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ABSTRACT
Adaptive systems as well as software product lines (SPLs)
aim at variability to cope with changing requirements. Vari-
ability can be described in terms of features, which are cen-
tral for development and configuration of SPLs. In tra-
ditional SPLs, features are usually bound statically be-
fore runtime. By contrast, dynamic software product lines
(DSPLs) support feature binding at runtime and can also
be considered adaptive systems. DSPLs usually use coarse-
grained components for implementation, which limits their
customizability. We aim at closely integrating static bind-
ing of traditional SPLs and runtime adaptation of DSPLs.
We achieve this integration by implementing an SPL us-
ing a fine-grained decomposition into features and statically
generating a DSPL that is tailored to an application sce-
nario and the execution environment. The generated DSPL
supports self-adaptation based on coarse-grained modules
that reduce the negative impact on resource consumption.
We propose a feature-based runtime adaptation mechanism
that reduces the effort for computing an optimal configura-
tion. With a case study, we demonstrate the applicability of
our approach and show that a seamless integration of static
binding and runtime adaptations optimizes the adaptation
process.

1. INTRODUCTION
Software product line (SPL) engineering aims at variable

software by generating a set of tailor-made programs from
a common code base (e.g., for different customers or appli-
cation scenarios) [22]. SPL engineers consider features as
central elements for configuration because they are imple-
mentation independent and provide a direct mapping to user
requirements. Stakeholders thus use features to describe
commonalities and differences of the programs of an SPL.
In traditional SPL engineering, features are bound statically.
That is, a user selects the desired features and a generator
creates the corresponding program that contains exactly the
selected features.

In contrast to traditional SPLs, adaptive systems and dy-
namic SPLs (DSPLs) offer variability at runtime to adapt to
changing requirements [14]. Approaches for runtime adap-
tation are often based on components and use the high-level
software architecture to describe program adaptations [21].
They allow a programmer to specify adaptation rules for re-
configuring components and thereby abstract from the con-
crete implementation [12, 10, 16]. Consequently, an adaptive
system can also be considered a DSPL [7].

DSPLs aim at integrating concepts of traditional SPLs

and adaptive systems [1]. Beside approaches that use archi-
tectural models to describe program adaptations, there are
also DSPL approaches that support feature-based runtime
adaptations. For example, some approaches feature mod-
els to describe dependencies between features and to reason
about runtime variability [8, 15, 17, 28] of DSPLs and adap-
tive systems. Describing also program adaptations in terms
of features abstracts from implementation details, simplifies
reconfiguration of running programs, and allows for check-
ing consistency of adaptations [8]. Such feature-based ap-
proaches use a mapping of DSPL features to the components
that are used for implementation [17, 28]. However, compo-
nents are usually coarse-grained, which limits customizabil-
ity and applicability of a DSPL. For example, it is required
to customize components for embedded systems to remove
unneeded functionality and to tailor the components with
respect to the hardware. Using small components for this
purpose is usually not an option due to an increasing com-
munication overhead.

To bridge the gap between feature-based variability mod-
eling and component-based runtime adaptation, we inte-
grate traditional SPL engineering with DSPLs. We aim
at supporting fine-grained customization as well as feature-
based runtime adaptation. We achieve this integration by
using features for modeling variability, implementing SPLs,
and describing program adaptations:

• We model and implement an SPL based on features
as known from feature-oriented software development
(FOSD) [2].

• We propose to generate a tailor-made DSPL from the
feature-oriented implementation of an SPL. The DSPL
supports dynamic binding of coarse-grained compound
features (a.k.a. dynamic binding units) [24].

• We propose a feature-based approach for runtime
adaptation and self-configuration.

In previous work, we have already presented how to gener-
ate binding units that can be composed at runtime. In this
paper, we present an extended approach for feature-based
runtime adaptation and self-configuration that is based on
tailor-made binding units. In contrast to DSPLs that use
components for implementation, we generate binding units
on demand and automatically derive a mapping from the fea-
tures of a DSPL to its binding units. Consequently, we are
able to use features to describe and validate program adap-
tations. To achieve self-adaptability, we include a customiz-
able adaptation infrastructure into the generated DSPL. By
combining this with static optimization of binding units, we
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Figure 1: Feature model of a simple DBMS.
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Figure 2: Decomposition of classes (dashed rectan-
gles) along features (horizontal layers). Base classes
and class refinements are shown as white boxes.

generate DSPLs with minimal resource requirements. Fur-
thermore, our approach reduces the effort for computing a
configuration of a DSPL by minimizing the number of dy-
namically bound modules. We demonstrate the applicabil-
ity of our approach with a prototypical implementation of
an adaptation framework and a case study. In particular,
the contributions of this paper are:

• an integration of static binding as used in SPLs with
runtime adaptation as used in DSPLs,

• a feature-based approach for adaptation and self-
configuration using binding units,

• a customizable framework for dynamic binding with
support for runtime adaptation and validation of con-
figurations using feature models,

• a prototypical implementation and a case study.

In the next section, we present background on feature-
oriented software development and generating binding units.
In Section 3, we describe our approach for generating
DSPLs, which we evaluate in Section 4.

2. COMPOSING FEATURE MODULES
A feature model describes valid products of an SPL using

a hierarchical representation of features and constraints be-
tween them. In Figure 1, we show an example of a feature
model for a database management system (DBMS). Manda-
tory and optional features are denoted by filled and empty
dots. To avoid invalid feature combinations, domain engi-
neers use relations between features, such as AND, OR, and
XOR, and additional constraints such as requires (a feature
requires another feature) or excludes (two features cannot
be used in combination). In general, arbitrary propositional
formulas can be used as constraints.

