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Abstract. Software product line engineering is one approach to imple-
ment sets of related programs efficiently. Software product lines (SPLs)
can be implemented by code transformations which are combined in order
to generate a program. A code transformation may add functionality to
a base program or may alter its structure. Though implemented with less
effort, generated programs are harder to debug because debug changes
must effect the SPL transformations which the program was built from.
In this paper, we present a new approach to debug programs (of an SPL)
generated by program transformations.

1 Introduction

A software product line (SPL) can be used to implement a set of related programs
from a shared code base [22]. Programs of an SPL differ in features, which
are user-visible program characteristics [21], and programs are defined using
features. Features can be implemented by program transformations, which add
functionality to a base program or alter the structure of a program. A program is
generated from an SPL by selecting features and executing code transformations
which implement those features. In prior studies on transformation-based SPL
technology, however, we and others observed that errors were hard to track and
remove [38,24].

In this paper, we discuss different approaches to debug SPL products. In
particular, we compare the debugging of generating code (transformations) with
the debugging of generated code. As sample transformations used in SPLs, we
concentrate on superimposition and refactoring. From our analysis and inline
with others we reason that debugging the generating code of an SPL can be
inappropriate [6, p.326] [12, p.22]. We need techniques to debug the generated
code. While techniques to debug generating code have been presented before, we
show how to assist the user in propagating debug changes from the generated
code to the SPL transformations.

2 Background

SPLs can be implemented using a set of program transformations that are exe-
cuted to generate different programs. In this section, we review transformations

� This paper summarizes and extends the Master’s Thesis of Martin Sturm [36].
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Superimposition Base

1 class Queue{
2 int get(){return 1;}
3 }

Superimposition F1

4 refines class Queue{
5 int get(){
6 track();
7 return Super.get();
8 }
9 int actions=0;

10 void track(){actions++;}
11 }

1 class Queue{
2 int get(){
3 track();
4 return 1;}
5 int actions=0;
6 void track(){actions++;}
7 }

(a) Generating code. (b) Generated code.

Fig. 1. Superimpositions and their composition result.

used in SPL technology: superimposition and code restructuring. Later on, we
discuss superimposition and code restructuring transformations with respect to
debugging.

2.1 Superimposition

A number of approaches use superimposition transformations and are used to
implement SPLs [5,28,3,2]. Superimpositions generate classes and class refine-
ments in a base program. A class refinement generates members in existing
classes and applies method refinements. Method refinements generate statements
in existing methods. For our upcoming discussions we use feature-oriented pro-
gramming (FOP) in our examples to represent SPL techniques that use super-
imposition transformations; further, we use Jak as a sample FOP language [5].

In Figure 1a, a superimposition transformation Base is defined to transform
an (empty) program by generating a class Queue (Base encapsulates Queue).
Superimposition F1 encapsulates a class refinement of Queue. This class refine-
ment encapsulates members (Lines 9-10) and a method refinement (Lines 5-8).
The method refinement Queue.get of F1 extends method Queue.get of Base by
overriding and generates statements in this method (overridden method called
with Super, Line 7). The result of executing Base and F1 from Figure 1a is
shown in Figure 1b. The generated class Queue encapsulates the members of
both Queue class fragments it was generated from. Method get encapsulates the
code generated from get of Base and of F1.

2.2 Code Restructuring

Program generation may involve the restructuring of code by refactoring . Refac-
torings are transformations which alter the structure of a program but do not
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alter its functionality [29]. For example, renaming a method of a program and
updating all method calls is a Rename Method refactoring [15].

Refactoring Feature Modules (RFMs) is one implementation where refac-
torings are transformations in SPLs [23]. RFMs were introduced to integrate
libraries generated from SPLs with incompatible applications. RFMs transform
the generated SPL product to expose a different structure than the classes and
class refinements inside the superimposition transformations of SPLs. If we add
an RFM R1 (Rename Method: Queue.get �→first) to the code base of Figure 1a
then executing Base, F1 and R1 generates a class Queue with members first,
track, and actions but no member get.

Refactoring transformations have preconditions [32] that specify which prop-
erties a piece of code must fulfill such that the executed transformation does
not change the piece’s functionality. The above Rename Method refactoring of
R1 (Rename Method: Queue.get �→first) requires that method Queue.get exists
and that no method Queue.first exists in the code to refactor.3 Preconditions are
common for all kinds of transformation.

3 Debugging Problems

To debug a product of an SPL, we consider two basic approaches:

– Debugging the generating code and then generate the corrected product.
– Debugging the generated code and later possibly propagate the debug

changes to the generating code.4

For both debugging approaches we identified problems which are related to the
mapping of code across its representations and the mapping of breakpoints (map-
ping problem), to in-mind execution of transformations (interface problem), and
to program complexity (bounded quantification problem).

3.1 Mapping-Problem

When a user debugs the generated code, the debug changes must be propagated
to the generating code. When the user debugs the generating code, the display
of the user must be adjusted in the generating code according to the executed
statements in the generated code. That is, the mapping of code elements from
the generated code toward the generating code must be performed for both ap-
proaches.

