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Towards Selection of Optimal Storage Architecture for
Relational Databases

Andreas Lübcke, Veit Köppen, and Gunter Saake
School of Computer Science,

Otto-von-Guericke-University Magdeburg, Germany
{andreas.luebcke,veit.koeppen,gunter.saake}@ovgu.de

Abstract: Requirements for database systems differ from small-scale stripped min-
imal database programs for embedded devices with minimal footprint to large-scale
on-line analytical processing applications. For relational database management sys-
tems, two storage architectures have been introduced: a) row-oriented architecture
and b) column-oriented architecture. In this paper, we present a query decomposition
approach to evaluate database operations with respect to their performance according
to the storage architecture. We map decomposed queries to workload patterns which
contain aggregated database statistics. Further, we develop our decision models which
advise the selection of the optimal storage architecture for a given application domain.
We develop complementary decision models to select the storage architecture. The
first decision model improves the performance of running systems (on-line). The sec-
ond and third decision model advises an efficient database design or decides which
architecture is more suitable for a given application domain (off-line).

1 Introduction

Database management systems (DBMSs) are pervasive in current applications. Conse-
quently, practitioners aim at optimal performance by database tuning. But, adminis-
trating and optimizing DBMSs is a costly task [WKKS99]. Therefore, DBMS vendors
and researchers develop self-tuning techniques to continuously and automatically tune
DBMSs [IBM06, WHMZ94]. However, Chaudhuri et al. summarize the last ten years
of self-tuning [CN07] and show that almost all approaches have been investigated for row-
oriented DBMSs (row stores).

In recent years, various approaches came up to fulfill new requirements for database
applications, e.g., column-oriented DBMSs to improve analysis performance (column
stores) [Aba08, ABH09, Pla09, ZBNH05]. Column stores are well-suited for the on-line
analytical processing (OLAP) domain whereas row stores are originally designed for the
on-line transaction processing (OLTP) domain [ABC+76]. However, the above mentioned
requirements [SB08, VMRC04, ZAL08], e.g., real-time updates in DWHs, soften the bor-
ders between OLAP and OLTP, i.e., the decision process to find the suitable DBMS is more
complex because we have to figure out which domain (OLTP or OLAP) is more costly
within workloads. We show that query-based workload analyses as in [CN98] are not suit-
able to select the optimal storage architecture. Therefore, we define workload patterns that
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represent decomposed workloads to compare the performance of a certain operation for
column and row stores. Based on our workload patterns, we present our decision model
which advises the optimal storage architecture under certain evaluation constraints, e.g,
minimal I/O costs.

2 Challenges for Physical
Design Process

In this section, we illustrate the increased complexity of physical design process in the
data warehouse (DWH) domain. Formerly, the only architecture for (large-scale) rela-
tional DWH was row store which provide similar algorithms. Row stores only had slight
differences in functionality, thus they are comparable and the design process decision is
only based on different optimization and implementation techniques. Nowadays, we have
to decide between column or row stores in the DWH domain. Additionally, column stores
are faster than row stores1 for DWH workloads [AMH08, SAB+05]. In contrast to row
stores, column stores partition data column-wise, i.e., values of a column are stored one
after the other. This vertical partitioning is advantageous for aggregations that frequently
appear in DWH workloads and mostly process on single columns. But, column stores
perform worse on tuple and update operations because after vertical partitioning, column
stores have to reconstruct tuples for these operations. Compared to column stores, row
stores perform better on tuple operations, thus we assume that there are still application
fields for row and column stores in the DWH domain with respect to the above mentioned
new requirements.

Standard TPC-H
Query # MySQL ICE
TPC-H Q15 00:00:08 00:00:01
TPC-H Q16 00:00:09 00:00:01

Adjusted TPC-H
Query # MySQL ICE
TPC-H Q15 00:00:08 00:00:02
TPC-H Q16 00:00:12 00:00:24

Table 1: Influence of operations to DBMS
performance.

To select the optimal storage architecture for
a use case, e.g., real-time DWH, we have to
compare row and column architectures and es-
timate their performance for a given work-
load. We have to consider different optimiza-
tion techniques, e.g., different index structures.
Unfortunately, several optimization techniques
cannot be used for both architectures, e.g.,
self-tuning and vector based operations. Self-
tuning approaches [CN07] (indexes etc.) are
well investigated for row stores but not for col-
umn stores. Column stores support a number of
compression techniques and vector based oper-

ations [Aba08] which are not supported by row stores. Moreover, column stores them-
selves increase decision complexity because there is an amount of different approaches,
e.g., column stores utilize either tuple-oriented or column-oriented query processors. In
contrast, row stores process nearly standardized.