Feature-oriented Programming. Using components to
implement variability is sometimes too restrictive because
components are coarse-grained, which limits customizabil-
ity of an SPL. For example, many small features and cross-
cutting functionality is hard to implement in individual
components [13]. In contrast, feature-oriented programming
(FOP) [23, 5] can be used to implement the features of an

SPL in a modular way. FOP thus achieves the same vari-
ability in the implementation as it is described by the fea-
ture model. For example, we can modularize the transaction
management subsystem of a DBMS even though it affects
many parts of the whole system. In FOP, features are imple-
mented in feature modules as increments in functionality [5].
A user creates a program (a variant of an SPL) by select-
ing a set of features that satisfy her requirements. Based
on the feature selection (a.k.a., the configuration), a gener-
ator composes the corresponding feature modules to yield a
concrete program.

A feature module consists of classes and class fragments,
as we illustrate in Figure 2 for some DBMS features. The
DBMS consists of a Core implementation and two features
QueryEngine and Transaction, displayed as layers. The
two features cut across the implementation of the classes
DB, Txn, and QueryProcessor. In FOP, a programmer thus
decomposes a class into smaller class fragments called base
class and class refinements (shown as white boxes) accord-
ing to the features of a system. A base class implements ba-
sic functionality of a class. It is extended by a refinement to
contribute to the implementation of a particular feature that
cuts across the class. For example, the base implementation
of class DB is introduced in module Core and extended in
QueryEngine and Transaction (denoted with arrows) to
implement the according functionality required for these two
features.

FeatureC++. FeatureC++1 is a language extension of
C++ that supports FOP [3]. In Figure 3, we depict the Fea-
tureC++ code of class DB (cf. Fig. 2). Method Put stores
data provided as key-value pairs. The refinement in feature
QueryEngine (Lines 4–9) adds a new field queryProc and a
new method ProcessQuery for processing SQL queries. Fea-
ture Transaction overrides method Put (Line 12) and in-
vokes the refined method using the keyword super (Line 14).
Based on the implementation shown in Figure 2, we can gen-
erate four different DBMS variants by composing different
sets of feature modules: We can generate a simple DBMS
consisting only of Core, but we can also derive variants
including the features QueryEngine or Transaction or
both features.

Static and Dynamic Feature Binding. FeatureC++ sup-
ports static binding of features at compile time and dynamic
binding at load time or runtime [24]. When binding all fea-
tures statically, a single binary is generated for the entire
program, which is the usual case in traditional SPL engi-
neering. At the class level, the FeatureC++ compiler merges
the code of a base class and the refinements of selected fea-
tures into a single class. For example, static composition
of the Core implementation and feature Transaction of
Figure 3, means to generate a single class DB that includes
all code of the selected features.

For dynamic binding, FeatureC++ generates multiple
larger compound features, called dynamic binding units. A
dynamic binding unit is similar to a component but it in-
cludes only required functionality. It contains multiple dy-
namically bound features that are used in a program at the
same time. The FeatureC++ compiler merges these features
statically into a single binding unit. To yield a concrete pro-
gram, a dynamic binding unit is bound as a whole with other

1http://fosd.de/fcc
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Core implementation

1 class DB {
2 bool Put(Key& key , Value& val) { ... }
3 };

Feature QueryEngine

4 refines class DB {
5 QueryProcessor queryProc;
6 bool ProcessQuery(String& query) {
7 return queryProc.Execute(String& query);
8 }
9 };

Feature Transaction

10 refines class DB {
11 Txn* BeginTransaction () { ... }
12 bool Put(Key& key , Value& val) {
13 ... //transaction−spec i f i c code
14 return super::Put(key ,val);
15 }
16 };

Figure 3: FeatureC++ code of class DB decom-
posed along the Core implementation and features
QueryEngine and Transaction.

dynamic binding units at runtime. At the class level, Fea-
tureC++ supports dynamic binding by generating dynam-
ically composable class fragments according to the binding
units. For example, to generate a binding unit that contains
features QueryEngine and Transaction of Figure 3, the
code of lines 4-16 is composed into a single class fragment.
Multiple class fragments are dynamically composed via del-
egation using the decorator design pattern [11]. This allows
us to change the configuration of a class at runtime, which is
the basis for generating a DSPL from an SPL’s source code.
For a detailed description of dynamic binding units we refer
to [24].

3. GENERATING DYNAMIC SOFTWARE
PRODUCT LINES

We generate a DSPL from an SPL by statically selecting
the features required for dynamic binding and generating a
set of dynamic binding units, as we show in Figure 4. DB ′

and DB ′′ are DSPLs generated from SPL DB . The DSPLs
consist of multiple dynamic binding units. For example, DB ′

contains binding units Base, QE, and Txn. By composing
the binding units at runtime, we yield concrete programs
DB1 and DB2 . For that reason, a DSPL contains gener-
ated code for dynamic composition of binding units as we
describe below. The transformation process from an SPL to
a running program can be seen as a staged configuration [9]:
In a first step, we use FeatureC++ to statically merge mul-
tiple features into dynamic binding units (cf. Section 2). In
a second step, we compose the generated binding units at
runtime. Hence, a DSPL represents a subset of the prod-
ucts of the SPL it was generated from. That is, a DSPL
is a specialization of an SPL that provides only dynamic
variability.