Transformations of an SPL can be classified using well-known types of map-
pings between the generated and the generating code elements [6, p.323ff]. Some
mapping types hamper debugging [6, p.326], so we show that refactorings cover
them all:

3 There are additional preconditions for Rename Method refactoring. These precon-
ditions are not important for now.

4 Possibly a bug fix for a certain customer should be evaluated for some time before
propagating it into the generating code.
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– In a bijective mapping (1�→1), a single code element in the generated code is
generated by transforming one code element in the generating code (super-
impositions). For instance, a Rename Class refactoring inside an RFM maps
(renames) one class in the generating code to one class of the generated
code [15]. Further refactorings which establish a bijective mapping include
Rename Method, Move Field, and Move Method.

– In a surjective mapping (n �→1), a single code element in the generated code is
generated by transforming multiple code elements in the generating code. For
example, a Pull-Up Method refactoring inside an RFM maps (transforms)
multiple methods from the generating code to one method of the generated
code.5 Further refactorings which commonly establish a surjective mapping
include Pull-Up Field, Inline Method, and Inline Temp.

– In an injective mapping (1�→n), multiple code elements in the generated
code are generated by transforming a single code element in the generating
code. For example, a Push-Down Method refactoring inside an RFM maps
(transforms) a single method of the generating code to multiple methods
of the generated code.6 Further refactorings which establish an injective
mapping include Push-Down Field, Extract Method, Extract Superclass,
Extract Class, and Extract Interface.

– In a partial mapping (0�→1), a code element in the generated code is gen-
erated without transforming a code element in the generating code. Partial
mappings may occur when RFMs generate code. For example, an Encapsu-
late Field refactoring inside an RFM generates a get and a set method for a
field, but the field is not transformed into those methods [15]. As a result,
the methods get and set have no code element in the generating code they
are transformed from. Further refactorings which cause this type of mapping
include Extract Interface, Hide Delegate, and Self Encapsulate Field.

Transformations of the mapping types (n�→1), (1�→n), and (0�→1) have been
argued to complicate debugging [6, p.326] [1,40,12].7 SPL transformations like
superimpositions and refactorings are applied one after the other such that the
mapping of one transformation blurs with the mappings of the transformations
that follow [12, p.14]. As a result for example, the mapping for Queue.first in Fig-
ure 2 is blurred. Queue.first is generated by a Rename Method refactoring but
does not directly map to one method in the generating code. Instead Queue.first
was generated from a number of methods by an Inline Method RFM before. Sum-
marizing, the complexity of the mapping grows rapidly with a growing number
of complex SPL transformations.

5 Pull-Up Method copies a single copy of equivalent methods from subclasses to a
superclass and removes the remaining equivalent subclass methods [15].

6 Push-Down Method generates a copy of the pushed method in multiple subclasses
and removes the superclass method [15].

7 We consider Extract Method to by 1 �→n-typed. Others, interpreted Extract Method
as the merging of duplicate statements across methods – interpreting Extract Method
as n �→1 mapping [40][12, p.13]. They analogously consider our n �→1-typed refactor-
ings, like Inline Method, to be 1 �→n-typed [1, p.143]. Our notion is based on the
number of named code elements which exist before and after a refactoring.
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Queue Queue.get Queue.track

Inline Method:

Queue.track

Queue Queue.get

Rename Method:

Queue.get �→first

Queue Queue.first

Extract Interface:

Queue �→ADT

Queue ADT Queue.first ADT.first
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Fig. 2. Sample mapping between generating and generated code.

When debugging generated code the mapping problem may lead to situations
in which the propagation of debug changes towards the generating code fails due
to the debug changes (transformations may not be invertible due to the debug
changes). According approaches, thus, must provide a fallback strategy.

When debugging generating code the mapping problem may lead to situ-
ations in which the code to display to a user is ambiguous or does not exist.
For example, if the code executed in the product was generated by a partial-
mapping-typed refactoring (0�→1) there might be no generating code to display
to a user for certain steps of the generated executed code. Displaying transfor-
mation descriptions instead is not an option as they might not show the code
they generate, either, e.g., RFMs parameterize algorithms but do not include
algorithms [23].

If the executed code was generated by a refactoring which establishes a sur-
jective mapping (n�→1) there are multiple pieces of code in the generating code
that are a valid mapping value from the generated executed code, i.e., which
could be validly displayed to a user [40]. Displaying the wrong one, however,
causes confusion.8

Furthermore, if code was generated by a refactoring which establishes a sur-
jective mapping (n�→1) breakpoints set in the according generating code match
too often or too seldomly. For example, breakpoints set to a method generated
by a Pull-Up Method refactoring match more frequently than correct when they
are set to a generating (pulled) element which got set as a mapping value for
the generated code – the breakpoint will match for every pulled element in the
generating code. A breakpoint set unknowingly to the wrong element in the gen-
erating code (not referenced from the generated code) will never match. This
nondeterminism hampers debugging.

8 In case of an applied Pull-Up Method refactoring we can display one of the equiv-
alent methods in the generating code to represent the executed method which was
generated out of them. But this choice might be incorrect according to the calling
class in the generating code.
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Base

get()

Queue

actions
get()
track()

Queue

F1

R1

Rename method:
Queue.get() �→first

Fig. 3. Refactoring and
superimposition-based SPL.

