
Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Nr.:

Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake

Arbeitsgruppe Datenbanken

FIN-03-2011

ECOS: Evolutionary Column-Oriented Storage

Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-03-2011

ECOS: Evolutionary Column-Oriented Storage

Syed Saif ur Rahman, Eike Schallehn, and Gunter Saake

Arbeitsgruppe Datenbanken

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Syed Saif ur Rahman

srahman@ovgu.de

15.03.2011

ECOS: Evolutionary Column-Oriented
Storage

Syed Saif ur Rahman, Eike Schallehn, Gunter Saake

{srahman, eike, saake}@ovgu.de

Technical Report

Department of Technical and Business Information Systems,
Faculty of Computer Science,
Otto-von-Guericke University,

Magdeburg, Germany

Abstract

As DBMS has grown more powerful over the last decades, they have also
become more complex to manage. To achieve efficiency by database tuning
is nowadays a hard task carried out by experts. This development inspired
the ongoing research on self-tuning to make database systems more easily
manageable. In this report, we present a customizable self-tuning storage
manager, we termed as Evolutionary Column-Oriented Storage (ECOS).
The capability of self-tuning data management with minimal human inter-
vention, which is the main design goal for ECOS, is achieved by dynamically
adjusting the storage structures of a column-oriented DBMS according to
data size and access characteristics. It is based on the Decomposed Storage
Model (DSM) with support for customization at the table-level using five
different variations of DSM. Furthermore, it also proposes fine-grained cus-
tomization of storage structures at the column-level. It uses hierarchically-
organized storage structures for each column to enable autonomic selection
of the suitable storage structure along the hierarchy (as hierarchy-level in-
creases) using an evolution mechanism. Moreover, for ECOS we proposed
the concept of an evolution path that provides a reduction of human inter-
vention for database maintenance. We evaluated ECOS empirically using a
custom micro benchmark showing performance improvement.

1

Contents

1 Introduction 5

2 Problem Statement and Motivation 7

3 Evolutionary Column-Oriented Storage 10
3.1 Table-level Customization . 10
3.2 Column-level Customization and Storage Structure Hierarchies . . . 14
3.3 Evolution and Evolution Paths . 18

4 Theoretical Explanation 21
4.1 Ordered Read-Optimized Storage Structure 21
4.2 Unordered Write-Optimized Storage Structure 24

5 Implementation of Evolution Mechanism 28
5.1 Monitoring Functionality Implementation 28
5.2 Trace Functionality Implementation 29
5.3 Analysis and Fixing Functionality Implementation 30

6 Empirical Evaluation 33
6.1 Micro Benchmark Details . 33
6.2 ECOS Performance Improvement 34

7 Related Work 38

8 Conclusion 40

1

List of Figures

1 Evolving hierarchically-organized storage structures. 14
2 Evolutionary column-oriented storage. 14
3 Performance comparison of different storage structures for a single

record. 34
4 Performance comparison of different storage structures for 4048

records. 34
5 Performance comparison of different storage structures for 100K

records. 34
6 Performance comparison of different storage structures for 500K

records. 34
7 Evolving HLC SL storage structure evolution. 35
8 Evolving HLC B+-Tree storage structure evolution. 36
9 Performance comparison of different DSM based schemes in ECOS

with primary key based search criteria. 37
10 Performance comparison of different DSM based schemes in ECOS

with non-key based search criteria. 37
11 Performance improvement for dictionary based DSM schemes for

large column width. 37
12 Performance comparison of different DSM based schemes in ECOS

for read and write intensive workloads. 37

2

List of Tables

1 TPC-H LINEITEM table observed statistics, possible customiza-
tion, and anticipated evolution. 9

2 DSM. 10
3 KDSM. 11
4 MDSM. 12
5 Dictionary columns for DMDSM and VDMDSM. 13
6 DMDSM. 13
7 VDMDSM. 13
8 Example for evolution paths. 19

3

Listings

1 Monitoring implementation code snippet 28
2 Autonom class implementation code snippet 30
3 Evolution implementation code snippet 31
4 ECOS interface code snippet . 32

