Nr.: FIN-004-2010

Utilizing Internal Domain-Specific Languages for
Deployment and Maintenance of IT Infrastructures

Sebastian Glnther, Maximilian Haupt, Matthias Splieth

Very Large Business Applications Lab

Fakultat fur Informatik
Otto-von-Guericke-Universitat Magdeburg

Nr.: FIN-004-2010

Utilizing Internal Domain-Specific Languages for
Deployment and Maintenance of IT Infrastructures

Sebastian Glinther, Maximilian Haupt, Matthias Splieth

Very Large Business Applications Lab

/ N\
{ " \) Fakultat fir Informatik
/ Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 5 TMG):

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Prof. Dr. Hans-Knud Arndt

Postfach 4120

39016 Magdeburg

E-Mail: hans-knud.arndt@iti.cs.uni-magdeburg.de

http://www.cs.uni-magdeburg.de/Preprints.html

Auflage: xx
Redaktionsschluss: 31.03.2010

Herstellung: Dezernat Allgemeine Angelegenheiten,
Sachgebiet Reproduktion

Bezug: Universitatsbibliothek/Hochschulschriften- und
Tauschstelle

Utilizing Internal Domain-Specific Languages for
Deployment and Maintenance of
IT Infrastructures

Sebastian Giinther, Maximilian Haupt, and Matthias Splieth

University of Magdeburg, School of Computer Science
sebastian.guenther@ovgu.de,
maximilian.haupt@st.ovgu.de,
matthias.splieth@st.ovgu.de

Abstract. The deployment and maintenance of IT Infrastructures is a
complex task. Systems and components need to be selected, configured,
installed and maintained in different configurations spanning multiple
physical and virtual machines. Further requirements are the growing de-
mand in computational performance, cost pressure to migrate physical
machines to virtual ones, and increased variant setups to support testing.
These challenges require adequate tool support.

In this paper, we present and use a special tool: Domain-Specific Lan-
guages (DSL). DSLs comprise a domain as an executable language. Using
appropriate domain-specific expressions and notations, they express even
complex conditions. Several tools in the context of IT Infrastructure de-
ployment and maintenance exist, but none of them provide an integrated
support for the following tasks: (1) To initially setup physical or virtual
machines, (2) to configure and install arbitrarily software packages on
the machines, and (3) to support the user in selecting appropriate soft-
ware packages. We analyzed the tools and the particular requirements of
each task, and created an internal DSL to support them. Integrating the
DSL into each other leads to a declarative description of IT Infrastruc-
tures. How to use the DSLs is shown in a case study where we deploy
two servers and several web applications.

1 Introduction

IT Infrastructures are an important cornerstone: servers provide real-time mes-
saging, support business operations, and deliver electronic books and documents.
However, infrastructure deployment and maintenance is not a trivial task [15].
Different applications, technologies, and protocols, implemented with several
programming languages, have to be managed in a consistent way. Additional
demands, like increasing computer performance or cost pressure to switch from
physical to virtual machines, imply further burdens. These challenges require ad-
equate tool support. In this paper, we choose to use Domain-Specific Languages
(DSL) as the particular tool.

DSLs are specialized languages which comprise a specific application area
[26]. They express domain knowledge in the form of an executable language.
Their characteristic feature is the use of domain-specific notations and abstrac-
tions [41]. Sophisticated DSLs express their domain with a clear, readable lan-
guage.

DSLs have matured into a common software engineering technique. Earlier
DSL examples support financial products [1], signaling installations for rails [21],
and video device drivers [39]. Recent domains where DSLs have been applied
successfully are healthcare systems [33] and web applications [42]. DSLs can also
be used to support software development itself, for example to model software
product lines [23] or to ease feature-oriented programming [24].

Our research background is engineering internal DSLs that are built on top of
another programming language. These DSLs benefit from the existing language
infrastructures such as editors or code optimizers [32]. We deal with the question
how DSLs are designed, implemented, and utilized in software engineering. In a
recent contribution we collected our insights and practical experiences to form
an engineering process for internal DSL using dynamic programming languages
[22]. We use this process to design three distinct DSLs that support deploying
and maintaining IT Infrastructures. The starting point is to identify or install
physical and virtual machines with different UNIX-like operating systems. This
is supported by the Boot-DSL. Having the machines operable, the next task is
to configure the software packages that are needed for the infrastructure. With
the help of the Configuration Management DSL (CM-DSL), package objects are
provided with operating system independent configurations detailing their in-
stallation, several configuration parameters and metadata. Having a broad set
of packages, the final task is to choose the particular application set, resolve all
dependencies, and deploy the applications within the infrastructure — this is the
task of the Software Deployment Planning DSL (SDP-DSL). Once the infrastruc-
ture change is finished, CM-DSL and SDP-DSL can be used to update packages
or install new ones. The combination of Boot-DSL and SDP-DSL expands or
consolidates the infrastructure’s machines.

The paper’s goal is to present a DSL utilization case study in the context of
IT Infrastructure deployment and maintenance. The particular focus is first to
show how to abstract the complex domain by using DSLs, and second how tasks
concerning the deployment and maintenance of infrastructures are supported by
DSL expressions. The DSL utilization is shown with an infrastructure case-study
that deploys two servers and several web applications.

Section 2 provides a concise summary of the utilized DSL-engineering process.
Section 3 explains the infrastructure deployment and maintenance domain with
its terminology, tools and existing languages. Section 4 explains the design and
implementation of the three developed DSLs. Section 5 shows and explains how
the languages work together by deploying an architecture containing two servers
and several applications. Section 6 summarizes the paper.

2 Engineering Internal Domain-Specific Languages

From a top-down perspective, literature proposed several processes how to en-
gineer Domain-Specific Languages. A general approach is described by MERNIK
ET AL. His process consists of the following five phases [32]:

— Decision — The first point is to decide whether a DSL should be imple-
mented generally. On the one hand, there are criteria like the required in-
vestment in terms of man hours, budget, and possible tool support. And on
the other hand, there are enhanced productivity, future reuse and better do-
main understanding. Both parts are weighted against each other, and finally
the decision is made.

Analysis — The analysis is a common part in software engineering. In the
case of DSL engineering, its role is the understanding and gathering of do-
main knowledge. This knowledge is represented in the form of a domain
model that scopes the domain and defines the used vocabulary.

— Design — Development continues with designing the DSL. One can use an
existing language and specialize or extend it, or design a language from
scratch with its own syntax and semantics expressed with formal methods.
Implementation — Once the language design is established, the implemen-
tation is the final step to complete the development. The available options
are to use an interpreter, compiler or embedding the DSL into another lan-
guage.

— Deployment — This phase is only briefly mentioned by MERNIK ET AL.,
we understand it as the actual DSL usage and adjoining tasks like developer
training.

In our view, this process provides valuable insights in the required effort
to implement a DSL. The following case-studies for DSL engineering highlight
details of language design. They complement this general framework with specific
techniques.

For external DSLs, the early PSG [2] and PAN [3] language development
environments use a complex set of formal languages to describe the syntax and
semantics of DSLs. The tools even generate stand-alone development environ-
ments to work with the designed languages. CONSEL AND MARLET explain a
formal approach to language design too. They define the static and dynamic
semantics in a devotional form using an abstract machine [9].