If the code executed in the product was gener-
ated by a refactoring which establishes an injec-
tive mapping (1�→n) multiple values of variables
from the generated code might need to be merged
– this, however, might be impossible. As an exam-
ple, consider a Push-Down Field refactoring9 on
a static field which generates multiple static fields
in the generated code; these generated fields can
expose different values at debug time but cannot
in the generating code. When debugging the gen-
erating code, according values must be merged to
be displayed as one value for the single (pushed)
field in the generating code. However, there is no
general way, for example, to map the values of dif-
ferent Integer fields in the generated code to one
Integer field in the generating code. As analyzing
variable values is central to debugging imperative
languages [39], being unable to map variable val-
ues is a serious problem when debugging impera-
tive generating code.

3.2 Interface Problem

Current development environments for SPLs which are based on superimposition
(and refactoring) transformations require the user to execute the superimposi-
tions in mind in order to understand the steps the debugger takes. That is, when
debugging generating code the user must oversee which types and methods exist
in the generated program, i.e., which methods can be called in a debug change.
As a sample debug change in Figure 3, a user wants to add to superimposition
Base a method that calls Queue.track. As Queue.track is undefined inside Base
the user must generate the debugged program in mind to verify that she is able
to call Queue.track. Transformations of an SPL which do not contribute to the
debugged product further hamper in-mind product generation.

When debugging generating code, code elements in superimpositions might
be replaced or overridden accidentally. For example, when a user applies a debug
change to generating code and thereby adds a method, this new method may
replace a method in the superimposition sequence of a different product. Current
validation approaches alert when a method could be replaced in a class refine-
ment for any product of the SPL [38]. Accidental method overriding, however,
is only alerted when introduced by RFMs but not by a debugging user [24].

In the case of RFMs intermixing with superimpositions in their application
sequence, the complexity of executing refactorings and refinements in mind in-
creases further. For example, a call to a method get() in a superimposition may

9 Push-Down Field moves a field of a superclass into those subclasses that use the
field [15].
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have to be written as top(int,String) because refactorings applied between the
generation of get() and the method call.10

When debugging generated code, code of other SPL products is hidden and
errors in other products are conjourned until finishing product debugging. The
product does not have to be generated in mind.

We infer from the interface problem that tools to support debugging of an
SPL product should hide SPL transformations which do not contribute to the
debugged program. Nevertheless, the debug changes should be checked against
all products of this SPL and an error should be reported when a debug change
puts any product in error. Nevertheless, this error should not hamper the user
in implementing a debug change. Error handling regarding other SPL products
should be adjourned until finishing product debugging.

3.3 Bounded Quantification Problem

Bounded quantification allows code in (superimposition) transformations to only
reference code of preceding transformations [27]. Bounded quantification reduces
complexity in transformation systems, so it should hold before debugging and
after. Debug changes are unforeseen and so they may break bounded quantifi-
cation for the generating code. For example, adding members to classes, adding
statements to methods, or changing signatures of members or classes are com-
mon debug changes but may break bounded quantification.11 The user, thus,
should be assisted where to put a debug change.

When debugging generated code the user can be assisted choosing which
superimposition is best for hosting the performed debug change.

When debugging generating code, complexity of managing incomprehensible
errors is put upon the user when debug changes break subsequent transforma-
tions. For example, in Figure 3, a user, who aims at debugging superimposition
Base gets an error when she adds a method Queue.first because this method
breaks the subsequent RFM R1 (requires Queue.first not to exist). With an
increasing number of superimposition and refactoring transformations, the re-
strictions imposed by transformations, which follow a superimposition to change,
become opaque and unmanageable.

4 A Debugging Process for Transformation-based SPLs

We must be able to debug a generated SPL product using the generating and
using the generated code [6, p.326] [12, p.22] [20]. The discussions above under-
line this issue. In this section, we present our approach to support the user in
debugging the generated code and to assist her in propagating the debug changes
to the generating code of the SPL.

10 Add Parameter refactorings generate formal parameters in a method and require to
pass actual parameters in calls [15]. Rename Method refactorings rename methods
and update according calls [15].

11 The user may reference code elements generated in a superimposition which applies
later than the changed superimposition.
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Debug gen.
codeg ⇒

Find
changes ⇒

Compute
origins ⇒

Plan change
propagation ⇒

Save propa-
gationg

Fig. 4. A debugging process for SPLs built from complex transformations.

4.1 Conceptual Process

We summarize the process in Figure 4 and discuss its concepts below.

Debug generated code. We argue that users should be able to debug the generated
code of their SPL product. This code is in a paradigm which superimposition and
refactoring-based SPL techniques extend and which thus should be common to
the user. When debugging the generated code, all tools that exist for off-the-shelf
programs can be reused.

Find changes. After debugging the generated code we propose to compare the
debugged program with the unchanged version of this program. By comparing
the debugged code with the unchanged code, we can now identify the debug
changes. For this task we can reuse off-the-shelf tools like diff 12.

Compute origins. We propose to calculate the origin of generated members and
classes by analyzing the composed superimpositions in their execution order. We
propose to record the mapping for every code element in an index structure. If
the generating transformations are superimpositions and refactorings, a qname
(abbr. fully-qualified name) of the generated code should be mapped to a qname
of the generating code. Specifically for superimpositions, the qname of a gener-
ated method or class in the index should map to an ordered list of qnames in the
superimpositions – one for every method/class refinement. Finally, we record the
refactorings applied to every superimposition in a transformation history (here:
refactoring history).