4

1 Introduction

Efficient data management demands continuous tuning of a database and a DBMS.
The need for tuning a database system is driven by changes, such as database size,
workloads, schema design, hardware, and application specific data management
needs. Existing data management systems need extensive human intervention for
tuning, which contributes to a major portion of the total cost of ownership for data
management [9]. Self-tuning is the solution to reduce the tuning cost through
minimizing the human intervention [32]. There are several different self-tuning
based solutions for commercial DBMS, e.g., AutoAdmin [7], Oracle automatic
SQL tuning [13], DB2 design advisor [33], etc. However, researchers are united
on one conclusion that the biggest challenge for self-tuning based solutions is the
inherent complexity of existing DBMS architectures because their functionalities
are tightly integrated into their monolithic engines, and it is difficult to assess
the impact of tuning of one knob on another [8]. This motivates the need to
revisit existing DBMS architectures to explore an out of the box and innovative
architecture.

In this report, we present a customizable, online self-tuning storage manager.
As a key design concept, we propose the selection of an appropriate storage model
and data/index storage structure through customization at a fine-granularity. The
motivation for this customization is inspired from the work of Chaudhuri and
Weikum [8]. The fine-grained customization is supported at the table-level and
column-level according to the recommendations/results from [2, 12, 17]. We also
identified the need to autonomically change the existing data and index storage
structure to more appropriate ones with the changing data management needs
based on our previously published results in [28]. We named our solution Evo-
lutionary Column-Oriented Storage (ECOS), which is based on the existing De-
composed Storage Model (DSM) [12] with the novel capability of automatically
evolving the internal data and index storage structures for each column with the
growth of data. It uses hierarchically-organized storage structures with an inno-
vative evolution mechanism to enable autonomic selection of the most suitable
storage structure along the hierarchy (as the levels of the hierarchy increase).
Furthermore, we present four possible variations to standard DSM to reduce the
increased storage requirements of the standard 2-copy DSM. We evaluated ECOS
empirically using the custom micro benchmark to compare the performance of
different DSM based schemes using fixed storage structures as well as proposed
evolving storage structures. Our results show that our proposed ECOS self-tunes
the storage structure while maintaining the required performance, additionally; it
also gives minor performance gains. Furthermore, we propose a mechanism called
evolution path to define the storage structure evolution, which reduces the need
for human intervention for long-term database maintenance.

5

This report is organized as follows. Section 2 defines the problem and the
motivation for proposed design. Section 3 explains the concepts of ECOS and
evolution path in detail. Section 4 gives brief theoretical explanation of evolv-
ing storage structures using time and space complexity analysis. Section 5 briefly
outlines ECOS evolution mechanism implementation. Section 6 gives details of
empirical evaluation of proposed concepts using custom micro benchmark. Sec-
tion 7 outlines the related work. Section 8 concludes the report with some hints
for future work.

6

2 Problem Statement and Motivation

Specific storage structures provide characteristics suitable for certain data sizes
and access characteristics. As both of these aspects may change over the course of
data usage, there is no single storage solution that provides optimal performance
in every situation. Therefore, we propose an autonomic adjustment of the storage
structures. In this section, we explain the motivation for some critical design
decisions in ECOS. To explain the problem in detail, we take the LINEITEM table
of TPC BenchmarkTMH (TPC-H) [27] schema as an example. We generated the
benchmark data with the scale factor of one and gathered statistics for LINEITEM
table as shown in Table 1.

Why column-oriented storage model? The column-oriented storage model
is derived from earlier work of DSM [12]. DSM is a transposed storage model [5]
that stores all values of the same attribute of the relational conceptual schema
relation together [12]. In literature, models similar to DSM are also termed as
vertical fragmentation [14], vertical partitioning [3], etc. Copeland and Khoshafian
in [12,30] concluded many advantages of DSM including simplicity (Copeland and
Khoshafian related it to RISC [24]), less user involvement, less performance tuning
requirement, reliability, increased physical data independence and availability, and
support of heterogeneous records. These advantages give strong motivation for the
use of DSM in self-tuning storage manager.

The column-oriented storage model has recently gained more attention, most
of all because of its superior performance for analytical data applications [26]. Ac-
cordingly, we see the current developments in column-oriented storage solutions as
an opportunity to address the problem of self-tuning storage structures. Neverthe-
less, basic ideas and concepts are also applicable to the more traditional row-stores
and the transfer there could be a point of future research.