For internal DSLs, CUNNINGHAM presents a DSL for surveys (as inspired by
[4]) written in Ruby. The design phase uses a form of commonality and variabil-
ity analysis. In the implementation, metaprogramming mechanisms like evaluat-
ing strings containing source code at runtime or creating non-existent methods
at runtime [13]. DINKELAKER AND MEZINI use a detailed analysis and design
process. The language’s syntax is specified in a Backus-Naur-Form. Then the
non-terminals are implemented successively, starting with the overall internal
interpreter, and continuing to provide all Domain Objects and Domain Opera-
tions. They use the Groovy Programming Language and its support for closures
[16].

By further consolidating the work of [14], [43], [38], [32], and by applying our
own DSL-engineering knowledge [24], [23], we developed a specialized process
for engineering internal DSLs.

The process consists of several iterations in the phases of domain design,
language design, and language implementation. It has an agile nature — iterations
and their tasks are run in an arbitrary order, but follow the goal to provide a
working implementation at the end. Automated tests and constant refactoring
provide the necessary infrastructure for satisfying requirements and features.
Patterns capture recurring DSL-engineering problems and their solutions and
thus further leverage developer knowledge. Since the full details of the process
are contained in [22], we will here just explain the three process steps and the
three most important principles. »Figure 1 graphically represents this process.

2.1 Domain Design

The first goal in DSL-Engineering is to understand the domain. We gather do-
main material — handbooks, documentation, systems and stakeholder expres-
sions. The material is studied to produce either formal or informal expressions
about the domain. We could use domain engineering techniques like Feature-
Oriented Domain Analysis [14], or variability and commonality analysis to collect
statements about the domain in natural language [13]. When no written docu-
mentation exists and stakeholder are the sole source of knowledge, techniques
like brainstorming or more formal questionnaires [12] should be used.

We refine the knowledge and represent it as a domain model. This model
defines the concepts, attributes, and relationships that are important in the do-
main. The model supports two goals: To better understand the domain and to
provide an initial vocabulary used in development and supposed as expressions
in the DSL. Therefore, contradicting statements and possible language defects
like synonyms, homonyms and more [29] should be fixed immediately.

While the domain model can be seen as the static structure of the domain,
the dynamic structure is important too. The conditions that change the domain
model’s status have to be expressed too. Typically, interaction of different do-
main concepts — respectively their instances called domain objects — are studied
to define further domain operations.

Our process does not prescribe concrete modeling techniques or tools. We see
it as vital that the developers use those techniques and tools they already know.
The less modifications the process imposes, the more likely can it fit into existing
mindsets and processes, and thus the process success is likelier. For example, if
the developers are versatile with UML, they can use UML class diagrams for
the static structure of entities, attributes and relationships, and the UML state
diagram to represent the different status of the domain.

2.2 Language Design

The language design phase is a creative process in which a number of language
expressions are collected. The expressions reflect the domain model and the

overall vocabulary. Furthermore, expressions need to be valid statements in terms
of the host language.

Two principal approaches are available. The first one is to design expressions
without the host language in mind, and to make them host language compati-
ble afterwards. A useful metaphor is that of a language game. The philosopher
WITTGENSTEIN used language games to determine the grammatical correctness
of natural-language expressions [27]. Such language games can be used with a
compiler or interpreter. If a DSL expression raises only semantic errors, then it
is syntactically valid according to the host language. The second approach works
vice versa — taking host language expressions, and simplifying them.

The chosen host language is of great importance in this stage: It forms and
constraints the semantic and syntactic capability of the DSL. An important DSL
characteristic is language expressiveness. We speak of high language expressive-
ness if the DSL only uses tokens that have a meaning in the domain. Conversely,
tokens and expressions like semicolons, certain brackets, or statement modifiers,
which are germane to the host language, but have no meaning in the domain,
reduce the language expressiveness. Of course we should choose a host language
that has a high expressiveness for our domain.

2.3 Language Implementation

Once we have collected a working set of language expressions we can provide the
implementation. Our process uses a behavior-driven development style. Tests
describe the DSL’s behavior or capabilities. In the first iterations of DSL engi-
neering, example expressions as test cases can be used to build an implementa-
tion that provides the semantics for the used domain objects and operations. In
later development stages, tests are written to extend the language capabilities
or to cover errors. All tests together can be seen as a complete specification of
the DSL — a very valuable development artifact.

Patterns also play a vital role in the implementation. In computer science,
patterns are understood to explain ”... an important and recurring design” [20]
in applications. Designs address specific problems in application development,
like providing alternatives for different sorting algorithms or creating customized
objects. The combination of the problem and its design solution is presented in
an abstract pattern description to foster reusability [19].

We use patterns for three concerns of DSL-Engineering: Language Modeling
(provide executable form of the domain model), Language Integration (integrate
the DSL into the application framework and other languages), and Language
Purification (reduce domain-foreign symbols and tokens to increase language
expressiveness). The patterns help to identify and solve core concerns of the
DSL. Therefore, they are an important leverage to ensure strong quality of the
implementation.

2.4 Process Summary

We want to emphasize three important principles of this process: agile steps,
constant refactoring, and pattern knowledge.

The first cornerstone are agile process steps. Iterations typically start with
understanding the domain, then designing an expression, and finally implement-
ing it. While a traditional top-down approach is useable in principle, our expe-
rience shows that small iterations work better. The focus on one requirement or
feature at a time incrementally extends the DSL. A production-ready and tested
version of the DSL is available after each iteration. This approach has proven
very valuable especially if the requirements are not clear or cannot be made clear
enough upfront.

Constant refactoring is the second cornerstone. At the end of each iteration,
the DSL is refactored with two goals in mind: to provide an accurate representa-
tion of the domain’s vocabulary and to have a clean [31] and minimal codebase.
A complete set of test suites only suffice for extensive refactorings — they are an
important prerequisites. Once refactored, the code is an ideal starting point for
the next iteration.

The third cornerstone is patterns. With sufficient experience in DSL engi-
neering, we encountered similar problems like providing an executable model of
the domain or extending DSL functionality in a modular way. The problems and
their solutions form a pattern catalogue. Once we have this understanding, we
can make development decisions upfront. Further DSL engineering will refine
the catalogue and add novel patterns.

=
=
- Create language

expressions

Y Y=
EEED
Collect documents

- Define concept =
meaning

- Design Domain
Model

Language Design

=
Write code & Apply patterns
conform to tests Pply p:
| Retactorcoto

- Conform to host

language

Domain Design

Language Implementation

Fig. 1. DSL Engineering Process

A graphical summary of the process is shown in »Figure 1. From top to
bottom, we see the three process phases as boxes, and the tasks mentioned
above. Arrows between steps and tasks show the possible paths iterations may
take.

This concludes our process description. More details can be found in [22].
We will now explain how we developed three DSL for the management of IT
Infrastructures, where we start with a complete domain design in »Section 3,
and explain the DSL’s language designs and implementations in »Subsections
4.2, 4.3, and 4.4.

3 Domain Design

The first step in designing a domain specific language is to understand the do-
main. We collected several articles, books, tools and existing languages. Here is
a selection of the most influential parts — the material that formed our process,
vocabulary, and language design.

