpr<E,Op>& e){
return Op::apply(approximateResult(e.e));

}

Beside the approximate value of an expression E we obtain an upper bound MaxError on the
error made during its computation. MaxError however depends on the operation and the maximum
bitlength MaxBitlen of the operands. The required quantities are defined recursively as given in
Table 1.

To let the compiler compute MaxError for a given expression type, we use a constant propagation
mechanism together with in-class static member initialization. We demonstrate the application of
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E MaxBitlen(E)
−F MaxBitlen(F )
integer<N> N

F ±G 1 + max{ MaxBitlen(F ) , MaxBitlen(G) }
F ∗G MaxBitlen(F ) + MaxBitlen(G)

E MaxError(E)
−F MaxError(F )
integer<N> 0 if N ≤ 53
F ±G MaxError(F ) + MaxError(G) +

2MaxBitlen(F±G)−53

F ∗G
2MaxBitlen(G)MaxError(F ) +
2MaxBitlen(F )MaxError(G)
+2MaxBitlen(F∗G)−53

Table 1: Rules for the computation of MaxBitlen and MaxError for the various expression types.

this technique to the computation of a static constant double value of 2n for 0 ≤ n ≤ nmax, where nmax

is the maximum exponent of a double precision floating-point number. We start with the primary
template, which recursively computes the necessary powers of two:

template <unsigned int N> struct P2 {
static const double VALUE;

}
template <unsigned int N>
const double P2<N>::VALUE = P2<N/2>::VALUE * P2<N-N/2>::VALUE;

The base cases are covered by the following specializations:

template <> const double P2<0>::VALUE = 1.;

template <> const double P2<1>::VALUE = 2.;

We can easily apply this idea to the computation of MaxBitlen and MaxError. For example we have
the following specializations for the sum operation:

template <typename A, typename B>
const int MaxBitlen< BinXpr<A,B,sum> >::VALUE =
TLN_MAX( MaxBitlen<A>::VALUE + 1, MaxBitlen<B>::VALUE + 1 );

similarly we implement MaxError:

template <typename A, typename B>
const double MaxError< BinXpr< A,B, sum > >::VALUE =
(MaxBitlen< BinXpr< A,B, sum > >::VALUE > 53)

? (((( MaxError<A>::VALUE + MaxError<B>::VALUE )
* fp_traits<double>::RRE )

+ P2< MaxBitlen<BinXpr<A,B,sum> >::VALUE - 53>::VALUE )
* fp_traits<double>::RRE )

: 0.0 ;
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Note, that the values given in Table 1 must be representable as a double. Their computation may
thus cause rounding. Depending on the rounding mode the computed error bound may be to small.
To avoid this, we encapsulate each error prone operation in a multiplication with relative rounding
error fp traits<double>::RRE with a value of 1 + 22−D, where D is the number of mantissa digits
of a double.

4.1.2 Exact Polynomial Sign Computation

If the static filter fails to verify the correctness of the sign of the approximation we must use some
other arithmetic that can evaluate the expression reliably. We use the approach of [4] to implement
exact arithmetic. A multiprecision integer a is stored as a n + 1-digit 2R-adic number as

a =
n∑

i=0

2iRai

This representation is called the expansion of a, which is called normalized, if ai < 2R for all
i = 0, . . . , n. The sum (difference) of two expansions is the componentwise sum (difference) of the
expansions of the operands. The product c = a ∗ b is computed by the so-called school method as

ck =
∑

i+j=k

aibj for k = 0, . . . , n + m− 2

where a and b are expansions of size n and m, respectively. Note, that neither the sum nor the product
of two normalized expansions are necessarily normalized. In our implementation each components of
the expansions is a double value. To obtain the exact result no intermediate operation must require
more than the number of mantissa digits of a double to store its results. In [4] it was recommended
to use a radix of R = 23. In this way we can make one multiplication and several additions without
normalizing the intermediate results. We adhere to this suggestion in our prototype implementation.

Having fixed the radix R, there is also a fixed sequence of operations that is required to obtain
the expansion of a given expression type. In the following we describe the algorithm that derives this
sequence from the expression type given at compile time.