After generating a DSPL, the original features map to the
dynamic binding units of the DSPL. For example, features
Transaction and Logging in Figure 4 map to binding
unit Txn in DB ′. Features not selected at all (e.g., feature
Hash) are not assigned to any binding unit and are thus not
present in the generated DSPL. The binding units are used

(Re)configured
Running DBMS

DB4

DB3

DB2

DB1

SPL with
Feature Modules

Statically
Generated DSPLs

DB'

BASE
CORE

B-TREE

QE

TXN

QUERYENGINE

TRANSACTION

LOGGING

DB''

BASE
CORE

B-TREE

TXNTRANSACTION

LOGGING

QUERYENGINE
DB

CORE

B-TREE

QUERYENGINE

TRANSACTION

LOGGING

BASE
CORE

B-TREE

QEQUERYENGINE

BASE
CORE

B-TREE

BASE
CORE

B-TREE
QUERYENGINE

TXNTRANSACTION

LOGGING

BASE
CORE

B-TREE
QUERYENGINE

TXNTRANSACTION

LOGGING

Figure 4: Examples of static composition ( ) re-
sulting in the DSPLs DB ′ and DB ′′ and subsequent
dynamic composition ( ) resulting in adaptable
running programs DB1–DB4 .

for composition and adaptation at runtime, as we describe
next.

3.1 Feature-based Runtime Adaptation
We support feature-based runtime adaptation by describ-

ing configuration changes in terms of features and applying
these changes at the conceptual level (i.e., using the feature
model) before composing the corresponding binding units.
At the conceptual level, we represent binding units as com-
pound features that are created by merging multiple features
of the SPL. In the following, we thus call them features of
the DSPL and use a feature model to describe dependencies
between them. Since the features of an SPL directly repre-
sent requirements [2], there is a direct mapping of changing
requirements to changes of an SPL’s configuration. Usually,
there is an n-to-1 mapping because a binding unit contains
multiple SPL features. For simplification, we assume a 1-
to-1 mapping in the following. Nevertheless, we support
arbitrary mappings by transforming the SPL feature model,
as we describe at the end of this section.

To support autonomous configuration of DSPLs, we de-
veloped FeatureAce2 (Feature Adaptation and Composition
framEwork), a customizable framework that supports com-
position of features at runtime (i.e., dynamic creation of
program variants), validation of feature configurations, and
also runtime adaptation and self-configuration. To validate
configurations at runtime, we integrate the feature model in
the form of metadata into the DSPL. Next, we introduce
FeatureAce and we then describe how we achieve feature-
based adaptation and self-configuration.

A Customizable Adaptation Framework. The Fea-
tureC++ compiler generates a DSPL from an SPL’s im-
plementation and FeatureAce, as illustrated in Figure 5. In
the resulting executable DSPL, a metaprogram is responsi-
ble for autonomous composition and self-adaptation at run-

2FeatureAce is available online as part of FeatureC++.
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Figure 5: Generating a DSPL from FeatureAce,
user-defined extensions of FeatureAce, and an SPL’s
implementation.
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Event
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Figure 6: Architecture of a DSPL: Domain code is
at the base-level and adaptation code is at the meta-
level.

time. The generic metaprogram has access to the base-level
(i.e., the binding units) via generated SPL-specific adapta-
tion code.

As shown in Figure 6, FeatureAce provides a decision en-
gine that uses the feature model of the DSPL to reason
about validity of changes to the running program. Moni-
toring code for analyzing the context at runtime is located
in the base level. It is developed as part of the SPL since
it is usually highly domain specific. For example, code for
monitoring DBMS queries can be used to trigger an event
for loading a feature that implements a special search index.
The monitoring code triggers events that are captured by an
event handler, which activates the decision engine. Based on
adaptation rules, the decision engine derives a new configu-
ration. The adaptation engine applies configuration changes
by loading and unloading binding units.

To further integrate static and dynamic binding, we sup-
port static customization of the adaptation infrastructure:

• Monitoring code of the DSPL that triggers adaptation
events is implemented in distinct features. Hence, it is
possible to use only required monitoring code and to
choose between alternative implementations.

• Adaptation rules are also stored in distinct feature
modules to allow the programmer to choose only re-
quired adaptation rules at deployment time.

• FeatureAce can be customized to choose between man-
ual and autonomous adaptation and to enable valida-
tion of adaptations only if required. We thus developed
FeatureAce itself as an SPL that can be statically cus-

FeatureACE

Instantiation ValidationAdaptation

ConfigFileCMD

AutoInst Self-Config

Figure 7: The feature model of FeatureAce. Cus-
tomization of dynamic product instantiation and
runtime adaptation capabilities is achieved by se-
lecting the corresponding features.

tomized.

Customization of the adaptation infrastructure allows us to
cope with changing requirements with respect to the adap-
tation process (e.g., due to changes in the execution envi-
ronment). The customizations are usually not needed at
runtime and we thus use static binding.

In Figure 7, we show the feature diagram of FeatureAce.
Feature AutoInst encapsulates the functionality required
for automated SPL instantiation using command line argu-
ments or a configuration file to provide an initial feature
selection. Feature Adaptation enables modification of a
running SPL instance and feature Self-Config supports
rule-based self-configuration. Feature Validation provides
functionality to check validity of an SPL variant before com-
posing the binding units. For customization, a user defines
the required adaptation facilities of FeatureAce or may add
user-defined extensions. FeatureAce extensions (e.g., moni-
toring code) are implemented as additional feature modules
without the need for invasive modifications of FeatureAce.
According to the feature selection, the code of FeatureAce
extensions and adaptation rules is also statically composed.
Hence, only selected adaptation rules and adaptation code
are included in a DSPL.