3.1 Configuration Management

Changing requirements of software often results in new releases that made sys-
tem administration a quite complex task in the past few years [15]. Software
often needs to be installed on various machines and with different configura-
tions. Furthermore there is a need to keep the installed applications up to date.
But manual configuration often results in errors [5]. Consequentially, the need
to install and configure software automatically on different machines arises. In
the literature, this is called configuration management [15].

Our analysis revealed several tools supporting this domain: Cfengine, Pup-
pet, and Chef. From a historical perspective, they are all built on top of each
other. The developers working on Puppet took their inspiration from Cfengine,
and later the developers working on Chef were inspired by the usage of Puppet.
We explain all tools by outlining two parts. The first part is about the compo-
nents used by the tool. Components are the static parts and entities that the
tool implements, we explain them to gain hints about possible domain entities
that are used as objects in our DSLs. The components are combined in the ar-
chitecture and dynamically utilized for infrastructure setup and maintenance.
The architecture again is analyzed because it provides the general process of
deploying and maintaining software.

3.1.1 Cfengine

Cfengine is a configuration management tool developed in 1993 by BURGESS at
the Oslo University College [7]. It is an on-going research project and commercial
product. Today, Cfengine is widely-used by several companies [8].

Cfengine assures valid system states that are expressed as policies. A policy
can be applied to a single system or to all systems that are managed by Cfengine.
Furthermore, a system can operate autonomously from the centralized policies.
The tool uses an external DSL to define centralized specifications. In the follow-
ing, we will introduce the components and architecture of Cfengine according to
[6].

Components

— Policies — Used to describe a host’s configuration.

— Operators — Primitive commands used to carry out maintenance checks

and repairs.

Classes — Used to structure the configuration into discrete units.

— States — Describe concrete system states as a configuration of global pa-
rameters.

Architecture

— cfagent — Agent that manipulates system resources.

— cfservd — Server that is able to share files and receive requests to execute
an existing policy on an individual system.

— cfexecd — Scheduling daemon that can either supplement or replace cron
(task scheduler).

— cfrun — Executes policy on a system.

— ctkey — Key generator for securing the server.

Example The example provided in »Figure 2 illustrates a part of a policy
for an Apache webserver. The Lines 6 to 9 define several packages that will be
installed when applying the policy. Afterwards, in Line 13 and 20, operating
system package manager is specified.

(bundle agent packages
{
vars:
"match_package" slist => {
"apache2",
"apache2-mod_phpb",
"apache2-prefork",
"php5 "
} .
packages:
solaris::

"$ (match_package)"

package_policy => "add",
package_method => solaris;

redhat | SuSE::
"$ (match_package)"

package_policy => "add",
package_method => yum;

Fig. 2. Cfengine: Policy for an Apache 2 Webserver

3.1.2 Puppet

Puppet is open source and a more recent approach of configuration management
implemented in Ruby. Puppet is implemented following the client-server archi-
tecture: A central server provides dynamic configurations to its clients. Those
configurations define a valid state of a client system. Clients can either pull from
the server, or the server pushes configurations to them. Consecutively we will
present the components and architecture of Puppet as introduced in [28].

© 00U WN -

Components

— Manifest — Describes a configuration of a system.

— Resource — A general system property like a package manager or a cron
job.

— Provider — A specific system property (like the package manager apt for
Debian-Linux).

— Node — An individual system.

— Templates Used to generate configuration files for systems.

Architecture

— puppet — Stand-alone Manifest evaluator.

puppetmasterd — Daemon providing configurations to nodes.

puppetd — Applies a Manifest to a node.

— puppetca — SSL server used for receiving certification requests from clients.
puppetrun — Command line tool for manually triggering configuration runs.

Example As before, we will give a short introduction to Puppet by installing the
Apache webserver. The source code is shown in »Figure 3. It shows how several
modules are configured using templates that are completed with parameters
given to the manifest.

class apache2::basic inherits apache2 {
apache2::config { "base":
order => "000",
ensure => present,
content => template("apache2/base.conf.erb"),
}
apache2::module { "dir": ensure => present } # provides DirectoryIndex
apache2::config { "mpm":
order => "010",
ensure => present,
content => template("apache2/mpm-$real_mpm.conf.erb"),
}
...
}
Fig. 3. Puppet: Manifest for Installing Apache
3.1.3 Chef

Like Puppet, Chef is an open source configuration management tool written in
Ruby [34]. Opposing to the other examples, Chef uses an internal DSL to express
configurations. Clients and server use the OpenID standard [36] for authenti-
cation, and then use a SSL-secured communication to exchange configuration
information.

Since Chef was chosen as part of our implementation, we will explain Chef in
more detail than in the preceding two examples. Since Chef is lacking scientific
publications up to now, we will use the information provided in the Chef wiki
[35] for the following explanation.

Components
Chef has a fairly complex model consisting of several components. We separate
them into hardware, software, and maintenance.

Hardware

— Nodes — Represents a physical or virtual system embedded in the infras-
tructure, like a server or a router.

Software

— Cookbooks — General container for sets of configuration options.

— Recipes — Recipes are attached to cookbooks and contain a list of resources
and the action that should be applied to them.

— Resources — General system property (like a package ma

— Attributes — Used to set various properties within a Recipe. Attributes can
be used to enable cross-platform configurations for an application.

— Libraries — Additional libraries integrate arbitrary Ruby code within a
cookbook.

— Templates — Text files using special inline constructs to insert concrete
configuration options.

— Providers — Specific system property, like the package manager “apt” for
Debian-Linux.

Maintenance

— Roles — Aggregates different recipes to form a specific appearance of nodes.

Architecture
Chet’s architecture basically consists of four components: Chef-Server, Chef-
Client, Chef-Indexer, and Chef-Solo.

— Chef-Server — Central management program providing authentication and
communication with nodes. Sends recipes and files to the nodes. The Chef-
server functionality is provided by a web-frontend and a REST-API!

— Chef-Client — Each node attached to the server is a client. To change a
clients packages we configure its RunList by adding Recipes. These Recipes
will be applied to the Node by starting a client-run.

— Chef-Indexer — Enables full-text search within the entire infrastructure.

— Chef-Solo — Stand-alone tool for individual nodes that can be used in the
absence of a Chef-Server.

L REST is an acronym for Representational-State-Transfer. The mechanism tries to
overcome the statelessness of HT'TP by using all in the HTTP standard available
method for a “language” preserving state. See [17] for more details.

3.1.4 Summary

Seen from the current perspective, Chef is the roundup of the previous presented
configuration management approaches. A client-server architecture, reusable cook-
books and recipes, many customization options, and secured communication —
features that have been applied with a different degree to the other approaches
too. Since Chef is open-source and provides an internal DSL usable for further
modification, we will use it in the center of our current implementation.

3.2 Software Deployment

Companies focus on a consistent application landscape to lower the cost and
complexity of administration [10]. The installation of security critical software
components, e.g. operating system updates or antivirus software, must be done
by experts to ensure the integrity of the IT Infrastructures [5]. Additionally,
most users do not have the knowledge to install the needed software.