To show the complexity of decisions, we introduce our example based on the TPC-H

1http://www.tpc.org/tpch/results/tpch perf results.asp
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benchmark [Tra10]. We use the DBMSs MySQL2 5.1.37 (row store) and Infobright ICE3

3.2.2 (column store) to show this complexity. Because of limited space, we only present an
excerpt of our study. To demonstrate influences of a single operation to the query perfor-
mance, we modify the number of returned attributes of the TPC-H queries Q15 and Q164

(cf. Listing 1 and 2), i.e., the size of processed tuples is increased. We choose the naive
approach to return all attributes (like SELECT * FROM ...). The results5 (cf. Table 1)
show that there is only a neglectable influence by our changes to Q15, i.e., the mutual
performance of both DBMS is not affected. In contrast, the mutual performance of both
DBMS alters for Q16. The differences are not obvious from the query structure or syntax
(cf. Listing 1 and 2). We suggest that the change of projection differentially alters the
size of intermediate and final result of both queries. Hence, the performance differences
are caused by different number of involved columns6. In other words, modifications to a
single operation have different impacts on different queries. The full study can be found
in [Lüb10]. Hence, we state that a general decision regarding the storage architecture is
not possible based on the query structure. We have to analyze single operations of a query,
e.g., join operation or tuple selection, to select the optimal storage architecture for a given
workload (at least a query).

1 CREATE VIEW revenue0
2 (supplier_no,total_revenue) AS
3 SELECT l_suppkey,SUM(
4 l_extendedprice*(1-l_discount))
5 FROM lineitem
6 WHERE l_shipdate>=d a t e ’1993-05-01’
7 AND l_shipdate<d a t e ’1993-05-01’
8 + i n t e r v a l ’3’ month
9 GROUP BY l_suppkey;

10
11 SELECT s_suppkey,s_name,s_address,
12 s_phone,total_revenue
13 FROM supplier, revenue0
14 WHERE s_suppkey=supplier_no
15 AND total_revenue=(
16 SELECT MAX(total_revenue)
17 FROM revenue0)
18 ORDER BY s_suppkey;
19 DROP VIEW revenue0;

Listing 1: Tpc-h query Q15.

1 SELECT p_brand,p_type,p_size,COUNT(
2 DISTINCT ps_suppkey) AS supplier_cnt
3 FROM partsupp,part
4 WHERE p_partkey=ps_partkey
5 AND p_brand<>’Brand#51’
6 AND p_type NOT LIKE ’SMALL PLATED%’
7 AND p_size IN (
8 3, 12, 14, 45, 42, 21, 13, 37)
9 AND ps_suppkey NOT IN (

10 SELECT s_suppkey
11 FROM supplier
12 WHERE s_comment LIKE
13 ’%Customer%Complaints%’)
14 GROUP BY p_brand,p_type,p_size
15 ORDER BY supplier_cnt DESC,p_brand,
16 p_type, p_size;

Listing 2: Tpc-h query Q16.

3 Workload Patterns

We have to analyze a given workload to select the optimal storage architecture, thus we
have to analyze a workload with respect to pattern. Due to the influence of single oper-

2http://www.mysql.com/
3http://www.infobright.com/
4These two queries illustrate typical results from our study, thus they are representative.
5Query execution times are in format hours, minutes and seconds (hh:mm:ss).
6Projection does not change number of tuples but number of columns per tuple.
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ations on the performance (e.g., tuple selection, average calculation (cf. Section 2)), we
have to map operations of a workload (at least of a query) and their statistics to evaluable
patterns. Therefore, we introduce a pattern framework which stores all necessary statis-
tics for subsequent performance analyses (within a decision model). Figure 1 outlines an
overview of our decision process regarding the storage architecture. In the sections, we
outline the design of our pattern framework.

Workload Workload 
Decomposition

Workload 
Pattern

Statistics

Improvements & 
Weighting Factors

Decision 
Model

Figure 1: Workflow of our storage architecture decision process.

3.1 Pattern Detection

To analyze the influence of single operations (cf. Section 2), we identify three patterns
concerning operations of queries in workloads. The three workload patterns are tuple
operations, aggregations and groupings, and join operations. To characterize particular
operations more precisely within the patterns, we define a number of sub-patterns for each
of those three. In this way, we enable analyses based on the three patterns and additionally
fine granular analyses based on sub-patterns, i.e., we can determine where the majority of
costs emerge within a pattern.

First, the tuple operation pattern covers all operations that process or modify tuples,
e.g., selection, sort and order operations. We select this pattern for performance analy-
ses because row store process directly on tuples in contrast to column stores which need
costly tuple reconstructions to process on tuples. Therefore, we identify the following
sub-patterns:

Sort/order operation: Sort and order operations create certain sequences of tuples and
affect all attribute values of a tuple. We assume that duplicate elimination is also
a kind of sort operations, e.g., DISTINCT-statement, because an internal sort is
necessary to find duplicates.

Access data and tuple reconstruction: Row stores always access tuples and column stores
need tuple reconstruction to access more than one column.

Projection: Projection returns a subset of tuple attribute values and causes (normally) no
additional costs.