In the index we create from Figure 3, the generated key Queue.first maps
to Queue.get from superimposition Base and to Queue.get from superimposition
F1. In the transformation history, R1 is recorded to affect Base and F1.

The qname of a code element which got generated by a surjective-typed
RFM (from different elements in the generating code) is included in the index
but maps to an empty list of qnames.

Plan change propagation. Using diff ’s result an automated mapper should iden-
tify the changed and added code elements (removing elements is not supported
generally as we explain later). The mapper then should calculate the transforma-
tion to which a change should be propagated (target). For that calculation in our
sample transformations, we perform two steps: (a) if the element got changed
(qname exists in index), we take the superimposition of the indexed value qname
as a first target; (b) we analyze the dependencies of the changed/added generated

12 http://www.gnu.org/software/diffutils/diffutils.html
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code toward code elements this code references. Using our index, we calculate
the originating superimpositions for these elements (not their refinements) and
– to maintain bounded quantification – select the superimposition which was
applied last to be the new target.

After we identified the presumably best target superimposition for a change,
we check whether this change can be propagated to the target. For that, we check
whether all refactorings and superimpositions can be inverted which applied af-
ter the target superimposition (recorded in transformation history and index).
If all refactorings can be inverted, we propagate the changed element into the
target superimposition (possibly replacing the original). If we cannot invert a
refactoring of an RFM we provide a fallback strategy . As a fallback strategy, we
add a new superimposition which succeeds the non-invertible RFM, a superim-
position which then encapsulates the debug change. The buggy code will then
be overridden in future compositions by the code of the new superimposition.

Refactorings cannot be inverted directly when a debug change violates the
inverse refactoring’s preconditions [9].13 To invert a refactoring, we propagate
a copy of the changed generated code and apply the inverse refactorings to the
copy’s code elements important to the inverted refactoring. For example to invert
an Encapsulate Field refactoring, we apply changes to the get and set methods,
to the encapsulated field, and the debug change. To invert a Rename Class
refactoring, we update the class name along with the debug change elements.

For our sample transformations of refactorings, name capture14 can prohibit
to invert a refactoring. To detect name capture, we extend our index to keep
all qnames – even deleted ones (deleted qnames can be tagged with a boolean
value). We then can analyze the qname histories for all qnames in superclasses
and subclasses and evaluate whether one of them will be newly overridden after
change propagation.

If debug changes include multiple new code elements, we define targets for
added fields first and organize the changes to constructors relatively to the field
targets; methods are the last elements which we define targets for (also relatively
to the field targets). Finally, we proof whether bounded quantification got broken
and if so we adapt the targets of breaking elements.

When a qname exists in the index but maps to an empty list of value qnames,
we infer that the element got generated by an RFM.15 In this case, we propagate
the debug change along the reverse global sequence of program transformations
and invert these transformations until one transformation identifies the changed

13 For example, to generate a program, an Inline Method RFM may have replaced all
calls to a method by the called method’s body. In the generated code, the according
statements now exist as multiple copies – changing one copy prohibits to invert the
refactoring.

14 Name capture redirects method calls and thus changes behavior [34]. Name capture
occurs when after a refactoring executed two methods override each other which did
not override each other before the refactoring executed.

15 The superimposition composer also can generate code elements which have no equiv-
alent in the generating code. These elements map to a source file but no value qname
in our index.
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element as “self-generated” and adapts the target. For instance, a method gener-
ated by a Pull-Up Method refactoring from multiple methods occurs within the
index but without (generating) value qname. If this method got changed, RFMs
are inverted until the refactoring which inverts the Pull-Up Method RFM recog-
nizes the method got generated by the uninversed Pull-Up Method RFM. The
inverse refactoring then generates debug changes for every pulled up method.
The new debug changes, finally, are propagated to their respective targets.

Save propagation. There commonly are multiple superimpositions a debug
change might be propagated to and so advise given to the user might be sub-
optimal though correct. A mapping tool, thus, should advise a mapping to the
user but should ask the user to confirm.

4.2 Unsupported Changes for Superimposition Transformations

The transformations available for program generation limit the changes possible
to propagate to the generating code. In some cases even no fallback strategy
is available. For example, in superimposition languages (1) the elements, which
can be generated, limit the changes that can be propagated and (2) deletions
might not be propagated.

Superimposition transformations in Jak do not allow to override construc-
tors [33] so the presented fallback strategy cannot be used when, due to a de-
bug change inside a constructor, the inverting of a refactoring fails. According
changes cannot be propagated to the generating code. As a workaround, we pro-
pose to follow the advise from the Jak documentation Extract constructors into
initialization methods [33]. That is, we propose to extract respective constructors
automatically into methods which then can be overridden. We envision similar
workarounds for changed field initializations (fields also cannot be overridden in
Jak), by encapsulating their initialization in methods which can be overridden.

Removing elements from the generated code is not supported in every case
for superimposition approaches. We can calculate the removed code elements by
comparing the qnames of the index with those present in the changed generated
code. However, a removed element, then should be removed in the generating
code, too. If the debug change prohibits to invert an RFM we cannot delete this
code because superimpositions can only generate code.