In this paper, we use the following concept for organizing software packages.
Packages represent simple software artifacts. The target of software deployment
is to integrate new packages into an application infrastructure already consist-
ing of different packages. Because they depend on other functionality, we also
introduce RESOURCES for grouping packages. The relationship between both is
visualized in »Figure 4. The root node of this Dependency-Tree is the software
product that will be deployed. Every level of the tree consists either of packages
or resources. It starts with a package that depends on some resources which can
be provided by packages that again can depend on resources.

/\

<Resource> <Resource>
[\ [\

|<Package>| |<Package>| |<Paclzage>| |<Pac|lage>| |<Pac|lage>
/\
<Resource>
/\

<Package> | | <Package>

Fig. 4. Relationship between Packages and Resources

HEYDARNOORI developed the following software deployment process that
describes the integration of software into an existing application infrastructures
[25].

1. In the Acquiring-Phase, information about the infrastructure and the new
software is collected. This consists of their metadata, dependencies, available
servers, and existing data structures.

2. The Planning-Phase analyses that software is already installed and could be
used for the deployment. Based on this information, the described dependency-
tree will be created. With the help of a software deployment planner, the
deployment plan will be created. Its task is to choose an appropriate package
for every resource in the dependency-tree and to define the order in which
the packages will be installed.

3. In the Installation-Phase, all elements of the deployment-plan will be in-
stalled.

4. Afterwards, the Configuration-Phase configures the installed packages.

5. When all packages are configured, they get activated in the Execution-
Phase.

The Planning-Phase is covered by the SDP-DSL and Phases 3 to 5, Installa-
tion, Configuration and Execution respectively, are covered by the CM-DSL.

Our investigation on software deployment tools that deal with textual nota-
tions of packages focused on two further tools beside Chef. Both tools are not
yet discussed in scientific literature, hence we reference their websites.

Sprinkle

The domain covered by the software deployment tool Sprinkle [11] is similar
to Chef’s domain. In contrast to Chef, Sprinkle does not implement a client-
server architecture. With Sprinkle, the user has to define scripts that include
operating system specific commands for the installation of software packages.
Furthermore, the DSL defines policies for combining packages and deployment
blocks for describing the delivery of applications. But Sprinkle is not able to
configure and maintain the installed applications.

Poolparty
Poolparty [30] provides a DSL whose domain covers more the provision of dynam-
ically scalable virtual servers instead of pure software deployment. But Poolparty
changes the way of handling server installations by making servers “touchable”
entities. This opens up the possibility to manage servers and operating systems
with expressions similar to those that handle packages in Chef or Sprinkle.
Thus, through the same level of abstraction for deploying servers, operating
systems, and software packages, we are able to see the deployment in a more
integrated way.

Summary

The Sprinkle and Poolparty DSL showed which entities are most important for
software deployment: Packages, resources, and the machines they are installed
on. We also adopted the style how attributes are defined and the way how block-
level hierarchies express structured relationships.

4 DSL-Support for IT Infrastructures

The former section presented many details in the domain of IT Infrastructure.
When we analyze the typical required tasks, the whole complexity shrinks down
to the identification and installation of machines and installation of packages.
Supporting these tasks is our basic motivation for the DSLs. In the following,
we will first introduce the architecture that is the common base of our DSLs.
Afterwards we will explain the lifecycle of infrastructures, give a broad overview
about the DSLs, and subsequently detail each DSL.

We use the Ruby programming language [18,40] to implement DSLs within
a tool called CIN. CIN uses Chef as a library to access machines and install soft-
ware. The most important domain entities are cookbooks, packages, resources,
installations, and machines (cf. »Figure 5). A cookbook is a reference to a Chef
cookbook and hence contains the knowledge about how to install software. Soft-
ware is represented by packages that can be installed or can furthermore be
provided by resources — in combination with resources they form a dependency-
tree that we introduced in the further section. An installation represents a pack-
age that is completed with attributes for configuring this package and is finally
deployed on a machine (physical or virtual). All entities are stored in a database.

Resource

1

uo spuadap-
sapinoud-

1.* 1.*

-installs
Package

1

1

Cookbook

Fig. 5. CIN: Entity Model

DSL expressions create or manipulate objects of the database, and calling
methods on these entities manipulates machines and packages in the infrastruc-
ture. In the following explanation, we will separate these DSL tasks in a section
about configuration and one about wutilization. Since this paper’s focus is the

DSLs and their interaction, we refrain from giving a more detailed explanation
of CIN.

4.1 Infrastructure Lifecycle

IT Infrastructures consist of several physical or virtual servers and software
packages. We identified three lifecycle phases:

— Initialization — In this phase, existing machines and novel installed ma-
chines are identified and several software packages are deployed on them.

— Evolution — The infrastructure is subject to frequent changes, like software
updates or downgrades, installing additional packages, and consolidating,
migrating, or extending the machines.

— Teardown — If the infrastructure needs to be replaced completely, all ma-
chines are removed.

We developed three DSLs that support these phases. The basic machine ini-
tialization is the task of the Boot-DSL. It allows either to add existing machines
or to install novel ones. For new installations, we currently support the Amazon
EC22 and VMWare ESX? hypervisor. The Boot-DSL configures a SSH-access
to the machine and also installs the Chef-client that was explained in »Section
3.1.3.

Once the machines are operable, the next task is to configure and install
the relevant software packages with the help of the Configuration Management
DSL (CM-DSL). Configuration determines basic attributes and metadata for
the packages. For the deployment, two options exist. The first one is to stick to
the CM-DSL and use the package declaration to also define on which machine
the application runs. This requires resolving package dependencies manually,
including the correct order of package installation commands and the manual
modification of cookbooks. The other option is to use the Software Deployment
Planning DSL (SDP-DSL). After a package dependency graph has been created,
the DSL provides automatic dependency resolving and the option to express
where packages are deployed in a more concise way.

From here on, the infrastructure maintenance is supported with a combi-
nation of these DSLs. To update packages or install novel ones, CM-DSL and
SDP-DSL can be used together. And for consolidation or extension of the in-
frastructure, Boot-DSL and SDP-DSL also work together.

We will now explain each DSL in detail.

4.2 Boot-DSL

4.2.1 Configuration
The task of the Boot-DSL is to identify and additionally install machines. The
DSL has the following three types of attributes:

— Identification — Define the owner, the operating system, and the optional
hostname (as some machines are only accessible via private IPs, defined by
the hypervisor).

2 http://aws.amazon.com/ec2/
3 http://www.vmware.com/products/esx/

D UL W N

— Hypervisor — A hypervisor is the tool with which a physical operating
system communicates with a virtual hosted one. Using a nypervisor expression
inside Boot-DSL indicates that the machine has to be installed. Options
identify the used image, the machine size and more.

— Operations — The last type defines additional operations for the machine.
For example, bootstrap! expresses to additionally install the Chef-client on the
machine.

Let us take a look at two Boot-DSL expressions. The first one expresses how
to add a local computer to the network, and the second expresses how to setup
a new virtual machine with Amazon EC2.