Filtering: Tuple selection of tables or intermediate results based on a selection predicate,
e.g., selection in WHERE-clause and HAVING-clause.
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Second, we group all column processing operations in the aggregation and grouping
pattern, e.g., COUNT and MIN/MAX. We determine this pattern as counterpart to the
tuple operation pattern. The operations of this pattern process only on single columns
except for grouping operations which can also process several columns, e.g., GROUP BY
or CUBE. Due to single column processing, column stores perform well on aggregations
(cf. Section 2). For this pattern, we identified the following sub-patterns:

Min/Max operation: MIN/MAX operation provides the minimum/maximum value of a
single attribute (column).

Sum operation: This operator computes the sum of all values according to one column.

Count operation: The COUNT operator counts the number of attribute values in a column
as well as COUNT(*) counts only the number of key values, thus it process a single
column.

Average computation: The average computation processes all values of a single column
as well as the sum operation, but it can have different characteristics, e.g., mean
(avg) or median.

Group by operation: This operation merges equal values according to a certain column
and determines a subset of tuples. Grouping across a number of columns is also
possible.

Cube operations: The Cube operator computes all feasible combination of aggregates for
selected dimensions. This generation requires the power set of aggregating columns,
i.e., n attributes are computed by 2n GROUP BY clauses.

Standard deviation: The standard deviation (or variance) is a statistical measure for the
variability of a data set and is computed by a two pass algorithm which means two
cycles.

Third, we propose the join pattern to contain all join operations of a workload. Join opera-
tions are basic but costly tasks for DBMS which significantly affect any relational DBMS.
We determine this pattern to highlight the differences according to join techniques of col-
umn and row stores, e.g., processing directly on compressed columns or bitmaps. Within
this pattern, we differentiate the different techniques against each other. Consequently, we
identify the following sub-patterns:

Vector based: The column oriented architecture inherently supports vector based join
techniques while row stores have to maintain/create costly structures, e.g., bitmap
(join) indexes [Lüb08].

Non-vector based: This pattern covers classic join techniques to differentiate the perfor-
mance between vector based and non-vector based join. As a result, we can estimate
effects on the join behavior by architecture.
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Workload

Min / Max

Sum

Count

Cube

AvgSt. Dev.

Sort / Order

Non-vector based

Tuple Reconstruction / 
Data Access

ProjectionFiltering
(Having, Selection)Vector based

Tuple Operation Aggregation & 
GroupingJoin

MedianGroup by

Figure 2: Workload patterns based on operations.

We identify these two sub-patterns because the join concepts, e.g., merge or nested loop
join, are implemented for both architectures, thus, we do not have to distinguish between
these join concepts. Hence, we assume that there is no necessity to map each join concept
into its own sub-pattern. As a result, Figure 2 shows all introduced patterns and their
relation to each other.

3.2 Dependencies between Patterns

There are dependencies between the following patterns: join, filtering, sort/order, group/
cube, and data access pattern.

First, join operations innately imply tuple selections (filtering pattern). However, the tuple
selection itself is part of the join operation by definition, thus we assume that an additional
decomposition of join operations is not necessary. Moreover, new techniques would have
been implemented to further decompose join operations and gather the necessary statistics.
Hence, the administrative cost for tuning will be noticeably increased. To a side-effect, the
comparison of join techniques belonging to different architectures is no longer possible
because of system-specific decomposition.

Second, we note that two different types of sort/order operation can occur, i.e., implicit and
explicit sort. The explicit sort is evoked by workload or user (commands), thus we consider
this operation in the sort/order pattern. In contrast, we do not consider the implicit sort
operation in the sort/order pattern because this sort operation is caused by the optimizer,
e.g., for sort-merge join or duplicate elimination. To sustain comparability, we assign all
costs of grouping to the GROUP BY (or cube) pattern including the sort costs.
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Third, tuple reconstruction is part of several operations (which return tuples) in case of
column stores. As we already mentioned for the other operations, we add these costs
to the tuple operation pattern, thus we separate operations costs and tuple reconstruction
costs. Consequently, we sustain the comparability of operations beyond the architectures
because row stores are not affected by tuple reconstructions.

4 Decision Model

We integrate our workload patterns and the statistics within them7 in a decision model.
This model allows us to compute recommendations about the optimal storage architecture
based on our workload pattern approach. However, some assumptions for the decision
model have to be made. In this paper, we derive three decision models at an abstract level
and describe them in an abstract and implementation independent way, e.g., cost functions
can modularly replaced or extended as well as (sub-) pattern can be added or refined.
Hence, these decision models can be further refined, e.g., a more fine granular approach
or in future research the search space can be extended by further architectures.

Before we construct a decision model, we have to determine which aspect has to be opti-
mized with respect to given constraints. In the context of database tuning, constraints can
be for instance minimum response time for each query, maximum throughput, or average
query response time for the overall workload, an optimized load balance or user-specified
requirements such as optimizing certain queries to a given time threshold. A weighted ap-
proach of all these properties is also imaginable and therefore, a methodology of ranking
system alternatives has to pay attention on this as well. According to given constraints,
an important point for ranking alternatives is the evaluation function. For the compar-
ison of database storage architectures a cost function model can be used that measures
user-specified as well as standard measures/statistics of database system performance like
minimum, average, or maximum query execution time. In Fig. 3, we depict a selection
of different cost function structures concerning query execution time without claiming
generality.