Why customization at the column-level? Table 1 includes some characteris-
tics of the LINEITEM table. We can observe that distinct data count (cardinality)
for all columns is different. We can classify three types of columns based on dis-
tinct data count, i.e., large, medium, and small. We further observed (general
observation) the TPC-H queries that access LINEITEM table and predicted (us-
ing a layman-approach) the workload and data access pattern for columns. We
identified that four columns (i.e., L DISCOUNT, L TAX, L EXTENDEDPRICE,
and L QUANTITY) involve read-intensive workload, whereas three columns (i.e.,
L COMMITDATE, L SHIPDATE, and L QUANTITY) involve ordered data ac-
cess. The differences in distinct data count, workload, and data access pattern for
different columns raise the need for the support of storage structure customization

7

at the column-level. If a storage manager supports column-level customization of
storage structure, we can hypothetically customize LINEITEM table columns as
shown in Table 1.

Need for customization is also suggested by other research and commercial data
management solutions. C-Store [26] proposed the use of two different stores within
same DBMS, i.e., read-optimized and write-optimized stores. Another customiza-
tion they proposed is that write-optimized store operates in main-memory fashion.
Dynamo [15], a highly available key-value store from Amazon, uses pluggable ar-
chitecture for storage engine. It enables the choice of the storage engine that best
suits the data management need for application, i.e., BerkeleyDB can be used to
store database of few kilo bytes, whereas for database of large size, MySQL can
be used [15]. MySQL DBMS also supports storage engine customization at the
table-level.

Why hierarchically-organized storage structures? A hierarchical organiza-
tion of storage structures is a composition of similar or different storage structures
in a hierarchy as depicted in Figure 1. Hierarchically-organized storage struc-
tures provide an autonomic selection of appropriate storage structures along the
hierarchy. We suggest that a new storage structure will be appropriate because
we can use the existing data and gathered statistics during previous operations
on existing storage structures to make better decisions for the next appropriate
storage structure selection. Previously published results from Bender et al. [6],
Chen et al. [10], and Morzy et al. [21] also motivate our decision for the use of
hierarchically-organized storage structures.

Why autonomy? Consider the distinct data count of two large columns, i.e.,
L ORDERKEY and L COMMENT in Table 1. For the benchmark scenario, we
generate the data altogether to test our data management solutions, and we cus-
tomize the storage structure to best suit our desired results. However, in a real
world scenario, the data growth is a continuous process. Database designer can
predict, how large data can grow and at what rate, but he/she should maintain
the database over time.

We can elaborate the problem with two possible scenarios. For example, in a
first scenario we suggest a B+-Tree as a suitable storage structure (assume data
stored with index) for the L ORDERKEY column, but what if only after 30 years
the expected maximum data size is reached? During the first year, a sorted list
could have been good enough to store the data. When we select a complex storage
structure for small database management, for each data management operation, we
waste resources (cache, memory, and CPU cycles) until and unless data size grows
to make the use of the selected storage structure appropriate. For the contrary

8

Table 1: TPC-H LINEITEM table observed statistics, possible customization, and an-
ticipated evolution.

Column Distinct Workload Data Storage Structure Storage Structure Storage Structure

Name Count Access Initial 1st Evolution 2nd Evolution

L ORDERKEY 1500000 Sorted Array Sorted List B+-Tree

L COMMENT 4501941 Sorted Array Sorted List Hash Table

L DISCOUNT 11 Read-Intensive Sorted Array

L SHIPMODE 7 Heap Array

L SHIPINSTRUCT 4 Heap Array

L RECEIPTDATE 2554 Heap Array Heap List

L COMMITDATE 2466 Ordered Sorted Array Sorted List

L SHIPDATE 2526 Ordered Sorted Array Sorted List

L LINESTATUS 2 Heap Array

L RETURNFLAG 3 Heap Array

L TAX 9 Read-Intensive Sorted Array

L EXTENDEDPRICE 933900 Read-Intensive Sorted Array Sorted List B+-Tree

L QUANTITY 50 Read-Intensive Ordered Sorted Array

L LINENUMBER 7 Heap Array

L SUPPKEY 10000 Heap Array Heap List

L PARTKEY 200000 Sorted Array Sorted List Hash Table

second possible scenario, a database designer selects a sorted list as a storage
structure. However, the data growth is much higher than expected. In a year the
sorted list becomes inadequate for the desired performance. The database need
maintenance that include changing the storage structure by human intervention.