The configuration of a local machine is shown in »Figure 6. The expression
begins with the machines name which is followed by an expression block. Inside
the block, we configure the machine’s owner, the operating system, and the
hostname. The owner also identifies a SSH key that is used to communicate with
the machine and execute further communications. Line 5 contains the mentioned
bootstrap! command.

machine "Application Server" do
owner "sebastian.guentherQovgu.de"
os :ubuntu
hostname "admantium.com"
bootstrap!

end

Fig. 6. Boot-DSL: Identify an Existing Machine

The installation of a virtual machine is shown in »Figure 7. As before, line
2 and 3 define the owner and the operating system. In line 4, a special nypervisor
block is declared. It configures the required properties for the installation of an
Amazon EC2 virtual machine. We declare the Amazon Machine Image (AMI),
the size of the machine, the security group (determines which ports are open),
and the name of the private key file used to access this machine via SSH. Af-
terwards, in line 11, we configure the resources that should be monitored and
recorded in log files. The last line calls the mentioned bootstrapt method again.

4.2.2 Utilization

When Boot-DSL expressions are executed, they trigger further processes if
either bootstrap! OI hypervisor is used. For bootstrap, CIN connects to the machine
with the SSH keys of the owner, and automatically installs the CIN-proxy and all
dependencies. It also calls the Chef-client run and registers the machine with the
Chef-server. For the nypervisor method, CIN reads the machine’s owners Amazon
EC2 access credentials, and interacts with the EC2 Web-Service. The service
returns the EC2 internal id and public IP of the new machine, which are saved

BN =

machine "Auxiliary Server" do

owner "sebastian.guenther@ovgu.de"

os :debian

hypervisor :ec2 do
ami "ami-dcf615b5"
source ’alestic/debian-5.0-lenny-base-2009...°
size :ml_small
securitygroup "default"

private_key "ec2-us-east"
end
hostname "admantium.com"
monitor :cpu, :ram
bootstrap!
end

Fig. 7. Boot-DSL: Identify and Install a Virtual Machine with EC2

along with the other information. Existing machines can be maintained by calling
the reboot Or destroy! methods.

4.3 Configuration Management DSL

4.3.1 Configuration
After a machine has been initialized successfully, we need to install and con-
figure software packages. Manual configuration is error-prone and requires a
heavy time investment [15], but carefully designed automatic support makes the
deployment and maintenance of infrastructures much easier. We explained the
Chef infrastructure in Section 3. The community around Chef provides many
cookbooks for configuring servers. But they have a flaw: Different configurations
require different fully-specified cookbooks. The motivation for the CM-DSL is to
use generic cookbooks that are customized by attributes for specific installations.
We now want to give an example of how our CM-DSL works. This will be
done by showing how a package can be installed. The first step is to define a
cookbook, which is illustrated in »Figure 8. The expression in line 1 defines the
cookbook’s name. This is followed by a code block with a do ... end notation.
Within this block, we will set some metadata describing the cookbook.

cookbook :apache2_cookbook do

author "Guenther , Haupt, Splieth"
description "Apache Cookbook"
end

Fig. 8. CM-DSL: Defining a Cookbook

The second step is to define the package (cf. »Figure 9). The expression in line
1 defines the package’s name. Afterwards, we define the supported platforms, the
features that are enabled in the package and the software license. In addition,

1
2
3
4
5
6

we define some tags, provide a description and define the supported versions.
Line 8 associates the package with a cookbook.

P
package :apache2 do

platforms :debian, :ubuntu
features "mod_ssl1l"
license "Apache 2 License"
tags "Webserver , OpenSource"
description "Package for Apache-HTTP-Server"
versions "2.0 - 2.2"
cookbook :apache2_cookbook
end
. J

Fig. 9. CM-DSL: Defining a New Package

The last step is to define an installation object (cf. »Figure 10). In line 2, we
see how the installation is associated with the package. Lines 4 and 5 set specific
installation attributes for the cookbook.

installation.configure do

package :apache2

machine "www.admantium.com"

attribute :contact, "admin@admantium.com"

attribute :listen_ports, "80, 443, 4000"
end

Fig.10. CM-DSL: Defining a New Installation

4.3.2 Utilization
To deploy the package, we execute the installation.install! method. This triggers
a complete Chef-Client run — illustrated in »Figure 11.

The first thing is to synchronize the node’s current configuration with the
one of the Chef server. Afterwards, cookbooks are synchronized. The last step
is to apply all recipes in the nodes run list. Thereby, the node’s information is
applied to customize the relevant cookbooks, the recipes are applied by using
the cookbooks templates and files, and the node is modified accordingly.

Maintenance

After the successful installation of a package, it can be removed by using the
method uninsta11!. This method removes a package only if a removal recipe exists.
The subsequent changing of configurations is realized by the method update!. a
example for using this method is given in »Figure 12. Concerning »Figure 10,
the ”‘listen_port”’ and ”‘timeout”’ attributes are changed.

Start Chef-Client
Build, Register and Authenticate NodeY/

Build Node [> Register Node > Authenticate

Node
Synchronize Cookbooks 47
Synchronize N Synchronize L) Synchronize L) Synchronize
Libraries Attributes Definitions Recipes
Compile Resource Collection 47
Load Load Load Load
Libraries g Attributes kg Definitions g Recipes
Configure Node 47

Save Node > Converge H> Save Node

V

End Chef-Client

Fig. 11. Steps of a Chef Run (redrawing of [35])

1| installation.configure do

2 attribute :listen_ports, "8080"
3 attribute :timeout, "500"

4| end

Fig.12. CM-DSL: Defining a New Installation

The method upgrade! can be used to upgrade software in case there is a new
release or security patch. In effect, the installation will be reapplied using the
already configured attributes.

4.4 Software Deployment Planning DSL

While the CM-DSL requires manual package dependency resolving, the SDP-
DSL resolves them automatically. We first build a dependency tree consisting
of packages and resources. Then, the user either explicitly chooses a package for
each dependency until the whole dependency-tree is satisfied, or heuristics help
him by preselecting packages.

This section uses the Redmine project management application from »Section
5, and the corresponding dependency graph in »Figure 14 for the background
example.

~N O U W N

4.4.1 Configuration

As described in 3.2, the relationship between packages and resources is repre-
sented by the dependency-tree. This information is static and must be entered
into the database before using the SDP-DSL. For example, to add the database
resource to Redmine, we just need to execute redmine.add_resource "Database". And
to express that MySQL supports this package, we execute mysql.provides "Database”

4.4.2 Utilization

Utilization of the SDP-DSL is separated into configuring dependency resolving
in the graph manually or to use the given meta-information about packages to
compose a default selection.

At first, we demonstrate manual dependency resolving in »Figure 13. In Line

2, we start setting the dependencies of Redmine. We use XPath-like* expressions
to select nodes in the dependency-tree. This known way of selecting elements in
a tree makes it easy to handle the dependencies.

redmine.set_resources do

set "Redmine/Database", ’SQLite’
set "Redmine/Rails Server", ’Passenger Phusion’ do
set "./Webserver", ’Apache’
end
set "//Mail Server", ’Remote SMTP’
end

Fig. 13. SDP-DSL: Manual Selection of Package Dependencies

The Redmine package represents the root node of the dependency-tree (c.f.
»Figure 14). The resources Database and Rails Server are accessible as direct
children through Redmine/Database and Redmine/Rails Server, respectively.
The method set receives a XPath expressions and a package-name. Line 4 ex-
presses that Apache will be set as the package fulfilling the Webserver depen-
dency of PassengerPhusion. But not only single elements can be selected: Line
6 searches through the dependencies and sets all dependencies matching Masl
Server to Remote SMTP.