Linearity in a cost function results from algorithms with linear complexity without fur-
ther restrictions. This is also true for square root and quadratic functions. A staircase or
stepwise linear function comprises response times where involved data has to be loaded
and reallocated. Mostly, we assume that mixed or piecewise defined cost functions are
common in practice. For small query sizes a quite different cost function behavior is ap-
propriate than for larger query sizes. This is respected by limited exclusive resources like
RAM. For this paper, we assume that the evaluation criteria are defined and according to
the cost function a separation is plausible made. Therefore, we do not pay further attention
on this detail.

In our decision model, we differentiate between on-line and off-line decisions. Whereas
the information space in on-line decisions is assumed to be without uncertainty, i.e., the
database system, its optimizer estimations, statistics, etc. are available. We develop our

7Directly from optimizer or estimated workload statistics.
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Figure 3: Different cost functions for the query Size and the corresponding execution time.

first decision model for this scenario in Section 4.1 and we call this on-line decision model.
For the off-line decisions, uncertainty has to be taken into account. The uncertainty results
from unknown workload and/or estimation of the corresponding cost. Therefore, we de-
velop two off-line decision models that first, support the design/redraft of systems (cf.
Section 4.2), and second the benchmarking of different systems (cf. Section 4.3). Due to
the distinction between both architectures, we regard decision problems as a ranking of
architectural designs. Challenges of rankings under uncertainty are addressed in [BK10]
which we will not discuss in this paper.

We develop the on-line decision model based on linear programming in Section 4.1. We
develop the two off-line decision models that include uncertainty of a workload in Sec-
tion 4.2 and 4.3.

4.1 On-line Analysis with Statistics from DB

For an on-line decision model, we use statistics that are directly accessible through the
DBMSs. This enables us to derive an optimization problem for the storage architecture
decision. As discussed before, we have to decide what the cost criteria for optimization are.
We note that an optimal storage architecture has to satisfy all or only some of optimization
criteria. Another challenge is that there is not a single architecture outperforming the
other for each database operation. Therefore, the overall optimum of all database tasks
(user-specified or related to optimization criteria) has to be taken into account. We assume
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that statistics are available for both architectural designs (row and column stores). In the
following, we define a (database) task as a part of a query, e.g., ID 15 for TPC-H query
Q15 (cf. Section 2 and 5).

The architectural decision is built upon a linear program that is comparable to the assign-
ment problem, cf. [Chv83, pp. 341]. We use this approach at a first glance to decide on
a cost basis between both architectures, where only one performs all tasks. However, this
model can be easily adapted by changing the constraints and therefore used for hybrid
architectures in the future. Furthermore, by applying a sensitivity analysis we can identify
tasks that are very different for the architectures. In the following formulae, column stores
are abbreviated as CS and row stores as RS. The general form of our class of decision for
one of both architecture types is given in Eq. 1.

min
∑

i∈{CS;RS}

∑
j∈T

C(i, j)xij with the constraints:

I :
∑
j∈T

xij =

{
|T |
0

∀i ∈ {CS;RS}

II :
∑

i∈{CS;RS}

xij = 1 ∀j ∈ T

xij ∈ {0, 1} ∀i ∈ {CS;RS},∀j ∈ T (1)

The assignment xij is built up by the set of system tasks T and the storage architecture
{CS;RS}. According to a task j and storage architecture i, cost function values C(i, j)
exist. Given an existing database system and a workload, we access and extract the statis-
tics on operational costs as discussed in Section 3 and in [LKS10]. The first constraint
(I in Eq. 1) ensures either all or none of the tasks are performed by an architecture. The
second constraint (II in Eq. 1) guarantees that all tasks T are executed exactly ones.

We assume, that the cost functions and their corresponding query sizes are already parti-
tioned in such a way that all values C(i, j) describe the cost structure sufficiently. The
costs C(i, j) have to be selected according the optimization plan, e.g., time, size, or per-
formance measures. The result of the linear program is the optimal storage architecture for
a given workload. The usage of the above model for decision making on the optimal archi-
tecture assumes that the system does not change its query structure, which builds upon all
database queries and their corresponding execution information. For this structure, we ob-
tain the optimal storage architecture. Afterwards, a sensitivity analysis can be performed,
where an evaluation of the restrictions and especially the cost structure is under a more
fine granular examination.

In practice, the amount of queries and workload tasks is not useful or even unavailable.
Therefore we use the workload pattern approach to restrict the number of tasks at an appro-
priate level and group similar database tasks together. Consequently, the linear program
remains manageable for practical use.
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Uncertainty according to query structure is not respected in our on-line decision model.
Each query has already been performed and used for the derivation of the overall cost and
query structure.

4.2 Off-line Design Prediction

Uncertainty of a multi-dimensional decision problem has to be considered when the query
structure is not known but can be estimated. The multi-dimensionality appears due to
different tasks within query plans.