Another important issue is the change in the workload pattern for a column. It
is possible that a column that was previously accessed with write-intensive queries,
later on in the lifetime becomes more read-intensive. A classical approach as a so-
lution would require manual analysis of the queries and then the transformation
of a table for using appropriate storage structures. Therefore, we suggest that
using an autonomic approach of evolving hierarchically-organized storage struc-
tures in conjunction with customization at the table and column level, the process
of self-tuning data and index storage structures with change in workload can be
automated at the storage manager level.

9

3 Evolutionary Column-Oriented Storage

In this section, we explain the concepts of ECOS in detail. We explain the DSM
and four proposed DSM based schemes to reduce the high storage requirements
of the standard 2-copy DSM. We furthermore discuss the concepts of column cus-
tomization, hierarchical organization of the storage structures, evolution of the
storage structures, and the evolution path.

3.1 Table-level Customization

ECOS is a customizable online self-tuning storage manager. We use the term stor-
age manager in its standard meaning for DBMS, i.e., a component to physically
store and retrieve data. Data storage efficiency is assumed to be the main goal for
a storage manager. By storage structure, we mean the data structure used by the
storage manager to physically store data and indexes. ECOS stores data accord-
ing to the column-oriented storage model, where each column stores a key/value
pair of data. ECOS suggests two customizations for each table in a database,
i.e., at the table-level and at the column-level. At the table-level, we customize
how columns are stored physically for a logical schema design. We use five varia-
tions of Decomposed Storage Model (DSM) for table customization, i.e., Standard
2-copy Decomposed Storage Model (DSM) [12], Key-copy Decomposed Storage
Model (KDSM), Minimal Decomposed Storage Model (MDSM), Dictionary based
Minimal Decomposed Storage Model (DMDSM), and Vectorized Dictionary based
Minimal Decomposed Storage Model (VDMDSM). The motivation for proposing
and testing different variations of DSM arise from high storage requirements of
standard 2-copy DSM. The details for the five variations of DSM are as follows:

Table 2: DSM.

Columnk0

Key Value

k1 731

k2 137

k3 173

k4 371

k5 317

k6 713

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

Columnv1

Key Value

k3 20010925

k6 20010925

k2 20071201

k1 20090327

k4 20090327

k5 20090327

Columnv2

Key Value

k3 Christian

k1 Jana

k6 Jana

k2 Tobias

k4 Tobias

k5 Tobias

(b) Columns clustered on value

10

Standard 2-copy Decomposed Storage Model (DSM) DSM is a trans-
posed storage model [5], which pairs each value of a column with the surrogate of
its conceptual schema record as key [12]. It suggests storing two copies of each
column, one copy clustered on values, whereas another copy is clustered on keys.
We took DSM as the base storage model and then altered it to propose differ-
ent schemes. We suggest that DSM is suitable for read-intensive workloads where
data contain negligible duplicate and NULL values, write and updates are minimal
relative to read operations and there are negligible storage constraints. DSM is
depicted in Table 2. We argue that for a self-tuning storage manager, 2-copy DSM
is the most suitable storage model. It is easy to implement and easy to use, more-
over, it does not require human intervention to identify, which column to cluster
or index, instead it is done in a uniform way [30]. To justify our argument, we
evaluated standard 2-copy DSM with four other variations and found it the most
appropriate one. The results are presented in Section 6.

Table 3: KDSM.

Columnk0

Key Value

k1 731

k2 137

k3 173

k4 371

k5 317

k6 713

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

(b) Columns clustered
on value

Key-copy Decomposed Storage Model (KDSM) KDSM is the first vari-
ation of DSM that we propose to reduce the high storage requirements of the
standard DSM. KDSM stores the data similar to DSM, i.e., for each column, data
is stored in values, whereas keys are unique numeric values that relate attributes
of a row together. All columns are clustered on the keys. However, unlike DSM,
we store an extra copy of only key columns (primary key or composite primary
key) clustered on values. This design alteration reduces the storage requirement
of KDSM, but it increases the access time for read operations that involve non-key
columns in search criteria. However, for read operations with the key column in
the search criteria it performs similar to DSM with fewer storage requirements.
We propose the use of KDSM for tables that only require querying data using key
columns. KDSM allows a conversion to DSM by simply creating a copy of the

11

non-key columns clustered on values. We suggest that KDSM is suitable for data
storage where columns have few duplicates and NULL values. KDSM is shown in
Table 3.