Static Storage Layout:
To evaluate the polynomial we use a static array of doubles that holds the components of the multi-
precision integer representation of a given expression. All algorithms involved in the computation of
the exact result operate on parts of this array. For a given binary expression we recursively evaluate
the subexpressions and then apply the current operation to the results. For each subexpression we
designate a portion of the array available for their own evaluation. We reuse parts of the array, since
the results of the subexpressions are not used after evaluation of the current expression. For example,
when adding two expansions the result overlaps the longer of the the two expansions and the shorter
is added in-place, thereby avoiding to copy the leading components of the longer operand.

Unrolled Arithmetic:
The main advantage of using expression templates is the ability to communicate the structure of
subsequences of the evaluation code to the compiler. Each operation, such as computing the sum
of two expansions is split into small blocks of code, that is repeated for a fixed number of times.
Each block is an inline function template. During optimization, the compiler decides whether the
function is inlined. If so, we obtain a sequence of code without any overhead for function calls,
memory management or looping.

Thus, we leave it to the compiler to generate code that is most efficient, at least w.r.t. to its
optimization algorithms. We demonstrate this technique on the example of computing the sum of two
expansions a and b. Thereto, suppose a has N and b has M components with N ≥M , respectively.
As mentioned above, we add b in-place to a. We have a template class
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template <int M> struct PolySum {};

where M is the number of components of b that has to be added to a. The recursion is as follows:

template <int M>
struct PolySum {
template <typename S>
TLN_INLINE static void eval(S* const a, S* const b){

PolySum<M-1>::eval(a,b);
a[M-1] += b[M-1];

}
};

,i.e., first add the the other components and finally add the M -th component of b to the M -th
component of a. The template parameter S is the number type used for the components of the
expansions. In our current implementation this is always double. Finally, if there is nothing to add
we stop, as realized with the following specialization:

template <>
struct PolySum <0> {
template <typename S>
TLN_INLINE static void eval(S* const a, S* const b){ }

};

In this way we implemented all arithmetic on our expansions including, multiplication and normaliza-
tion. By inspection of the generated code we observed, that almost all the function calls are inlined
by the compiler. At least for the expressions we used in the runtime tests. See section ?? for details.

Normalization Policy:
In order to keep all computations exact no intermediate result must exceed the precision of the double
type. However, the bitlength of the numbers is increasing in each computation step. Therefore, we
have to reduce the bitlength of the components of the expansion at some point during the evaluation.

Note that normalization is a relatively expensive operation, since we use a fmod(...) library call
to compute the remainder of the double components on division by 2R. Hence, we want to avoid as
many unnecessary normalizations as possible.

We use the following simple strategy to apply normalizations to the operands of an operation:
For each expansion we maintain the maximum bitlength of its components according to Table 2.
If the maximum component bitlength of the result after evaluation is too large we normalize both
operands. Then the value given in Table 2 is replaced by the radix R. Sometimes it is not sufficient

c MaxCompBitlen(c)
−a MaxCompBitlen(a)
integer<N> N

a± b 1 + max{ MaxCompBitlen(a) , MaxCompBitlen(b) }

a ∗ b
MaxCompBitlen(a) + MaxCompBitlen(b)
+blog2 min{ n, m }c

Table 2: Rules for computation of the maximum component bitlength of expansions. a and b are
expansions with n and m components, respectively.

to normalize two expansion before multiplication. To see this, suppose we are multiplying two nor-
malized expansions a = a0, . . . , an and b0, . . . , bm then the maximum component bitlength according
to Table 2 is L = 2R + blog2 min{ n, m }c. However, since R is fixed L only depends on the sizes
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of the expansions. Let D be the number of mantissa bits of the data type double. To have exact
intermediate results we need L ≤ D. Thus, one of the components to be multiplied must have less
than 2D−2R+1 components to obtain exact intermediate results. For D = 53 and R = 23 we obtain
a maximum expansion size of the shorter operand in any multiplication of 255 which corresponds to
a number with D2D−2R+1 = 5.865 bits. Roughly speaking, for 53-bit integer inputs we can multiply
two polynomials each having a degree up to 110. To see this, consider the simple polynomial (ak)2,
where a is a 53 bit integer. The expansion of ak has dkD

R e components. For the inequality⌈
kD

R

⌉
< 2D−2R+1

with R = 23 and D = 53 we get that k < 111.
For small degree polynomials used in computational geometry, this limitation can be neglected.