The interaction between CM-DSL and SDP-DSL is shown in »Figure 15. We
configure the RemoteSMTP by setting the attributes user, password, host and
port of the package using inline CM-DSL expressions.

Second, we see how a package’s meta-data can be used to provide a default
selection. Therefore, we developed several heuristics that are divided into the
following two categories:

— Dependencies —Regarding the global dependency graph, following rules are
checked.

* http://www.w3.org/ TR/XPath/

/\
Rails Server Database
/\ /\
[| 1 [1 1 [
|Ruby MRI| |JRuby| |Webrick| |Mongre|| |Passenger Phusionl |SQLite| |PostgreSQL| |MySQL| |Postﬁx| |Remote SMTPl
/\

P

/\

E=

Webserver

Fig. 14. The Complete Dependency Graph of the Application

1| set "//MailServer",:RemoteSMTP do

2 attribute :user, ’someuser’

3 attribute :password, ’my_secret’

4 attribute :host, ’mail.google.com’
5 attribute :port, 465

6| end

Fig. 15. SDP-DSL: Interaction with the Configuration Management DSL

e Packages will not be preselected if they cause conflicts on the server they
will be installed on or in the infrastructure at all.

e Use already installed packages, e.g. do not install two DHCP servers, but
instead apply both configurations on the installed one, if possible.

e Respect constellations already established between packages that proved
to be stable in the past.

— Manual preferences — The user is able to prefer or force the selection of
packages. The first option selects the given package if it does not cause any
conflict. The second option selects the package even if it causes conflicts.
SDP-DSL tries to resolve the conflict by changing other already selected
packages of the dependency tree.

»Figure 16 demonstrates how metrics can be applied. This code snippet
combines the stored meta information of the packages with the flexible selection
of dependencies through the XPath-like syntax. Subsequently, Boot-DSL and
CM-DSL commands result.

Lines 2 and 3 state the task of installing MySQL on serverl, and lines 5 and
6 install Phusion Passenger. Line 8 lists a set of metrics: To use an open-source
license. This metric is applied in Line 9 to the webserver. And in Line 10, we
force Ubuntu as the operating system for all database packages.

==

= O ©00 O Utk W -

-
deploy ’Redmine’ do

enroll "Redmine/Database", on => [’Serverl1’] do
prefer :package => ’MySQL’

end

enroll "Redmine/RailsServer", on => [’Server2’, ’Server3’] do
force :package => ’Phusion Passenger’

end

metrics = {:licence => ’opensource’}

prefer :resources => "Redmine/*/WebServer", :metrics => metrics

force :resources => "//Database/*/0S8", :o0os => ’Ubuntu’

end

Fig. 16. SDP-DSL: Metrics-Based Package Preselection

5 Infrastructure Case-Study

In this section, we will present an infrastructure case-study that is deployed
entirely by CIN and the presented DSLs. In the following, we use the DSLs to
“speak” for themselves, and only occasionally explain expression details.

CIN Proxy |

CIN

Application Server 2] Auxiliary Server = |

Apache Wordpress Redmine TAP

Phusion
Passenger

Fig. 17. Infrastructure Case-Study: Machines and Software

The infrastructure consists of three machines and five applications as shown
in »Figure 17. From these three machines, the CIN proxy and the application
server are already installed, while we use Amazon EC2 to setup the auxiliary
server. Additionally to the CIN application, the following applications are hosted:

— Apache — Apache is by far the most often used web server. It supports
several roles: Serving web applications or static files, proxy for other web

DU W N

servers, or as a caching server. It is designed to handle several hundred re-
quests per second in a very efficient manner. Applications written in different
programming languages are supported by extending Apache with modules
(http://apache.org).

— Phusion Passenger — Extends Apache to support Rails and Rack-compatible®
web applications (http://modrails.com).

— Redmine — An open source web application written in Ruby on Rails®.
Redmine is a combination of project management, wiki, issue tracking, and
source code browsing (http://www.redmine.org).

— TAP — TAP is a web application written in the lightweight Sinatra” frame-
work. It extends the known Twitter microblogging-platform with the option
to store Tweets for a much longer time than the original application does.

— Wordpress — The most often used blog application written in PHP. Word-
press supports multiple editor workflows, its behavior can be extended with
various plug-ins, and new releases appear regularly (http://wordpress.com).

In order to provide a step-by-step explanation, we separate the tasks of con-
figuring and deploying the infrastructure in the following steps:
— Machine declaration and installation,
— Cookbook and package declaration,
— Dependency graph declaration,
— Package configuration and installation.

5.1 Machine Declaration and Installation

The first step is to provide the machines with the help of the Boot-DSL. The
application server is already installed, we just need to identify and bootstrap it
with the code show in »Figure 18.

machine "Application Server" do
owner "sebastian.guenther@ovgu.de"
hostname "admantium.com"
os :debian
bootstrap!

end

Fig. 18. Infrastructure Case-Study: Setup of the Application Server

The auzxillary server should run on Amazon EC2. The Boot-DSL is used to
identify the machine and install it with the help of the EC2 API (cf. »Figure 19).
We use the smallest available machine size and the Gentoo operating system.

SRack is a common interface to most Ruby web frameworks, see
http://rack.rubyforge.org for more details.

5 http://rubyonrails.org/

" http:/ /sinatrarb.com

© 00U WN -

Note that the customized owner not only identifies to whom the machine belongs,
but also provides the necessary keys to authenticate with the Amazon service.

machine "Auxiliary Server" do
owner "sebastian.guenther@ovgu.de"
os :gentoo
hypervisor :ec2 do
ami "ami-f691749f"
source "edoceo.ec2—ami/edoceo.gentoo#‘..
size :ml_small
securitygroup "default"
private_key "ec2-us-east"
end
bootstrap!
end

Fig. 19. Infrastructure Case-Study: Setup of the Auxiliary Server

These expressions add the application server and the auxiliary server to the
CIN proxy and its running Chef-server. Using the CM-DSL, we can now install
packages on the servers.

5.2 Cookbook and Package Declaration

For each application, we need a Chef cookbook, a cookbook object, and a package
object, which are important for both the CM-DSL and SDP-DSL. In order to
show some details regarding the configuration, we will focus on explaining the
Redmine application from now on.

Cookbook

Redmine is a Rails application that means that we only have to download the
application, unzip it, configure basic properties, setup the database, extend the
Apache configuration file, and start the web application. All these steps are
executed through a cookbook taken from [35]. We only show a small extract
here that downloads and extracts an archived version of the application (cf.
»Figure 20).

Cookbook Object

A cookbook object is a simple entity providing the name of a Chef cookbook.
CM-DSL requires this object to configure a dependency run, and the SDP-DSL
influences cookbook attributes. »Figure 21 shows the relevant source code.