In this section, we introduce our first off-line decision model on design prediction that
incorporates future workload structure, associates the query structure to our workload pat-
terns, and includes fraction on the overall workload. Our off-line decision model supports
architectural decisions of a DBMS. We use probability theory in this section to represent
future workload and changes in the DBMS behavior. The estimation of both aspects can
be combined into a cost function. Therefore, the described assignment problem from Eq. 1
has to use an adapted cost function. C(i, j) changes to:

C∗(i, j) = p(i, j) · C(i, j)

wrt.
∑

j∈TWL

p(i, j) = 1 ∀i ∈ {CS;RS}, (2)

where p(i, j) is the probability that task j is performed by architecture i ∈ {CS;RS}.
Due to the high number of queries, a partition for C(i, j) has to be done. We partition
the tasks according to our workload structure TWL, see Section 3. As a result, we use
the task set TWL = {Join, Tuple Operations, Aggregation & Grouping} where the
elements are further refined, e.g., join consists of non-vector based and vector based joins.
This restricts the information space inappropriately. Therefore, an estimation of average
costs (for a certain level of the cost function) must be made, too. This results in a heuristic
design of the decision model which is adaptable or can be iteratively improved. Note,
that we use all available queries in our on-line decision model, in contrast, we use in this
off-line model only adequate candidates from our workload structure.

This off-line decision model enables us to estimate the cost of unknown workloads and
also reports us where cost information of one architecture is available with constraints or
it has to be estimated. For quality of our decision model according to design predictions,
we assume that the estimated cost structure is sufficient. Therefore, knowledge of domain
experts is required. However, the partitioning enables a more sophisticated approach than
guessed decisions. Consequently, our approach supports the development of sufficient
design rules/heuristics. We obtain an optimal expectation value and cost plan under the
given probabilities of the workload tasks. This can again be used for a sensitivity analysis
where more restriction values are considered.
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4.3 Off-line Benchmarking of Different Systems

Our second off-line decision model adopts and uses ideas of our approaches in Section 4.1
and 4.2. In contrast to the on-line approach, we cannot access the statistics through DBMS,
thus we have to estimate the workloads, i.e., the statistics. Furthermore, we use a multi-
criteria approach for evaluating the system requirements.

An important aspect in the context of multi-criteria decision analysis (MCDA) and uncer-
tainty is the representation of the ranking function. Schneeweiss classifies MCDA meth-
ods according the preference function [BK10, Sch91]. For further applications of MCDA
see [FGE05]. Due to the usage of cost, we can use multi-attribute utility theory (MAUT),
cf. [vE86], where a utility function is available. MAUT is used in recommendation systems
where the estimation of user interests is achieved. To decide between different architec-
tural designs, a recommendation can be made for a multi-attribute scenario, if weighting
between different dimensions is possible. In our case, the dimensions are defined by the
workload differentiation depicted in Figure 2. The overall value function is given by:

value(ALT ) =

n∑
j=1

weightj · valuej(ALT ) with

n∑
j=1

weightj = 1, (3)

where an alternative (ALT) of a set of possibilities (in our case CS and RS and different
database systems) are evaluated by a function value that takes the cost structure into ac-
count and weights all function values according to the workload structure. This enables
us to differentiate between column store and row store architecture, and additionally, it
enables us to benchmark different database systems.

Another advantage of MCDA respective MAUT is the derivation of user’s workload pref-
erences. Hence, we are able to develop a model of user preferences with respect to our
workload hierarchy and to estimate the desired workload structure. Using the MAUT
methodology, we obtain a recommendation or ranking between the set of alternatives. This
helps us to perform a decision on this multi-dimensional problem. For future research, it
also enables us to use this decision model to find an optimal design for databases.

5 Evaluation

In this section, we present our case study based on the TPC-H benchmark [Tra10] with
scale factor 1 to evaluate our decision model approach. We focus on the first decision
model, although the case study can be adapted to our both off-line models as well. The
evaluation process would be equally, i.e., only the granularity of used statistics from our
workload patterns differs for the both off-line models. Our three decision models support
inter alia an efficient database design in the context of an optimal architecture (row or
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Oracle
Workload Pattern Q6 Q15 Q16
Data Access ID2:155900 ID8:10000;ID6:218657 ID9:800000;ID8:30515;ID6:500
Non-vector ID1:20000 ID7:830515:ID5:121371
Group By ID5:218657 ID4:114828;ID2:114828
Sort ID7:10000;ID2:10000 ID1:15000
Sum ID1:155900
Projection ID0:1 ID3:10000;ID0:10000 ID3:114828;ID0:15000

ICE
Workload Pattern Q6 Q15 Q16
Data Access ID2:3*6.029.312 ID6:6029312;ID4:6029312ID2:65536 ID6:65536;ID5:849628;ID4:261424
Non-vector ID1:131072(75536) ID3:1111052
Group By ID5:225954;ID3:225954 ID2:118274
Sort ID1:18314
Sum ID1:114160
Projection ID0:1 ID0:1 ID0:18314

Table 2: Accessed rows resp. number of values for a column for tpc-h queries.

column store). For reasons of clearness, we select only two systems, Infobright ICE 3.3.1
and Oracle 11gR2. Both systems were installed with standard parameters except that we
restrict the available main memory to 250MB. Additionally, we restrict our workload to
three queries from the TPC-H benchmark to save comprehensibility of our considerations.
We select the above discussed queries Q15 and Q16 as well as query Q6 to show different
query types in our evaluation.