DSPL Instantiation and Adaptation. FeatureAce sup-
ports a set of operations for instantiation and adaptation
of a DSPL at runtime:

DSPL Instantiation. A DSPL instance is composed from
multiple feature instances. A feature instance is cre-
ated by invoking a factory method of FeatureAce that
loads the corresponding binding unit (e.g., from a dy-
namically linked library). Feature instances are com-
posed with each other according to the constraints de-
fined in the feature model. This results in a stack of
feature instances that represents a DSPL instance.

DSPL Adaptation. A running DSPL instance can be
modified by adding and removing features. For ex-
ample, DB1 of Figure 4 can be adapted to DB2 by
removing Txn and adding QE. Features can also be
temporarily deactivated and can be reactivated later.
This maintains the state of a feature while disabling
its functionality.

The described operations are internally used by FeatureAce
for runtime adaptation but can also be accessed directly us-
ing the API or the network interface of FeatureAce. This
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Figure 8: Transformation of a feature model accord-
ing to defined binding units.

is sufficient when no complex adaptation rules are needed
and when events can be directly mapped to a configuration
change. For example, when a user selects a menu entry in
the running program, the corresponding feature can be ac-
tivated.

Note that not every feature that can be dynamically com-
posed with other features can also be applied to an already
running instance of an SPL. For example, sometimes it is
required to initialize the state of the objects of a feature,
which cannot always be automated. Hence, some features
have to be prepared for runtime adaptation using a special
implementation, which is beyond the scope of this paper.

Runtime Validation of Feature Compositions. Fea-
tureAce uses the feature model of the DSPL to validate a
feature selection at runtime. To provide only the required
variability at runtime, we transform the original SPL fea-
ture model according to the generated binding units of the
DSPL. In Figure 8, we depict an example for generating the
feature model for DSPL DB ′ (cf. Figure 4). The result is a
simplified feature model that corresponds to the generated
binding units. FeatureAce uses the DSPL feature model
for runtime adaptation to check an adapted configuration
against constraints of the feature model (e.g., violation of
an XOR constraint). As the feature model and additional
boolean constraints (e.g., FeatureX requires FeatureY)
can be transformed into a propositional formula [4], we use
a SAT3 solver to test whether a valid variant can be de-
rived from a feature selection or not. Even though the SAT
problem is NP-complete, feature models can be checked ef-
ficiently [19].

3.2 Self-Configuration
FeatureAce provides a rule-based mechanism for self-

configuration that we describe next.

Configuration Constraints. Our approach for runtime
adaptation is based on adaptation rules that describe how a
configuration C of an SPL must be changed when an event E
is triggered. A configuration C of a program P of a DSPL
is a set of features that is included in the program. We
derive a configuration C from requirements R that define
which features of the DSPL must be included in a valid pro-
gram. In the simplest case, the requirements are a set of
required features (e.g., a user-defined feature selection). In
general, however, a requirement may be an arbitrary con-
figuration constraint (i.e., a propositional formula over the
set of available features) that restricts the set of valid con-
figurations [25]. A configuration constraint is not different
from a domain constraint of a feature model but it is added
and removed during configuration. For example, to express
that a feature must be included in a program we can define

3Boolean satisfiability problem.

C2 C3C1

S2
�R

�C

S1

D

Figure 9: DSPL D with specializations S1 and S2

and configurations C1 -C3 .

a requires constraint for that feature.
As an example consider the feature diagram of Figure 1

with an initial set of requirements R (e.g., defined by a user):

R = {Query, Index} (1)

R defines that features Query and Index must be included
in a valid configuration. We can thus derive a configuration
C that satisfies R:

C = {Query, Index,Hash}. (2)

Because C must also satisfy the constraints defined in the
feature model, such as the XOR-constraint between Hash

and Btree (cf. Fig. 1), it must include one of the two fea-
tures. In our example, we have chosen feature Hash. While
C represents a single configuration, R describes a specializa-
tion S of our DSPL that represents multiple configurations,
as illustrated in Figure 9. DSPL D that has two specializa-
tions S1 and S2 , which we denote with inheritance [25]. Each
specialization represents multiple configurations (illustrated
with a cone). For example, C1 and C2 are configurations of
S1.

We can represent a set of requirements R as a single propo-
sitional formula using a conjunction of all requirements. For
example, R from equation (1) corresponds to the boolean
constraint Query ∧ Index. Since a feature model can also
be translated into a propositional formula [4], we can check
whether a configuration C satisfies the requirements R for a
feature model FM : If FM ∧ R is true for configuration C
then C is valid with respect to R. Furthermore, we can use
a SAT solver to check whether R is a valid set of require-
ments with respect to FM . This can be done by checking
if we can derive at least a single valid configuration, i.e.,
FM ∧R must be satisfiable [27]. This allows us to check at
runtime whether a specialization Si has a valid configuration
(cf. Figure 9).

Adaptation Rules. The current configuration C of a run-
ning DSPL is modified by a configuration change ΔC (i.e.,
a reconfiguration) the defines which features are added to C
and which features are removed from C during adaptation.
However, as we explain below, it is usually too restrictive to
directly define configuration changes in an adaptation rule.
Instead, an adaptation rule describes changes with respect
to the active requirements R of a DSPL. We thus define an
adaptation rule A as a pair (E,ΔR) where E is the event
that triggers the rule and ΔR are modifications that must be
applied to R when E is triggered. ΔR is a pair (ΔR⊕,ΔR�)

9



of added and removed requirements. We use operator • to
denote adaptations (i.e., application of ΔR to R):

R′ := ΔR •R (3)

:= (R \ΔR�) ∪ΔR⊕. (4)

R′ must be satisfied after applying rule A. Hence, ΔR does
not directly modify the configuration of a DSPL but it modi-
fies a set of requirementsR that describe a specialized DSPL.
As illustrated in Figure 9, applying ΔR to S1 results in a
different specialization S2.