4.3 Sample Process

In Figure 5, we review the result of our running example of Figure 3 but with
debug changes (we underlined changed and added code). We first detect the
debug changes. Then we generate the index and the transformation history and
map the detected changes to the generating superimpositions. In Figure 5, the
first change is detected for a constructor Queue() (Line 4) for which a qname
exists in our index – the code element thus got changed. The index value for this
qname is a list of qnames – one qname from the superimposition, that introduces
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the constructor, and one from the superimposition that refines the constructor.16

The change is detected in the first block of the constructor and thus the target
is the superimposition which introduces Queue(). The second block of Queue()
is unchanged and thus there is no need to adapt the constructor refinement. As
no dependency toward code elements is added, the target for the detected debug
change is the Queue()-introducing superimposition Base. We calculate that R1
(applies after Base) can be inverted and advise the user to put the change to
Base.

1 class Queue{
2 Queue(){
3 {
4 int i =0;
5 }
6 { ... }
7 }
8
9 void flush(){

10 track();
11 first();
12 }
13 }

Fig. 5. Found changes
in debugged code.

A second change is detected in the code of Figure 5
(Lines 9-12) but we do not find a key in our index for
the affected qname Queue.flush, i.e., this method got
added during debugging. To guarantee bounded quan-
tification, we advise to put Queue.flush into a super-
imposition where all code elements referenced inside
flush have been defined before. For that, we analyze
the code elements which flush references (Queue.track,
Queue.first) and analyze in which superimposition each
of them was generated finally: Queue.track is generated
in F1 and Queue.first is generated in Base (in F1 the
method just gets refined). We check whether R1 can
be inverted for Queue.flush – it can – and, thus, we add
Queue.flush to F1 which introduced the last referenced
code element.

Now let’s review an example, where propagating
changes does not work. For that, consider a densed
version of our running example in Figure 6a. We com-
pare the unchanged code (Fig. 6b) to the code the user
changed during debugging. We then create the index
and the transformation history. We analyze the first change (Fig. 6c, Line 3) and
find it a new method because its qname does not exist untagged in the index.17

We identify the superimposition Base as the best target because the hosting
class Queue is defined in Base and the added method get has no dependencies to
other elements. Following the transformation history of Base backwards, we try
to invert R1, i.e., we try to rename Queue.first into get in the generated code.
We fail inverting R1 due to the added method get because inverting R1 requires
Queue.get to not exist in the code to refactor.18 As a result, we cannot propagate
get from the debugged code into the target Base. Following our fallback strategy
we propagate Queue.get into a new refinement of Queue in a new superimposition
C1 which follows the non-invertible R1 (Fig. 6d).

16 Support for constructors is not yet implemented but the concept is equivalent to the
one of supported methods.

17 The qname does exist in the index because we keep all qnames generated during
program generation. However, the key is tagged as deleted, so it cannot match.

18 In Java, C++, and alike languages, a qname must be unique inside a program [16,
p.123ff]. As a result, inverting R1 must be disallowed to create a second Queue.get.
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Base

1 class Queue{
2 int get(){...}
3 }

R1

4 Queue.get() �→
first

(a) Feature-
oriented Code

1 class Queue{
2 int first(){...}
3 }

(b) Unchanged
Code

1 class Queue{
2 int first(){...}
3 int get(){return 0;}
4 }

(c) Changed Code

Base

1 class Queue{
2 int get(){...}
3 }

R1

4 Queue.get() �→first

C1

5 refines Queue{
6 int get(){return 0;}
7 }

(d) Decompose
Proposal

Fig. 6. A fallback strategy.

5 Prototype and Evaluation

To identify the debug changes our prototype regenerates the debugged product –
without debug changes – into a separate folder and compares this code with the
debugged code (for datails, see [36]). Our prototype propagates debug changes
applied to programs which were generated using the Jak composer tool Jam-
pack [4]. For that, our prototype includes simplifications specific to Jampack –
the concept, however, is not affected.19 The prototype identifies debug changes
using a common diff tool. To create the index and transformation (refactoring)
history, our prototype iterates the superimpositions in their execution order. For
every superimposition, it collects the qnames of code elements which are gen-
erated in this superimposition as index keys and the according ASTs as index
values. If a qname is regenerated the value AST for this qname is replaced, if a
method gets refined, we extend the value list of ASTs for the refined qname. If
the recorded transformation is an RFM, we execute the refactoring on the keys of
our index but not on the index values. Thus, the index in the end maps qnames
of the generated code to ASTs of the generating code. Detection of name capture

19 Jampack generates a method with a mangled name for every method refinement;
those methods then call each other according to their former refinement relation.
Our prototype’s index does not map a generated qname towards a generating qname
but towards an abstract syntax tree (AST) parsed from the generating code element.
Our prototype’s index further does not map a method’s qname towards a list of
according refinement ASTs but maps the qname of each mangled method towards
its refinement AST. Refinement chains then are computed by following refinement
links added for this purpose to qnames. For superimposition approaches that merge
refining with refined bodies either the change propagation tool must implement
a more detailed comparison to detect the index mapping or the composers must
separate refinements differently, e.g., with blocks.
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is not yet implemented. After the prototype propagated the debug changes into
superimpositions, it saves this advise in a separate folder.