5.1 Gathered Statistics from Workload Patterns

In the following, we use statistics gathered from the corresponding optimizer as described
in [LKS10]. The cost information are stored in our workload pattern (cf. Section 3).
Nevertheless, we extracted the cost information to Table 2 and 3 to ensure readability.
Furthermore, we use two cost measures because as we discussed before, one cost measure
is not sufficient to select the optimal storage architecture. Additionally, we can show
with these two measures that measures do not correlate across both architectures even the
measures are interdependently as discussed in Section 2. Hence, we select the accessed
number of rows and the I/O cost to compare Oracle and ICE. Note, ICE does not access
single values of a column but so-called data packs which are compressed storage units.
These data packs contain 65536 values, thus in Table 2, the values for ICE are multiple of
the data pack size.

The operations of a query are identified by IDs from the optimizer which we also apply
in our approach. We can read the processing order from these IDs, i.e., the highest ID of
a query represent first operation and ID0 the last operation in query execution plan. We
can also read the assigned workload pattern from Table 2 and 3. Table 2 shows the number
of accessed rows resp. number of accessed values of a column for the TPC-H queries Q6,
Q15, and Q16 in Oracle and ICE. Note, Oracle is a row store, thus Oracle access the entire
tuples. In contrast, ICE only accesses the required columns and their values. In Table 2,
we can see this effect for query Q6. Oracle access the required columns in one step,thus,
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Oracle
Workload Pattern Q6 Q15 Q16
Data Access ID2:3118 ID7:86925;ID6:750 ID9:7200;ID8:1252;ID6:34
Non-vector ID5:87675 ID7:8452;ID5:6078
Group By ID4:94050;ID2:1310 ID4:13550;ID2:5627
Sort ID1:1310 ID1:735
Sum ID1:3118
Projection ID0:1 ID3:6647;ID0:1310 ID3:13550;ID0:735

ICE
Workload Pattern Q6 Q15 Q16
Data Access ID2:14471 ID6:4824;ID4:4824;ID2:2583 ID6:1320;ID5:682;ID4:2045
Non-vector ID1:2763(2591) ID3:889
Group By ID5:181;ID3:181 ID2:1018
Sort ID1:158
Sum ID1:183
Projection ID0:1 ID0:1 ID0:158

Table 3: Accessed data of tpc-h queries in Kbytes.

it only scans the LINEITEM table one time. ICE scans the LINEITEM table three times
because three different columns8 have to be accessed in query Q6. Furthermore, ICE does
not reconstruct tuples before join execution. In other words, ICE only reconstructs tuples
to process final result, e.g., GROUP BY. Nevertheless, ICE access more values than Oracle
in our test setup, e.g., in query Q6 Oracle reads 2.494.400 values (155900 rows with 16
columns) and ICE reads 18.087.936 values.

Table 3 shows our measurements of the I/O costs, our second cost criterion, in Kbytes.
Note, the compression ratio of ICE is approximately 5:1 in our test setup, i.e., the 1GB
TPC-H data set in ICE is 182MB. For convenience, we do not examine compression ratios
for each column. The results show that the number of read values does not directly corre-
late with the access data in Kbytes. For example, ICE access 12.124.160 values for query
Q15 in contrast to 1.690.599 values accessed by Oracle. Considering the accessed data in
Kbytes, the ratio between ICE and Oracle changes. Oracle reads 87.675Kbytes while ICE
only reads 12.231Kbytes. Nevertheless, ICE reads less data (in Kbytes) than Oracle even
if we subtract out the compression ratio.

Our results show that physical design based on basic heuristics is not sufficient for complex
workloads thus; we need decision support to select the optimal storage architecture.

5.2 Linear Program

The above given query decomposition information on rows, cf. Table 2, and I/O cost, cf.
Table 3, can be aggregated for each DBMS and workload pattern. In this case study, we
assume that all three selected queries (Q6, Q15, and Q16) are executed in the same ratio.
Otherwise, we had to adjust the cost structure by a weighting function with respect to the
query frequency.

8L SHIPDATE, L DISCOUNT, and L QUANTITY
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Oracle ICE
Workload Pattern Rows I/O cost Rows I/O cost
Data Access 1215572 99279 31388684 30749
Non-vector 971886 102205 1242124 3652
Group By 114537 448313 570182 1380
Sort 35000 2045 18314 158
Sum 155900 3118 183 114160
Projection 149829 22243 18316 160

Table 4: Summary of accessed data in Oracle and ICE for tpc-h Q6, Q15, and Q16.