From a modified set of requirements R′, we derive a mod-
ified configuration C′. In Figure 9, we can derive two valid
configurations C2 or C3 from S2. For runtime adaptation,
we have to choose one of these configurations. For example,
we may choose a configuration with the smallest number
of features. Finally, we derive the corresponding configura-
tion change ΔC, which is a pair (ΔC⊕,ΔC�), from the old
configuration C and new configuration C′:

ΔC := (ΔC⊕,ΔC�) (5)

ΔC⊕ := C′ \ C (6)

ΔC� := C \ C′ (7)

ΔC⊕ is the set of features that are added to C and ΔC� are
removed from C during adaptation. As a complete exam-
ple, consider the DBMS from equations (1) and (2) with an
adaptation rule A that is triggered on event ERange, mean-
ing that range queries are frequently used:

A = (ERange, ({Btree}, ∅)) (8)

R′ = ({Btree}, ∅)) •R (9)

= {QueryEngine, Index,Btree} (10)

C′ = {QueryEngine, Index,Btree} (11)

ΔC = ({Btree}, {Hash}). (12)

Rule A adds feature Btree to R (i.e., Btree has to occur
in a valid configuration), which results in the modified re-
quirement R′. From R′ we derive a new configuration C′ by
adding feature Btree and removing feature Hash. By con-
trast, a direct configuration change is too restrictive. For
example, an adaptation rule that adds feature Btree di-
rectly to configuration C results in violation of the XOR
constraint of the feature model (either Btree or Hash have
to be selected). Furthermore, we cannot define rules to re-
move features because they may be required by other con-
straints.

We specify adaptation rules in a declarative language,
as shown in the example in Figure 10. The corresponding
grammar is shown in Figure 11. A rule consists of a name,
a named adaptation event E (e.g., OnTxn in Line 2) that
triggers execution of a set of actions ΔR, which modify the
current configuration of the DSPL. An action can add or
remove a named configuration constraints using keywords
addConstraint and removeConstraint followed by a con-
straint definition (Line 5) or a constraint name respectively
(Line 8). Each constraint has a name to be able to remove
it from the requirements of a DSPL, as shown in Line 8.

Currently, we define adaptation events in monitoring
using the host language. It would also be possible to
use a declarative specification as it is done in related ap-
proaches [12].

Applying Adaptations. Before computing a new configu-
ration when applying an adaptation rule, FeatureAce checks

1 //Load transaction management
2 BeginTxn : OnTxn => addConstraint(TX: Transaction)
3
4 //Process range queries
5 BeginRQ : OnRangeQuery => addConstraint(RQ: Btree)
6
7 //Remove constraint RQ
8 EndRQ : OnRangeQueryEnd => removeConstraint(RQ)

Figure 10: Two adaptation rules that add named
constraints TX and RQ (Lines 2 and 5) and a rule
that removes constraint RQ (Line 8).

1 AdaptScript: Rule+ ;
2 Rule: RuleName ":" EventName "=>" Action+ ";" ;
3 RuleName: ID ;
4 EventName: ID ;
5 Action: AddReq | RemoveReq ;
6 AddReq: "addReq" "(" ReqName ":" Constraint ")" ;
7 RemoveReq: "removeReq" "(" ReqName ")" ;
8 ReqName: ID ;
9 Constraint: FeatureName

10 | "!" Constraint
11 | "(" Constraint ")"
12 | Constraint ConstraintOp Constraint ;
13 ConstraintOp: "&&" | "||" | "->" | "<->" ;
14 FeatureName: ID ;

Figure 11: Grammar of FeatureAce’s adaptation
rule specification language.

whether an adaptation is really needed: If a set of require-
ments Ri represent a specialized DSPL Si (e.g., S1 in Fig-
ure 9) then Ri+1 = ΔR•Ri corresponds to a new specializa-
tion Si+1 (e.g., S2 in Figure 9). If Si and Si+1 are overlap-
ping then there are configurations that can be derived from
both specializations (e.g., C2 in Figure 9). Hence, if the old
configuration is also a valid configuration of the new special-
ization, we do not have to adapt the running program. For
example, adaptation of S1 to S2 in Figure 9 for configuration
C2 does not require a program adaptation. Hence, the de-
cision engine of FeatureAce first checks whether the current
configuration Ci satisfies the new requirements Ri+1.
If this is not the case, we have to find a new configura-

tion Ci+1 that satisfies Ri+1. To test if there is any valid
configuration that satisfies Ri+1, the decision engine checks
satisfiability of the feature model including the changed re-
quirements. If there are multiple valid configurations, the
decision algorithm has to choose the best one. Which con-
figuration is the best depends on several requirements and
is a challenging task in current research [10]. For example,
we may choose the configuration with the smallest number
of features or the smallest number of required adaptations.
Other optimization goals are non-functional requirements
such as memory consumption, performance, or quality of ser-
vice. We currently choose the configuration with the small-
est number of configuration changes to reduced the required
adaptation changes. For that reason, FeatureAce tries to
keep already configured features to minimize changes. Fea-
tures are removed from a configuration when they violate a
constraint. Hence, when an adaptation rule removes a con-
straint from the requirements R, this does not always cause
a configuration change. Furthermore, we removed features
that have not been used for a configurable time span to pro-
vide a simple mechanism for reducing resource consumption.