Case study. We evaluate the proposed index solution using the Graph Product
Line (GPL) which has been proposed a standard study for SPL technology [26].
Specifically, we use a version of prior work in which we applied RFMs to GPL
in order to integrate GPL products with incompatible environments [23]. As our
prototype implementation is capable yet of calculating the inverse only for Re-
name Method, Rename Class, and Move Method refactoring, we prune the study
accordingly. Furthermore, the prototype can yet propagate only specific changes
to the superimpositions: Changes to generated method bodies and additions of
methods and fields.
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Fig. 7. Studied GPL fea-
tures.

As a proof of concept we selected nine features
from the GPL that form a product, five superimpo-
sitions and four RFMs. The superimpositions gen-
erate and refine the classes Edge, Graph, Neighbor,
and Vertex. The RFMs rename class Vertex into
VertexImpl, class Graph into WeightedGraphImpl,
method WeightedGraphImpl.addVertex(VertexImpl)
into add, and method WeightedGraphImpl.Shortest-
Path(VertexImpl) into shortestPath. We indicate the
executed program transformations in their execu-
tion order in Figure 7.

In Figure 8a, we underline three debug changes
applied to the generated class WeightedGraphImpl.
The method addEdge(Edge) got changed so we com-
pute from our index that addEdge was generated
lastly in the superimpostionDirected which becomes
our first target. We detect that no dependencies towards other code elements
were added by the change so Directed remains our target. We invert the four
RFMs which applied after Directed and advise the user to replace the un-
changed method in Directed. The second change detected, concerns a method
ShortestPath which was added during debugging. We analyze the references in
this method – ShortestPath solely references shortestPath (generated in super-
imposition Shortest) so superimposition Shortest is our first target. As a next
step we check whether all RFMs that applied after Shortest can be inverted
with ShortestPath. We cannot invert RFM ShortestSmall (renames Weighted-
GraphImpl.ShortestPath(VertexImpl) into shortestPath) because this would create
two methods with the qname WeightedGraphImpl.ShortestPath(VertexImpl) in the
generating code. We add a superimposition as a successor of ShortestSmall, a
superimposition which then encapsulates the debug change ShortestPath.

In Figure 8b, we highlight the debug changes applied to class VertexImpl. The
field displayed and the method wasDisplayed got added; and methods display and
assignName got changed to use the added field and method. We detect those
uses and for that advise to use superimposition Shortest (generates display) as a
target for displayed. As wasDisplayed got added and solely references displayed, it
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(a)

1 class WeightedGraphImpl{ ...
2 public void addEdge(Edge the edge) {
3 if (the edge != null) {
4 VertexImpl start = the edge.start;
5 VertexImpl end = the edge.end;
6 edges.add(the edge);
7 start.addNeighbor(new Neighbor(end, the edge));
8 }else{
9 System.out.println(”Param the edge was null!”);

10 }
11 }
12 public WeightedGraphImpl ShortestPath(VertexImpl s) {
13 return shortestPath(s);
14 }
15 }

(b)

16 class VertexImpl{ ...
17 private boolean displayed = false;
18 public void display() {
19 System.out.print(”Pred ” + predecessor + ” DWeight ” + dweight + ” ”);
20 display$$eval$outWeighted$GG();
21 this.displayed = true;
22 }
23 public boolean wasDisplayed(){
24 return displayed;
25 }
26 public VertexImpl assignName(String name) {
27 this.name = name;
28 if(this.wasDisplayed()){
29 System.out.println(”was already displayed!”);
30 }
31 return (VertexImpl)this;
32 }
33 }

(c)

34 class Edge { ...
35 public void EdgeConstructor(VertexImpl the start, VertexImpl the end) {
36 if(!the end.equals(the end)){
37 EdgeConstructor$$eval$outDirected$GG(the start,the end);
38 }
39 }
40 }

Fig. 8. Detected changes in the GPL case study.
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is advised to be put to Shortest, too. To keep bounded quantification, the changes
to methods assignName (generated in the early superimposition Directed) and
display are advised to be put into Shortest, too.20

Yet, our prototype does not support refactoring transformations which es-
tablish partial mappings (0 �→1). So we evaluated the proposed concept us-
ing a method which is generated by Jampack during superimposition execu-
tion, i.e., a method which does not have a generating equivalent in the su-
perimpositions. In Figure 8c, we show a method EdgeConstructor(VertexImpl,-
VertexImpl) of class Edge which was generated by Jampack because method
Edge.EdgeConstructor(Vertex,Vertex,int) in the superimposition Weighted called
this method with an explicit Super call.21 That is, to this method no generating
code exists in the superimpositions. When we created the index, we detect that
Jampack will generate this method and added its qname to the index (without
value AST). As a result our prototype advises to put the transformed method
refinement as a method refinement to the superimposition Weighted. As a result,
Jampack will not regenerate the method and the debug changed code equals the
regenerated code.

6 Related Work

Mapping to higher-level languages. Preprocessor directives are common to the
C++ language [35, p.606ff]. Line directives, added to the generated code, indi-
cate from which file and which source line the following lines in the generated
code stem from.22 In Java, users can create file- and line-based mapping tables
(called source maps (SMAPs)) and optionally compile them into binaries [37].23

We refrained from using these techniques because preprocessor directives and
SMAPs are not available for every language and not every debug tool may un-
derstand them.