Taken the data from Table 4 the corresponding model can be build from Eq. 1. As linear
programming language we use AMPL formulation [FGK02]. Due to the fact, that we are
interested in the selected or optimal assigned database management system to a specific
cost structure the problem is a mixed integer problem. In Listing 3 we present the AMPL
source code of the model.

According to the object of optimization a selection of the cost values has to be done. In
our example, two possible cost information are available. Either an optimization on the
accessed rows or the I/O cost can be performed. In practice, this is not always an opportu-
nity, often all cost influence structures have to be addressed. With the help of your model it
is possible to adapt the cost function, as for instances depicted in Eq. 2 where uncertainty
is introduced. In our case study we present two different optimization targets. In the first
case, the row access should be minimized. In our second example we want to minimize the
I/O cost. The complete workload is defined by Q6, Q15, and Q16 from the TPC-H bench-
mark. Note, this benchmark is designed for OLAP queries. Therefore, we assume that
ICE outperforms the row store based Oracle DBMS. Furthermore, our example is clearly
arranged. In practice, the workload decomposition is much more complex and additional
DBMSs might be ranked. Without loss of generality, we present our decision model on
ICE (column store architecture) and Oracle.

Using the row access data from Table 4 in our AMPL model, see Listing 3, results in
the assignment of the Oracle DBMS. Note, that this can be easily seen by comparing the
overall sum of row access per DBMS. As we assumed, the I/O cost are much lower in
ICE and therefore our model delivers ICE as the optimal solution for I/O cost. However,
using our model enables us to run a sensitivity analysis, which identifies important cost
drivers. Furthermore, it is possible to add easily more workload information, which in-
creases complexity for the decision makers. This complexity increases also by introducing
more DBMSs.

6 Related Work

In recent years, several column stores have been proposed [Aba08, LLR06, SWES08,
ZBNH05]. There are well-known column stores but all systems are pure column stores
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1 s e t DBMS; # s e t of DBMSs for ranking
2 s e t WorkloadPattern; # s e t of Workload Patterns
3
4 param cost{i i n DBMS, j i n WorkloadPattern}; # cost
5 var assign{i i n DBMS, j i n WorkloadPattern}
6 binary; # = 1 if DBMS i is used, 0 otherwise
7 var use {i i n DBMS} binary; # assignment that exactly one DBMS is used
8
9 minimize Cost:

10 sum{i i n DBMS, j i n WorkloadPattern} cost[i,j]*assign[i,j];
11
12 subject to USAGE: sum{i i n DBMS} use[i] = 1;
13 # restriction that exactly one DBMS is i n use
14 subject to Multi_Architecture {i i n DBMS}:
15 sum {j i n WorkloadPattern} assign[i,j] = 6 * use[i];
16 # this DBMS has to do a l l 6 Workload Pattern Tasks
17
18 subject to Tasks{j i n WorkloadPattern}:
19 sum{i i n DBMS} assign[i,j] = 1; # restriction that a l l tasks are performed

Listing 3: AMPL model for on-line decision.

and do not support any row store functionality. Abadi et al. [AMH08] compare row and
column stores performance on the star schema benchmark. They simulate the column store
architecture by indexing every single column or vertical partitioning of the schema. They
show that using column store architecture in a row store is possible but the performance in
a row store is poor. In this paper, we do not directly compare optimization techniques of
DBMSs. Instead, we consider strengths and weaknesses of both architectures to recom-
mend one of both architectures for a given workload. We do not discuss earlier approaches
like DSM [CK85], hybrid NSM/DSM schemes [CY90], or PAX [ADHS01] because the
differences to state of the art column stores have been already discussed, e.g., Harizopoulus
et al. [HLAM06].

With respect to the solutions for architectural problems, there are systems available which
attempt to fill the gap (between a column and a row store). They apply very interesting
approaches for the development of a hybrid system. C-Store [Aba08] uses two different
storages to overcome the update problems of column stores. A related approach brings
together a column store approach and the typical row store domain of on-line transactional
processing (OLTP) data [SBKZ08]. In contrast to our work, they focus on near real-time
processing of OLTP data in a DWH and the necessary ETL components. They hold repli-
cates of all OLTP data which is needed for reporting mechanism (OLAP/DWH). These
approaches aim at another direction because we want to recommend the optimal archi-
tecture for a certain application with a decision model which is not supported by these
approaches.

A number of design advisors exist which are related to our work, e.g., IBM DB2 Config-
uration Advisor [KLS+03]. The IBM Configuration Advisor advises pre-configurations
for databases which is similar to our off-line decision. Zilio et al. [ZRL+04, ZZL+04] in-
troduce an approach which is related to our on-line decision model. They gather statistics
directly from DBMS and utilize them to advise index and materialized view configura-
tions. Two similar approaches are presented by Chaudhuri et al. [BC06, BC07] which
illustrate the whole tuning process using constraints such as space threshold. However,
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these approaches operate on single systems instead of comparing two or more systems
according to their architecture. Additionally, our approach aims at architectural decisions
as opposed to the mentioned approaches which tune configurations, indexes, etc.