Package Object

Finally we define the package object. This object is equally important in both
CM-DSL and SDP-DSL. A package contains several attributes that define var-
ious metadata about the package — the complete specification of Redmine is
shown in »Figure 22.

include_recipe "rails"

bash "install_redmine" do
cwd "/srv"
user "root"
code <<-EOH
wget http://rubyforge.org/frs/download.php/#...
tar xf redmine-#{node[:redmine][:version]}.tar.gz
chown -R #{node[:apache][:user]} redmine-#

—
O O 00O Uk WN -
~

EOH
11 not_if { File.exists?("/srv/redmine-#...
12| end
-

Fig. 20. Infrastructure Case-Study: Redmine Cookbook (extract)

1| cookbook :redmine do
2 author "Matthias Splieth"
3 description "Redmine Project Managemant"
4 package :redmine
5| end
Fig. 21. Infrastructure Case-Study: Redmine Cookbook Object
1| package :redmine do
2 platforms :debian, :ubuntu, :gentoo # ...
3 license "GNU General Public License v2 (GPL)"
4 tags "Webapplication, Wiki, Bugtracking, SVN, Git"
5 description "Complete development project infrastructure"
6 versions "0.9.3"
7 cookbook :redmine
8| end
Fig. 22. Infrastructure Case-Study: Redmine Package Object
5.3 Interlude: Direct Package Installation with Manual Dependency
Resolution
At this point of configuration, we have all required information to manually
install the packages. The only requirement is to define an installation object and
process it. This object determines which package should be applied on which
machine. Let’s take a closer look at the example in »Figure 23.
1| installation.configure do
2 package :redmine
3 machine "Application Server"
4 install!
5| end

Fig. 23. Infrastructure Case-Study: Definition and Execution of an Installation Object

N O U WK

Redmine has several dependencies: It requires a Ruby interpreter, Rails, and
a database. Without the option to configure the cookbooks, we would manually
need to implement a different Chef cookbook for all installation options and
their combinations. Given two interpreters, five rails version, and three database
connections, we end up with 30 combinations. The motivation of the CM-DSL
is to configure the cookbooks within the DSL.

But still, the need to either provide a full default cookbook or to remember
the remaining dependencies. With the help of the SDP-DSL, we can define a
dependency graph. This helps in automatically resolving requirements and sug-
gesting alternate packages. We suppose to use the SDP-DSL, and continue to
declare a dependency graph.

5.4 Dependency Graph Declaration

The dependency graph is a structure consisting of an interwoven set of packages
and resources. A graphical representation is shown in »Figure 14. The root
element is the Redmine package. At the second level, we express which resources
are required: Ruby, a Rails Application Sever, Database, and Mail Server. We
say that packages provide resources, and therefore list packages at the third level.
For example, we can use Webrick, Mongrel, or Apache to satisfy the Rails Server
dependency. We can choose which dependencies are modeled in the graph freely.

Now to the SDP-DSL. Packages are already defined, so declaring resources
and the dependencies between resources and packages are left. This is expressed
in »Figure 24. For Redmine, we add two dependencies on the Rails Server and
the Ruby resources (lines 2 and 3), and Lines 6 to 7 define the Ruby MRI
(the common Ruby interpreter written in C) and Passenger Phusion package to
provide this resource.

redmine.configure do
dependency "Ruby"
dependency "Rails Server"
end

rubymri.provides "Ruby"
passenger .provides "Rails Server"

Fig. 24. Infrastructure Case-Study: Declaring Resources for the Dependency Graph

5.5 Package Configuration and Installation

With the dependency graph in place, there are only two steps left for the final
infrastructure rollout. First, we satisfy all package dependencies of Redmine
by using the set method. This method is called with an XPath-like [37] query
for selecting specific resources inside the dependency graph and for setting the

© 00O Utk WN -

specific package that provides this resource. In »Figure 25, we see how the
database resource is provided by the MySQL package, the web server configured
with Apache, and more.

(redmine = Package.get :name => "Redmine"

redmine.set_resources do
set "Redmine/Database", :MySQL
set "Redmine/Rails Server", :apache do

set "./SeverModule", "PassengerPhusion"

end
set "Redmine/Mail Server", :RemoteSMTP
set "x/0S", :Debian

end

- J

Fig. 25. Infrastructure Case-Study: Configuring the Infrastructures Dependencies

The second step is the final rollout of the infrastructure. The default case is
to just execute deploy with the package name and another parameter specifying
the machine. This works only if all dependencies are defined. All packages are
installed on the same machine. Before installing anything, SDP-DSL checks var-
ious conditions: all requirements are met, the machine has the correct operating
system, and so on.

In some circumstances, it may be better to install some packages on different
machines, like providing a separate database server. Also, the default config-
uration may be changed because users prefer other packages. We express this
concern with the code shown in »Figure 26. Let us explain top-down.

— Line 1 selects the Redmine package and executes a block in its context, thus
gaining access to all dependencies.

— Line 2 shows the enro11 method with three parameters: a) Selecting the pack-
age that implements a resource, b) defining the machine on which this pack-
age is installed, and c¢) a block with a modification of the pre-configured
package selection.

— Line 2 and Line 5 install the Rails Server and the Database.

deploy :Redmine, :on => ["admantium.com"] do
enroll "Redmine/Database", :on => ["Application Server"] do
prefer :package => "MySQL"
end
enroll "Redmine/Rails Server", :on => ["Application Server"] do
force :package => Apache2"
end
force :0s => :Debian, :resources => "//Database/*/0S"
end
- J

Fig. 26. Infrastructure Case-Study: Installing the Infrastructure

5.6 Summary

Most effort of using the DSL to deploy and maintain an infrastructure is the
task to provide cookbooks and the configuration objects (package, resource).
Once this initial setup occurred, the expressions to setup machines and install
packages are small. If we assume the existence of cookbooks and configuration
options to already exist, we only need around 30 lines of code to setup the ex-
plained infrastructure. And furthermore, the architecture is highly agile. Adding
packages or new machines, updates, and — in the future — migrations require the
same amount of code. With the help of DSLs, infrastructures become a lot more
manageable.

6 Summary and Future Work

This paper presented the utilization of domain-specific languages for the deploy-
ment and maintenance of IT Infrastructures. We started to explain the used DSL
engineering process. Afterwards, we introduced several tools and their DSLs:
Cfengine, Puppet and Chef. From this domain material, we identified three im-
portant tasks in infrastructure management: (1) To initially setup physical or
virtual machines, (2) to arbitrarily configure and install software packages on the
machines, and (3) to guide the user in selecting appropriate software packages.
In order to integrate all these tasks within one tool, we designed three integrated
DSL for these tasks. A case study showed how the DSLs were used to setup an
infrastructure consisting of three machines and five applications.

This approach has several advantages in comparison to others. At first, easy
to write and to read declarative expressions are all that is needed to setup
complex infrastructures. The DSLs allow a high degree of customization and
once written can be reused to implement similar infrastructures. Second, the
DSL are integrated form the initial setup of machines using hypervisors down
to a SSH-connection and the local system’s package manager. This facilitates
to have one common data model for the infrastructure. Third, this system is
open for concerns such as user and identity management, backup, security and
more. We just need other DSLs for these concerns, and can then freely mix the
concerns via the DSL in declarative expressions. In total, this flexibility makes
our approach a well-grounded alternative to other approaches.