10



Aggregation

SN-Node

Sensor

Streaming

Data

SQL BerkeleyDB SQLite

RoutingPositioning Threading

ST MT

StorageAccess

Figure 12: Feature diagram of an SPL for sensor
network nodes.

To reduce consumed resources, a configuration can be ex-
plicitly minimized by rules, e.g., triggered by low working
memory. In future work, we plan to use more sophisticated
mechanisms to trigger unloading of features based on non-
functional requirements. For example, we may remove un-
used features based on statistics and the workload of the
system or optimize a configuration using CSP4 solvers [6].

Adaptation Rules for Binding Units. Above we assumed
that there is a 1-to-1 mapping of the features of the SPL
to the features of the DSPL (i.e., the binding units). In
practice, however, there is an n-to-1 mapping of SPL fea-
tures to DSPL features because multiple features of the SPL
are merged into a single binding unit of the DSPL. Hence,
when transforming the feature model according to the de-
fined binding units, as shown in Figure 8, we also have to
transform the adaptation rules that are defined with respect
to the original SPL features. This transformation is easy to
achieve by replacing each feature in adaptation rules with
the binding unit of the feature.

After transformation, we can check whether all adaptation
rules can be applied to the feature model of the DSPL using
a SAT solver. A rule is invalid with respect to the chosen
binding units if its application to the feature model results in
an unsatisfiable formula. For example, features Transac-

tion and Log in Figure 8 are part of the same binding unit.
Hence, both features must be present at the same time in
the generated DSPL. Consequently, an adaptation rule that
requires either Transaction or Log cannot be used with
this DSPL.

4. CASE STUDY AND DISCUSSION
By means of a case study, we demonstrate the flexibility

of our approach and show that binding units can reduce the
time needed for runtime adaptation. We use a prototypical
implementation of FeatureAce for FeatureC++. However,
the concept can be applied to other languages as well. As
application scenario, we use a sensor network simulation.

4.1 An SPL for Sensor Network Nodes
A sensor network (SN) is a network of interconnected em-

bedded devices (e.g., via radio communication), which sense
different kinds of information (temperature, light, etc.) [18].
There can be different kinds of nodes in a network. Sensor
nodes measure data, store it locally, and send it to other
nodes. Aggregation nodes aggregate data (e.g., computing
the mean value) and data in the network is accessed from
the outside via access nodes. By using an SPL of node soft-
ware, we can generate different program variants tailored to
the different kinds of SN nodes.

4Constraint satisfaction problem

Hardware Role Binding Units

Simple Sensor StaticSense
Advanced Positioning Core, Positioning

Sensor Core, Sense
DataAggregator Core, QueryProc, Aggregation
AccessNode Core, QueryProc, Streaming

Table 1: Examples of different roles for two kinds of
devices.

In Figure 12, we depict an excerpt of the feature dia-
gram of the SN-Node product line we implemented in Fea-
tureC++. Subfeatures of Data are used for aggregation in
data nodes (Aggregation) and streaming in access nodes
(Streaming). A node can not only play a single role (e.g.,
being a sensor node) but multiple roles at the same time.
For example, a node may aggregate data but may also be
responsible for accessing the network. To compensate node
failures and for efficiency, the role may change over the life-
time of a node. For example, if the access node fails due to
exhausted battery power, a different node can reconfigure
itself to provide this service. Due to hardware constraints,
not every physical node can play any role. For example, only
a node with sufficient storage capacity can be used for data
aggregation.

We define feature configurations for the different roles.
Three main decisions influence the configuration process:

1. Dynamic Binding: For embedded devices that do not
allow dynamic changes to loaded program code (be-
cause the executable code is stored in ROM), we do
not support runtime adaptation and statically gener-
ate program variants.

2. Runtime adaptation: For all other nodes we generate
a DSPL using a subset of all features. We deploy only
the features that are required for the used operating
system, the hardware, special customers needs, and
the roles a node can play.

3. Binding units: To avoid a high overhead at runtime
and to reduce the number of possible variants for re-
configuration, we merge features into binding units
when they are always used in combination.

4.2 Defining Binding Units
In Table 1, we show a sample assignment of roles for

two types of node hardware and the corresponding binding
units, which demonstrates the flexibility of our approach.
The binding units are composed from the features of Fig-
ure 12. We depict sample configurations in Table 2. In our
example, simple node hardware (Simple in Table 1) with
highly constrained resources does not support runtime adap-
tation and can only be used for sensor nodes. We use a
statically composed variant for these nodes (binding unit
StaticSense in Table 1). The statically generated program
does not include any code for runtime adaptation. It has
a binary size of 48KB, which is only half of the size of a
runtime-adaptable variant with the same features (104KB).
This overhead mostly comes from code of the infrastructure
for runtime adaptation, which is independent of the number
of features. The overhead is quite small compared to larger
programs such as a node with stream processing, which has
a binary size of 576KB. Hence, our approach allows us to
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Binding Unit Features

StaticSense Positioning, Routing, Sensor, Radio, ST
Core Routing, Radio, Wi-Fi, MT
Positioning Positioning
Sense Sensor
QueryProc Access, SQL, Data, Storage
Aggregation Aggregation, SQLite
Streaming Streaming, BerkeleyDB

Table 2: Sample configuration of different binding
units.

apply self-configuration also on resource constrained envi-
ronments. Nevertheless, it still limits the applicability of
runtime adaptation and may require static binding when
storage capacity is highly limited. With our approach, a
user can choose at deployment time whether to use static
binding or to support runtime adaptation.