Comments are available in most programming languages. Comments can be
added to the generated code to encode the origin of generated code lines that
follow. Comments are language independent but commonly are not integrated
into generated binaries. A debug tool would thus have to synchronize the bi-
naries, the generated code, and the generating code. In Java, comments can be

20 In this case, it would have been better to propagate displayed and wasDisplayed to
earlier superimposition Directed because the changes to method assignName could
then be propagated to Directed (generates assignName) and the changes to display
could then be propagated to Shortest (generates display) without violating bounded
quantification. Such considerations are possible future work.

21 Jampack generates a method A in the code, when a method B calls A of B’s respec-
tive preceding superimposition using Super, i.e., B does not refine A but calls an
intermediate A.

22 Line directives are used for debugging in the FOP language FeatureC++ [3]. Line
directives are used to debug C++ template metaprograms [31].

23 SMAPs are used for debugging in AspectJ (see
http://eclipse.org/aspectj/sample-code.html#trails-debugging-aspectj10,
http://eclipse.org/aspectj/doc/released/faq.php).
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compiled in annotations [16, p.281]. Finally, to maintain comments, numbers of
existing SPL composer tools would require adaptation.24

The DSL Debugging Framework (DDF) integrates mapping information into
DSL grammars [39]. DDF maps one line in the generating code to a sequence of
lines in the generated code (surjective mappings are not considered). Thereby,
DDF maps a DSL line number onto the accordingly (a) generated file, (b) range
of line numbers, (c) the function of the mapped DSL line, and (d) the type of
the mapped DSL statement.

KHEPERA tracks the effects of transformations which are successively ap-
plied to a program and generates code which implements the mapping [13]. To
use KHEPERA, the generator must integrate with KHEPERA to trigger AST-
change-logs; or the transformations must be written in the KHEPERA language
(then it is translated by KHEPERA and logs are triggered, too). Integrating
composers with KHEPERA might not be possible when composers are legacy
applications. KHEPERA allows to view and step in intermediate transformation
results [12] but does not propagate changes from the generated code towards the
generating code.

Beside SMAPS, all above approaches would require extensions to existing Jak
and RFM composer tools. In contrast, our prototype works alongside the Jam-
pack composer tool and the RFM composer tool and does not impose changes
to them. Furthermore, the index-based approach supports surjective mappings
which are unsupported by all above approaches except for KHEPERA.

Debugging advances for metaprograms. Aspect transformations of aspect-
oriented programming are similar to superimposition transformations [25].
Eaddy et al. report on unexpected and confusing code jumps when aspect trans-
formations are hidden during debugging [10]. For such situations they propose
to display the injected and interwoven aspect code. When a bug in the injected
and interwoven code is found, the user must change the generating aspect – they
do not focus on how to identify the generating (aspect) code to change. Ishio
et al. calculate a call graph that relate aspect code and extended code in order
to calculate erroneous loops and accidental advice execution [20]. They further
slice programs to expose the source statements that lead to an incorrect variable
value. Ishio et al. do not argue how to change the program or the aspects. Aspect
transformations differ from refactorings.

Porkoláb et al. show how they instrument C++ meta metaprograms, which
should be debugged, and record their execution [31]. Based on the records they
subsequently step in the template code but they cannot influence the (priorly)
executed program. In contrast to them, we aim at debugging the generated
runtime program rather than the generating compile time program. Further,

24 In the Unmixin tool [4] an annotation-based approach (SoUrCe declarations) is used
to map generated Java code to Jak code of superimpositions. In addition to prop-
agating debug changes to superimpositions (as performed by Unmixin), our index
concept supports refactorings as SPL transformations. Refactoring transformations
are not supported by Unmixin.
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tracing a large-scale program statement-by-statement (to allow statement-based
stepping) might not be feasible.

Debugging optimized code. Compilers apply refactoring-like transformations to
code such that the transformed program executes faster than the original. De-
bugging these programs pose similar problems as we described. The problem
of merging variable values in Section 3.1 highly correlates to the problem of
non-current and endangered variables after program optimizations [17,1]. The
difference is that, in our case, different stores may replace a single store without
synchronization intention, i.e., they may expose different values without chang-
ing behavior. Path analyses, a proposed solution in prior work, is hard (if not
impossible) to implement for source-to-source transformation systems, like Jak
and RFM tools. Further, the current value of the generating field might be in-
dependent from the latest assignment, e.g., it may depend on the subclass code,
such that “simple” path analyses could not help.

The problem of displaying an ambiguous copy, and of breakpoints match-
ing too often or too seldom can be solved by path analyses and conditional
breakpoints [40][1, p.147]. This however, might be hard (if not impossible) for
source-to-source transformation systems or certain target languages.

In contrast to the work on debugging optimized code, the transformations
considered here are not only restructuring operations but also functionality-
adding transfomrations of superimpositions. This code exists in the generated
program but not in the base program to which superimpositions and refactor-
ings apply. The approaches discussed above would impose changes to existing
composition tools.