We decided not to implement the normalization within operations in our prototype. To do this,
we will have to redesign the current rather simple structure of the evaluation part of the library.
However, by using so-called compile time assertions, we let the compiler issues an error if the user
evaluates expressions exceeding the above limit.

Sign Determination:
After we have computed the full expansion of a given expression the sign of the number represented
by this expansion is computed by first normalizing the expansion and then searching for the most
significant non-zero component and report the sign of this component. If all components are zero,
the sign is also zero.

Finally, we return to our orientation test example which is evaluated as follows:

1. Compute the floating-point approximation

2. Compare with the error bound computed at compile-time and return the sign if certain.

3. Evaluate the leaves. Compute the differences using doubles, since the result fits into 53 bits.

4. Normalize the results. This gives four expansions with three components each.

5. Multiply the two pairs of expansions. This gives two five-component expansions with a maxi-
mum bitlength of 48 in each component.

6. Compute the difference of these expansions.

7. Normalizing the result gives six components.

8. Search for the most significant non-zero digit of this expansion and return the sign.

Inspection of the binary produced by gcc-4.2 revealed, that all functions were inlined, including
constructors of the expressions and all evaluation functions.

5 Experimental Results

To evaluate the performance of TLN we measured the running time of some common geometric
predicates in two and tree-dimensional computational geometry. The tested predicates are: 2- and
3-dimensional orientation test, incircle and insphere test. Each predicate evaluates the sign of a
determinant – a polynomial in the coordinates of the input points. Each polynomial is written as a
single C++ expression.
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5.1 Test Data and Environment

To evaluate the efficacy and the costs of the filter we tested the predicates on random and almost
degenerate input data using point generators of CGAL. Random input for the predicates with point
coordinates with a maximum bitlength of L is generated using CGAL::Random points in square 2
and CGAL::Random points in cube 3 which produce points in a cube centered at the origin with
corners at ±2L − 1 for two- and three-dimensional predicates, respectively. The generated points
with double coordinates were then rounded to the next smaller integer using std::floor(...).

To obtain a test set of almost degenerate data we first generate a random segment, circle, plane
or sphere and then use the corresponding point generators of CGAL to get points close to these
geometric objects. Again, the coordinates are rounded to the next smaller integer. To be more
precise, we generate nearly degenerate input configurations for each predicate as follows:

• 2-dimensional orientation test:

– Fix CGAL::Random points in square 2 a and b.

– Generate 3n points on the line segment from a to b with
CGAL::Random points on segment 2.

• incircle test:

– Fix a circle c centered at the origin with radius chosen randomly from the interval [L, 2L−
1].

– Generate 4n points on c with CGAL::Random points on circle 2.

• 3-dimensional orientation test:

– Fix a sphere s centered at the origin with radius chosen randomly from the interval
[L, 2L − 1].

– Fix three distinct random points a, b, c on s using
CGAL::Random points on sphere 3

– Generate 4n points as the orthogonal projection of random points on s onto the plane
through a, b and c.

• insphere test:

– Fix a sphere s centered at the origin with radius chosen randomly from the interval
[L, 2L − 1].

– Generate 5n points on s with CGAL::Random points on sphere 3.

In the experiments we used n = 1.000 for a single data set and compute the average running time
over 10 different sets, each set being evaluated 100 (2d-orientation, incircle) and 10 (3d-orientation,
insphere) times, respectively, to get timing results in a reasonable resolution.

The experiments were run under Debian Linux operating an Intel R©Pentium R©4 CPU at 2.4 GHz.
We used gcc version 4.2.4 with optimization level 2 to compile the test code. The following third
party libraries were used: CGAL ( version 3.3.1, including CORE), LEDA (free-version 6.0) and
GMP (version 4.2.4).

5.2 Results

To assess the efficiency of the code generated by the compiler we compare the running times of the
TLN predicates with predicates using off-the-shelf multiprecision number types. For each predicate
we have a fixed C++ expression that has to be evaluated for the given input points to determine
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Figure 2: Running times for 2-dimensional geometric predicates on random input.

their relative geometric positioning. The time measured includes the conversion of the coordinates
to the number type used to evaluate the sign of the expression and the actual computation of the
sign. In the tests we used the following external off-the-shelf C++ multiprecision number types :
::mpz class (GMP Library), CORE::BigInt [3, 6], leda::integer, leda::real [7, 1]. TLN was
used in one version with a static filter (tln:integer<>) and without filtering in a second version
(tln:integer<> (no filter)).