Hardware with less resource constraints (Advanced in Ta-
ble 1) that supports reconfiguration at runtime is used for
different roles. An advanced node is deployed with role Po-
sitioning, for computing the relative position of the node. A
node unloads the feature when the position has been deter-
mined. If a Sensor, a DataAggregator, or an AccessNode is
needed, an advanced node loads the required binding units.
The node may also play different roles at the same time.
For example, to process a streaming query, a DataAggrega-
tor additionally loads the Streaming binding unit.

We observe that our approach provides high flexibility
with respect to possible deployment scenarios. We can define
different feature configurations according to the used hard-
ware at deployment time and according to required function-
ality at runtime. For example, a Sensor node uses different
binding units but a similar set of features depending on the
used hardware (Simple or Advanced). We can also define
completely different binding units and feature selections ac-
cording to available hardware, application scenarios, etc.

4.3 Self-Adaptation
Adaptation Rules. For self-adaptation of the DSPL, we de-
fine the adaptation rules within dedicated feature modules of
the sensor network. For example, we place rules for activat-
ing and deactivating stream processing in feature Stream-

ing. The rules are included in a running program only if
the corresponding feature is selected for dynamic binding.
Based on the defined rules, a DSPL autonomously reconfig-
ures itself according to the required features at runtime. In
our scenario, a node loads the streaming binding unit when
it receives a streaming query.

Reconfiguration of nodes is triggered by events spawned
in monitoring code of the DSPL. We implement the moni-
torings in distinct feature modules that extend classes of the
application SPL to separate adaptation code from the SPL’s
implementation. For example, to activate stream processing,
the monitoring code captures incoming queries and triggers
the adaptation event when a streaming query is found. The
corresponding rule adds a constraint for feature Stream-

ing (i.e., the feature must be included in a valid configura-
tion). Another rule removes the constraint after all stream-
ing queries have been processed. We do not directly remove
the feature which would result in an unneeded reconfigu-
ration when the feature is used again. A feature is only

removed when it is excluded by other constraints or when
non-functional requirements such as limited working mem-
ory force to remove unneeded features. For example, we use
a rule to unload the positioning feature when the position
of the sensor has been calculated.

Reconfiguration. In Figure 13, we depict evaluation re-
sults for the adaptation process.5 We analyzed the time
needed for calculating whether an adaptation is needed and
the time for reconfiguration. To show the benefits of stati-
cally optimizing the feature model, we compared reconfigu-
ration of a sensor node (1) using the original feature model
of the SPL including all 55 features and (2) using the trans-
formed feature model of the DSPL with 6 features (i.e., one
feature per binding unit; cf. Sec. 3.1). In the diagram, we
depict the time a node requires to process queries that are
sent every 300ms.

Begin of stream processing is triggered by streaming
queries (denoted with b in Fig. 13), which results in a run-
time adaptation to load binding unit Streaming. The
adaptation must be finished before the query processing
can continue. The first streaming query is detected after
5 s. Loading the Streaming feature takes 20–60ms (note
that we use a logarithmic scale) and increases the response
time because the execution is continued after reconfigura-
tion. Calculating the new configuration takes less than 1ms.
Assuming a minimal adaptation time of 20ms, a node can-
not reconfigure itself more than 50 times per second.

End of stream processing is denoted with (e). Instead of
unloading the Streaming feature, a rule removes the con-
straint added before. Hence, all following adaptation events
do not cause a reconfiguration. Nevertheless, the adaptation
events increase the response time by about 0.3ms when us-
ing the complete feature model with 55 features and 0.05ms
for the DSPL model with 6 features. This computation time
is required for checking whether the node has to be recon-
figured due to the context change. We use a SAT solver for
this purpose. Compared to a reconfiguration that takes 20-
50ms, 0.3ms is a very small overhead. However, it means
that the node cannot handle more than about 3000 changes
of the adaptation context per second even though no adapta-
tion is needed. On an embedded device this would be much
less due to limited computing power. By contrast, the node
with the simplified feature model with 6 features requires
only 0.05ms for checking whether an adaptation is needed.
This demonstrates the importance of reducing the variabil-
ity for runtime adaptation by optimizing the feature model.

4.4 Conclusion
In our case study, we combined static feature binding

with support for feature-based runtime adaptation. We have
shown that we can achieve autonomous reconfiguration by
including the adaptation mechanism and the feature model
into the running DSPL. By generating binding units, we can
further optimize runtime adaptations, as we discuss next.

Implementation-independent Adaptations. Using fea-
tures, we can provide adaptation mechanisms that are in-
dependent of the modules actually used for dynamic bind-
ing. Hence, we can generate binding units that fit to an

5For evaluation, we used an AMD 2.0GHz CPU and Win-
dows XP.
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Figure 13: Response time (log scale) during re-
configuration of a query processing sensor network
nodes using a feature model with 55 features and a
simplified model with 6 features. Begin and end of
stream processing are denoted with (b) and (e).

application scenario and the hardware while being able to
reuse adaptation rules. When generating binding units, we
transform the adaptation rules accordingly.

Composition Safety. Using a feature model, we ensure
that adaptations are correct with respect to domain con-
straints. As we have shown, this can be efficiently done
at runtime before creating a variant by using a SAT solver.
Furthermore, we can check if an adaptation rule is valid with
respect to the feature model of the DSPL before runtime.

Resource Consumption. We provide an adaptation mech-
anism with low resource requirements (e.g., binary size, com-
puting power) due to (1) customization of the adaptation
infrastructure and (2) customization of binding units by re-
moving unused code. The flexible size of binding units min-
imizes dynamic binding and enables static optimizations, as
we have analyzed in previous work [24].