References

1. B. R. T. Arnold, A. V. Deursen, and M. Res. Algebraic Specification of a Lan-
guage for describing Financial Products. In ICSE-17 Workshop on Formal Methods
Application in Software Engineering, pages 6—13. IEEE, 1995.

2. R. Bahlke and G. Snelting. The PSG System: From Formal Language Definitions
to Interactive Programming Environments. ACM Transactions on Programming
Languages and Systems (TOPLAS), 8(4):547-576, 1986.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

R. A. Ballance, S. L. Graham, and M. L. V. De Vanter. The Pan Language-
Based Editing System For Integrated Development Environments. ACM SIGSOFT
Software Engineering Notes, 15(6):77-93, 1990.

J. Bentley. Programming Pearls: Little Languages. Communications of the ACM,
29(8):711-721, 1986.

A. B. Brown. Oops! coping with human error in it systems. Queue, 2(8):34-41,
2004.

M. Burgess. A tiny overview of cfengine: Convergent maintenance agent. In Pro-
ceedings of the 1st International Workshop on Multi-Agent and Robotic Systems,
MARS/ICINCO. Citeseer, 2005.

M. Burgess et al. Cfengine: a site configuration engine. USENIX Computing
systems, 8(3):309-402, 1995.

Cfengine. Companies using cfengine, March 2010.
http://cfengine.com/pages/companies.

C. Consel and R. Marlet. Architecturing Software Using A Methodology for Lan-
guage Development. In Proceedings of the 10th International Symposium on Pro-
gramming Language Implementation and Logic Programming (PLILP), volume
1490 of Lecture Notes in Computer Science, pages 170-194, Berlin, Heidelberg,
New York, 1998. Springer.

A. Couch, N. Wu, and H. Susanto. Toward a cost model for system administration.
In Proceedings of LISA ’05: Nineteenth Systems Administration Conference, pages
125-141, 2005.

M. Crafter. Sprinkle. http://www.redartisan.com/2008/5/27 /sprinkle-intro, May
2008.

M. J. E. Cuaresma and N. Koch. Requirements Engineering for Web Applications
- A Comparative Study. Journal of Web Engineering, 2(3):193-212, 2004.

H. C. Cunningham. A Little Language for Surveys: Constructing an Internal DSL
in Ruby. In Proceedings of the 46th Annual Southeast Regional Conference (ACM-
SE), pages 282-287, New York, 2008. ACM.

K. Czarnecki and U. W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. Addison-Wesley, Boston, San Franciso et al., 2000.

T. Delaet and W. Joosen. PoDIM: A language for high-level configuration man-
agement. In Proceedings of the Large Installations Systems Administration (LISA)
Conference, Berkeley, CA, 2007.

T. Dinkelaker and M. Mezini. Dynamically Linked Domain-Specific Extensions for
Advice Languages. In Proceedings of the 2008 AOSD Workshop on Domain-Specific
Aspect Languages (DSAL), pages 1-7, New York, 2008. ACM.

T. R. Fielding. Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine, 2000.

D. Flanagan and Y. Matsumoto. The Ruby Programming Language. O-Reilly
Media, Sebastopol, 2008.

M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley,
Boston, San Francisco et al., 2003.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading, Harlow et al., 10th
edition, 1997.

J. F. Groote, S. F. M. Van Vlijmen, and J. W. C. Koorn. The Safety Guarantee-
ing System at Station Hoorn-Kersenboogerd. In Proceedings of the Tenth Annual
Conference on Computer Assurance Systems Integrity, Software Safety and Process
Security (COMPASS ’95), pages 57-68. IEEE, 1995.

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

S. Giinther. Agile DSL-Engineering and Patterns in Ruby. Technical report (In-
ternet) FIN-018-2009, Otto-von-Guericke-Universitdt Magdeburg, 20009.

S. Giinther. Engineering Domain-Specific Languages with Ruby. In H.-K. Arndt
and H. Krcmar, editors, 3. Workshop des Centers for Very Large Business Appli-
cations (CVLBA), pages 11-21, Aachen, 2009. Shaker.

S. Giinther and S. Sunkle. Feature-Oriented Programming with Ruby. In Proceed-
ings of the First International Workshop on Feature-Oriented Software Develop-
ment (FOSD), pages 11-18, New York, 2009. ACM.

A. Heydarnoori, F. Mavaddat, and F. Arbab. Towards an automated deployment
planner for composition of web services as software components. Formal Aspects
of Component Software, 2:279-293, 2005.

P. Hudak. Modular Domain Specific Languages and Tools. In P. Devanbu and
J. Poulin, editors, Proceedings of the 5th International Conference on Software
Reuse (ICSR), pages 134-142, 1998.

F. v. Kutschera. Sprachphilosophie. Wilhelm Fink Verlag, Miinchen, 2nd edition,
1975.

R. Labs. Puppet, March 2010.
http://projects.reductivelabs.com/projects/puppet /wiki.

P. Lehmann. Meta-Datenmanagement in Data- Warehouse-Systemen - Rekonstru-
ierte Fachbegriffe als Grundlage einer konstruktiven, konzeptionellen Modellierung.
Dissertation, Otto-von-Guericke-Universitdt Magdeburg, 2001.

A. Lerner. Poolparty. http://auser.github.com/poolparty/, March 2010.

R. C. Martin. Clean Code - A Handbook of Agile Software Craftsmanship. Prentice
Hall, Upper Saddle River, Boston, Indianapolis et al., 2009.

M. Mernik, J. Heering, and A. M. Sloane. When and How to Develop Domain-
Specific Languages. ACM Computing Survey, 37(4):316-344, 2005.

J. Munnelly and S. Clarke. ALPH: A Domain-Specific Language for Crosscutting
Pervasive Healthcare Concerns. In Proceedings of the 2nd Workshop on Domain
Specific Aspect Languages (DSAL), New York, 2007. ACM.

Opscode. Chef webpage, March 2010. http://www.opscode.com/chef/.

Opscode. Chef wiki, March 2010. http://wiki.opscode.com/display/chef/.

D. Recordon and D. Reed. OpenID 2.0: A Platform for User-Centric Identity
Management. pages 11-16, 2006.

J. Simpson. XPath and XPointer - Locating Content in XML Documents. O'Reilly
Media, Sebastopol, 2002.

D. Spinellis. Notable Design Patterns for Domain-Specific Languages. Journal of
Systems and Software, 56(1):91-99, 2001.

S. Thibault, R. Marlet, and C. Consel. A Domain-Specic Language for Video
Device Drivers: from Design to Implementation. pages 11-26, 1997.

D. Thomas, C. Fowler, and A. Hunt. Programming Ruby 1.9 - The Pragmatic
Programmers’ Guide. The Pragmatic Bookshelf, Raleigh, 2009.

A. Van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices, 35:26-36, 2000.

E. Visser. WebDSL: A Case Study in Domain-Specic Language Engineering. In
R. Lammel, J. Saraiva, and J. Visser, editors, Generative and Transformational
Techniques in Software Engineering (GTTSE 2007), volume 4143 of Lecture Notes
in Computer Science. Springer. Tutorial for International Summer School GTTSE
2007, 2008.

D. S. Wile. Supporting the DSL Spectrum. Journal of Computing and Information
Technology, 9(4):263-287, 2001.