The results for random input for the two and three-dimensional predicates are given in Figure 2
and 3, respectively. Figures 4 and 5 show the results for nearly degenerate input as described in the
previous section.

We will restrict our discussion to the comparison of the TLN number types to the external types.
In the filtered case our tln:integer<> is up to 100 times faster than the other methods.

tln:integer<> (no filter) is still roughly twice as fast as the fastest external number type. With
increasing maximum bitlength we also see an increase in the running time. The increase appears at
certain key positions which are determined by both, the predicate and the radix used for representing
the expansions. On these positions the number of components of the result or an intermediate result
changes. This leads to an increasing number of machine operations and normalizations required for
exact evaluation of the expression.
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Figure 3: Running times for 3-dimensional geometric predicates on random input.
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Figure 4: Running times for 2-dimensional geometric predicates on nearly degenerate input.

For example, consider times shown for the two-dimensional orientation test in Figures 2 and 4.
We see an increase between a maximum bitlength of 25 and 27 since we cannot multiply 27 bit
numbers without exceeding the precision of a double. The next increase happens close to 46 bits
because whenever the maximum bitlength some intermediate result reaches a multiple of the radix
(which is 23) we need one more component to store the corresponding expansion. Finally, we see an
increase at full double precision of 53 bits. This is due to the fact, that the initial differences are
not exact. Thus each operand (input variables) must be normalized, which doubles the number of
required normalizations at this level compared to the 52-bit version.

The results for nearly degenerate input given in Figures 4 and 5 show that the static filter is still
efficacious for smaller maximum bitlength values. However, we believe that this is rather a deficit
of our method to generate these inputs. On the the other hand we take it as an evidence for the
hypotheses, that nearly degenerate input occurs only rarely in applications.

6 Discussion and Further Work

Our prototype implementation of TLN has proven to generate efficient predicates for computational
geometry in two and three-dimensional space. The inputs are restricted to integers for which a
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Figure 5: Running times for 3-dimensional geometric predicates on nearly degenerate input.
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maximum bitlength is known in advance. The currently used static filter however, is only efficacious
if the values of the inputs are close to the corresponding maximum value. In applications, this
assumption in general does not hold. To improve the filtering efficacy we plan to implement the
semi-static filter used by EXPCOMP in a future version of TLN. Moreover, it is possible to allow floating-
point inputs for the predicates for which this filter works well, as demonstrated in [2]. But at the
moment it is not clear how to evaluate polynomials with fractional inputs. One option is to represent
the values as rational numbers, i.e, as the quotient of two integers and then use algorithms similar
to the current implementation. But we believe, that this is not very efficient, since the number of
machine operations required for the exact evaluation grows significantly. Another approach could
use the arithmetic proposed by Shewchuk [11] in a static form or even his adaptive evaluation of the
predicates as proposed in [8].

For integer inputs we have in mind to implement a sequence of static filters to make the predicates
adaptive to some extent. The idea is to compute only a portion of the most significant bits, i.e., a
few components of the result during exact evaluation of the expression together with a static error
bound that can be derived from the omitted parts of the input. The problem is to find reasonable
rules for general expressions about how many stages of filtering are advisable and how many bits
are to be computed in the stages. With the current exact evaluation algorithms we would add
many normalizations in each stage. But normalizations are expensive compared to other machine
operations.

Another important aspect for the usability of TLN is portability. In the current status the proto-
type was not tested on other platforms or compilers other then Linux/gcc. Portable template pro-
gramming, in particular meta-programming, is a subtle task, since the set of supported features of the
C++ standard varies drastically between compilers. For example Microsoft R©Visual C++ R©.NET does
not support partial template specialization which is quite a limitation when doing meta-programming.
Fortunately, many boost libraries including boost::mpl can cope with many of these limitations and
work well on many platforms. Thus, using boost we can improve the portability of TLN in a future
version.
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