Ingres/Vectorwise applies the Vectorwise (formerly MonetDB/X100) architecture into the
Ingres product family [Ing09]. In cooperation with Vectorwise, Ingres is developing a new
storage manager ColumnBM for the new Ingres/Vectorwise. However, the integration of
the new architecture into the existing environment remains unclear [Ing09].

To develop our decision model, we need to analyze workloads and derive workload pat-
terns therefrom. For that, we can utilize, adapt, and extend existing approaches such as
Turbyfill [Tur88] which consider mixed database workloads concerning disk access. We
can adopt these ideas to our approach that map the workload behavior of different archi-
tectures. By contrast, the approach of Raatikainen [Raa93] considers workload classes and
how to find them based on cluster analysis. We rather aim at classification of operations
according to predefined patterns instead of clustering workloads into a number of classes
like Raatikainen. We can use these and other approaches to find and evaluate our workload
patterns. The approaches of Favre et al. [FBB07] and Holze et al. [HGR09] focus on self-
tuning databases. Favre et al. consider the evolutionary changes within a DWH workload.
They also consider the interactions between schema evolution and workload evolution.
This approach should be considered with respect to the development of a hybrid system.
The related approach of Holze et al. examine clustering of workloads based on distance
functions but is developed for lightweight and stream-based operations.

7 Conclusion

In recent years, column stores showed good results for DWH applications, thus column
stores (mostly) outperform established row stores. But, new requirements arise in the
DHW domain that cannot only be satisfied by column store. New requirements in the
DWH domain demand also for row store functionality, e.g., sufficient update processing.
Thereby, the complexity of design processes increased because we have to choose the
optimal architecture for given applications. We introduced a decision approach based on
workload patterns to overcome the increased complexity of the design process concerning
different storage architectures. The workload patterns contain all workload information,
e.g., statistics and operation cost. Furthermore, we presented a workload decomposition
approach based on operations which maps operations of a given workload to our workload
patterns. We utilize this structure to estimate an optimal architecture for a given workload.

To select the optimal storage architecture, we introduced three decision models. Our mod-
els are similar to existing tuning and self-tuning approaches with respect to the decision
making process. Our models are based on cost functions (tuning objective) and constraints,
too but are developed on an abstract level, i.e., we can modularly refine or extend our mod-
els. The first model covers on-line prediction for existing systems which uses statistics of
the existing systems. Hence, we do not consider uncertainty in our prediction for this
model. It enables us to compute the optimal storage architecture in a running system. The
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second and third model provide off-line prediction and process with partially estimated
values, thus we can deal with uncertainty in our prediction. The derived workload pattern
is the basis for both models. These two models allow performing predictions for unknown
and/or future workloads. The first decision model recommends on the predicted optimal
storage architecture and requires cost information of the competing architectures within a
database system. Our third developed decision model is applicable to different database
systems and storage architectures. We use user preferences for evaluating the uncertainty
and come up in our third decision model with a ranking that takes different architectures
and database systems into account.

In future work, we will consider two strategies to implement our workload patterns in a
prototype. First, we implement a separate DBMS to export periodically statistics and op-
eration costs which are mapped into the workload patterns. In this way, we do not affect
performance of analyzed systems by prediction computation in our on-line model. Ad-
ditionally, we are able to store and estimated values in off-line prediction because we do
not have a database and/or statistics for future workloads. Second, we adapt existing ap-
proaches [BC06, LGB09] to automatically gather statistics, e.g., mapping statistics and
workload patterns directly into a graph structure (query graph model). To evaluate our
decision models, we will perform detailed studies. These studies will be performed on ex-
isting systems to obtain expressive values for predictions. Finally, we will use our decision
models to support the development of a hybrid architecture.
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[BK10] Bettina Berendt and Veit Köppen. Improving ranking by respecting the multidimen-
sionality and uncertainty of user rreferences. In G. Armano, M. de Gemmis, G. Semer-
aro, and E. Vargiu, editors, Intelligent Information Access, Studies in Computational
Intelligence. Springer, Berlin, 2010.

[Chv83] Vasek Chvatal. Linear programming. W. H. Freeman and Company, September 1983.

[CK85] George P. Copeland and Setrag N. Khoshafian. A decomposition storage model. In
SIGMOD ’85, pages 268–279, New York, NY, USA, 1985. ACM.

[CN98] Surajit Chaudhuri and Vivek Narasayya. AutoAdmin “what-if” index analysis utility.
In SIGMOD ’98, pages 367–378, New York, NY, USA, 1998. ACM.

[CN07] Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: A decade of
progress. In VLDB ’07, pages 3–14. VLDB Endowment, 2007.

[CY90] Douglas W. Cornell and Philip S. Yu. An effective approach to vertical partitioning
for physical design of relational databases. IEEE Trans. Softw. Eng., 16(2):248–258,
1990.

[FBB07] Cécile Favre, Fadila Bentayeb, and Omar Boussaid. Evolution of data Warehouses’
optimization: A workload perspective. In DaWaK ’07, pages 13–22, 2007.
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