Debug perspective. Some researchers argue to display the generating code to the
user, e.g., [39,18], and some researchers argue that debugging should be possible
at every level of abstraction [6, p.326] [13,20,11]. When SPLs include complex
code transformations like refactorings and the language of the generated code is
similar to the language of the generating code, we argue to debug the generated
code and assist the user in propagating the debug changes afterwards to the
SPL transformations. The reasons are manifoldly: First, the complex mapping
of sequenced refactorings (cf. Sec. 3.1) hampers to step comprehensibly through
the generating code. Second, current development tools of superimposition-based
SPLs require the user to compose programs in mind and do neither hide code
unavailable nor highlight code available in the debugged product (cf. Sec. 3.2).
Third, tools to debug the generating code can hardly assist the user in which
superimposition to put a debug change best to minimize complexity (cf. Sec. 3.3).
Finally, the language of the generating code (e.g., Jak) and the language of the
generated code (e.g., Java) are highly similar in superimposition and refactoring-
based SPLs such that there should be no adaptation problems of displaying the
generated code.25

25 Jak is Java plus 3 keywords, Super, refines, and Layer [5].
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Inverting refactorings. MolhadoRef inverts refactorings to reduce conflicts when
merging a debug-changed program with a former revision of this program [9,8].
Inline with MolhadoRef we execute inverse refactoring operations in order to
invert refactorings. In contrast to MolhadoRef, the refactoring sequence we invert
was not executed during debugging but during program generation. While for
MolhadoRef the differences between the program and the code base are identified
and handled after inverting refactorings, we have to identify debug changes before
inverting refactorings in order to propagate the debug changes correctly (to
identify target superimpositions). While MolhadoRef propagates debug changes
of a program toward a single program (an earlier revision), we propagate debug
changes of a program toward a code base of a transformation-based SPL.

In the context of compiler optimizations, transformations, like Inline Method,
are inverted at runtime to debug the generating code [18]. Our setting is the de-
bugging of a product of a transformation-based SPL and not the debugging of an
optimized off-the-shelf program. Refactorings are just one kind of transformation
we invert. [18] does not describe how to deal with surjective transformations.

Bidirectional transformations. Bidirectional transformations (a.k.a. lenses) syn-
chronize multiple related representations of elements where changes can be trig-
gered in any representation [7,19,14,30]. The common generation process is de-
scribed as transforming a higher-level representation (abstract view) into a lower-
level representation (concrete view). We can think of superimposition code being
a concrete view and the generated code being a concrete view, too – the change
propagation we perform then is inverting RFMs and detaching method refine-
ments. Our index structure, thus, can be interpreted as being the abstract view.
For that, however, ASTs of the generating and generated code must be integrated
because then we could generate the concrete view (program) from the abstract
view (qname index). In the change propagation problem we focused on, edits
to the generated code may prohibit the application of inverse RFMs (we, thus,
discussed a fallback strategy) – such situation may not occur for bidirectional
transformations.

7 Conclusions

In this paper we discussed a number of problems which occur when debugging
a program generated from a transformation-based software product line (SPL).
Specifically, we discussed problems of complex mappings between the generat-
ing and the generated code, problems of generating SPL products in mind, and
problems of debug changes breaking the SPL design. We found that for SPLs
implemented with transformations of superimpositions and refactorings, the gen-
erated code should be debugged and corrected. After that, the developer should
be assisted in propagating the debug changes to the generating transformations.
We presented the concepts needed to assist the developer in propagating changes
and evaluated them using a prototype.



7. CONCLUSIONS 19

Acknoledgments

The authors thank Don Batory, Christian Kästner, and Marko Rosenmüller for
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ity in time – product line variability and evolution revisited. In Proceedings of
the International Workshop on Variability Modelling of Software-intensive Systems
(VaMoS), pages 131–137, 2010.

12. R.E. Faith. Debugging programs after structure-changing transformation. PhD
thesis, University of North Carolina at Chapel Hill, 1998.

13. R.E. Faith, L.S. Nyland, and J.F. Prins. KHEPERA: A system for rapid im-
plementation of domain specific languages. In Proceedings of the Conference on
Domain-Specific Languages on Conference on Domain-Specific Languages (DSL),
pages 19–19, 1997.

14. J.N. Foster, M.B. Greenwald, J.T. Moore, B.C. Pierce, and A. Schmitt. Combi-
nators for bi-directional tree transformations: A linguistic approach to the view
update problem. In Proceedings of the International Symposium on Principles of
Programming Languages (POPL), pages 233–246, 2005.



20

15. M. Fowler. Refactoring: Improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., 1999.

16. J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification.
Addison-Wesley Longman Publishing Co., Inc., 3 edition, 2005.

17. J. Hennessy. Symbolic debugging of optimized code. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 4(3):323–344, 1982.

18. U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic
deoptimization. ACM SIGPLAN Notices, 27(7):32–43, 1992.

19. Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing structured
documents based on bidirectional transformations. In Proceedings of the Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation (PEPM),
pages 178–189, 2004.

20. T. Ishio, S. Kusumoto, and K. Inoue. Debugging support for aspect-oriented pro-
gram based on program slicing and call graph. In Proceedings of the International
Conference on Software Maintenance (ICSM), pages 178–187, 2004.

21. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented do-
main analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, 1990.

22. C. W. Krueger. New methods in software product line practice. Communications
of the ACM (CACM), 49(12):37–40, 2006.

23. M. Kuhlemann, D. Batory, and S. Apel. Refactoring feature modules. In Proceed-
ings of the International Conference on Software Reuse (ICSR), pages 106–115,
2009.
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