Computational Complexity. We have shown that we can
reduce computations at runtime in two ways: (1) by avoiding
unneeded adaptations and (2) by reducing the computations
for checking satisfiability by transforming the feature model
according to actually available variability. The time required
for computing a valid configuration is small compared to
an actual reconfiguration even when using a feature model
with 55 features. However, frequently checking whether a
reconfiguration is needed can easily require more computing
power than available. Hence, it is important to reduce the
computation time by optimizing the feature model.

Including also non-functional requirements in these com-
putations is a challenging task [10]. However, our approach
reduces the overall computational complexity and can be
combined with CSP solvers to consider also numerical con-
straints (e.g., limited memory consumption) when comput-
ing an optimal configuration at runtime [26].

Constraint-based Adaptations. Directly modifying the
configuration or an architectural model can result in un-
needed reconfigurations and may cause configuration con-
flicts. Instead, we compute a new configuration based on
the current configuration of a program and a set of require-
ments the new configuration has to fulfill. This avoids con-
figuration conflicts and frequent reconfigurations, as we have

shown our evaluation.

5. RELATED WORK
There are several approaches that use components and an

architecture-based runtime adaptation as proposed by Or-
eizy et al. [21]. We further abstract from implementation
details and use features for configuring a program at run-
time. This allows us to reason about configuration changes
at runtime on a conceptual level and to describe adapta-
tion rules in a declarative way without taking the high-level
architecture into account.

There are approaches that apply SPL concepts to develop
adaptive systems and approaches that use feature-oriented
concepts for modeling dynamic variability in SPLs [10, 15,
17, 28, 8]. We aim at building a foundation for integrating
them using features for SPL configuration as well as runtime
adaptation. We compare our approach with respect to the
most prominent approaches.

Some approaches describe dynamic variability in terms of
features [17, 28, 8]. Lee et al. use a feature model to describe
the variability (static and dynamic) of an SPL and they sug-
gest to manually develop components (i.e., feature binding
units) for implementing dynamic variability [17]. We decide
at deployment time which binding time to use and use fea-
tures (i.e., not implementation units) for configuration and
program validation at runtime.

Floch and Hallsteinsen et al. present with MADAM an ap-
proach for runtime adaptation that uses SPL techniques as
well as architectural models [10, 15]. They propose to model
variability using component-based SPL techniques [15]. We
use features for modeling variability and runtime adaptation
to further abstract from the underlying implementation.

Cetina et al. use feature models to describe variability
of an adaptive system [8]. To adapt a system, they mod-
ify a configuration by adding or removing features. This
results in the problems discussed in Section 4.4, which we
solve by using constraints to describe current requirements
on a system. Furthermore, we seamlessly integrate SPL en-
gineering and runtime adaptation by applying SPL concepts
to adaptation code (e.g., adaptation rules) and by support-
ing static binding of features and merging of features into
binding units.

Morin et al. describe variability with a feature model and
realize variability of the component model of an adaptive
system with aspect-oriented modeling (AOM) [20]. They
use aspects to describe model adaptations and reconfigure
a program based on changes of the model. In contrast, we
operate on features that are not only implementation inde-
pendent but also independent of the component model of
a system. Hence, our approach can be combined with an
approach for model adaptation. This allows us to validate a
configuration before adapting the component model.

We use feature modules for implementing adaptive sys-
tems, but our approach for feature-based adaptation may
also be used with other implementation units such as com-
ponents or aspects [20, 8, 17, 28]. In this case, features
are still used to describe adaptation changes. After a new
configuration has been derived and validated, a correspond-
ing set of components has to be determined. Some of the
approaches above provide advanced capabilities for runtime
adaptation not considered here (e.g., adaptation planning,
state transfer, etc.). We argue that such advanced mech-
anisms are complementary to a feature-based solution and
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features can be used to improve these mechanisms.

6. SUMMARY
Dynamic software product lines (DSPLs) combine con-

cepts of adaptive systems and software product lines (SPLs)
to provide dynamic variability. However, current DSPL ap-
proaches commonly use coarse-grained components to im-
plement variability. This reduces customizability and thus
limits applicability of a DSPL. We presented an approach
that integrates traditional SPLs and DSPLs more closely.
Based on a feature-oriented implementation of an SPL and
a customizable adaptation framework, we generate DSPLs
by statically composing features. As in traditional SPLs,
we support fine-grained static customization for efficiency
reasons; as in DSPLs, we provide adaptability at runtime
by generating coarse-grained dynamic binding units. A dy-
namic binding unit is tailored to an application scenario by
including only user-defined features. For runtime adapta-
tion, we propose to describe adaptation rules in terms of
features. We integrate this feature-based adaptation mecha-
nism with our approach for generating DSPLs by transform-
ing the feature model of an SPL according to the binding
units of the generated DSPL.

By using features to describe adaptation rules and config-
uration changes, our approach is independent of an SPL’s
implementation. Using a feature model, we efficiently vali-
date program adaptations before modifying a configuration
at runtime. Our integration of static binding and DSPLs
reduces the overhead for dynamic binding. Furthermore, it
avoids unneeded dynamic variability, which simplifies run-
time adaptation.

In future work, we will integrate our work on optimizing
non-functional properties of SPLs [26]. We thus extend the
dynamic variant selection process to optimize a variant with
respect to non-functional constraints using CSP solvers.
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C. Kästner, and G. Saake. Measuring Non-functional
Properties in Software Product Lines for Product
Derivation. In Proceedings of the Asia-Pacific Software
Engineering Conference (APSEC), pages 187–194.
IEEE Computer Society, 2008.
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