Table 4: MDSM.

Columnk1

Key Value

k1 20090327

k2 20071201

k3 20010925

k4 20090327

k5 20090327

k6 20010925

Columnk2

Key Value

k1 Jana

k2 Tobias

k3 Christian

k4 Tobias

k5 Tobias

k6 Jana

(a) Columns clustered on key

Columnv0

Key Value

k2 137

k3 173

k5 317

k4 371

k6 713

k1 731

(b) Primary key columns
clustered on value

Minimal Decomposed Storage Model (MDSM) MDSM stores the data
similar to DSM except that we do not store any extra copy for any columns thus
reducing the high storage requirement of DSM to a minimum. Instead, the design
idea of MDSM is to store primary key columns clustered on values, whereas non-
primary key columns are clustered on key as depicted in Table 4. MDSM performs
similar to DSM and KDSM for the read operations with search criteria on key
column attributes, but it performs worse for the read operations with non-key
column attributes in search criteria. MDSM can be transformed into KDSM and
DSM by creating an extra copy of the key columns clustered on key and non-key
columns clustered on values. However, our results in Section 6 suggest that if we
do not have any space constraints, this scheme is not appropriate.

Dictionary based Minimal Decomposed Storage Model (DMDSM) To
improve the performance of MDSM, we introduced DMDSM, which stores the
unique data for each column separately as the dictionary column. DMDSM is
inspired from the concept of the dictionary encoding scheme, which is frequently
used as light-weight compression technique in many column-oriented data man-
agement systems [1]. In DMDSM, for each main column, values are the keys for
the data from dictionary column as depicted in Table 6. All dictionary columns
are clustered on value. All other concepts for the DMDSM are similar to MDSM.
DMDSM is suitable for tables with many duplicates or NULL values. In this
scheme, for columns, database operators always manipulate numeric data for data

12

Table 5: Dictionary columns for DMDSM and VDMDSM.

Dict. Column 0

Keyd0 Valued0

d02 137

d03 173

d05 317

d04 371

d06 713

d01 731

Dict. Column 1

Keyd1 Valued1

d11 20090327

d12 20071201

d13 20010925

Dict. Column 2

Keyd2 Valued2

d23 Christian

d21 Jana

d22 Tobias

(a) Dictionary columns

Table 6: DMDSM.

Columnv0

Keyv0 Valuev0

k2 d02

k3 d03

k5 d05

k4 d04

k6 d06

k1 d01

(a) Primary key columns clus-
tered on value

Columnk1

Key Value

k1 d11

k2 d12

k3 d13

k4 d11

k5 d11

k6 d13

Columnk2

Key Value

k1 d21

k2 d22

k3 d23

k4 d22

k5 d22

k6 d21

(b) Columns clustered on key

Table 7: VDMDSM.

Vector Column

Key Value

v1 d01,d11,d21

v2 d02,d12,d22

v3 d03,d13,d23

v4 d04,d11,d22

v5 d05,d11,d22

v6 d06,d13,d21

(a) Vector column

management operations, which execute much faster on modern hardware. Fur-
thermore, it gives us the provision to exploit our innovative concept of evolving
hierarchically-organized storage structures to its maximum potential for dictionary
columns because they only store non-null unique data and most of them can be
stored using simple and small storage structures.

Vectorized Dictionary based Minimal Decomposed Storage Model (VD-
MDSM) In DMDSM each column stores keys/values, where values are record
identifiers from dictionary columns. We can optimize this with a better storage
scheme by avoiding the storage of keys for every column separately. VDMDSM
is an extension of DMDSM, such that it stores the values (i.e., dictionary column
keys) for all columns together as the vector column, i.e., instead of saving each col-
umn separately, it generates the vector of all attributes in the row and stores it as
a value for vector column as depicted in Table 7. Similar to DMDSM, VDMDSM
provides the opportunity to exploit the benefit of evolving hierarchically-organized
storage structures to their full potential for dictionary columns. VDMDSM is suit-

13

able for tables with many duplicate or NULL values.

3.2 Column-level Customization and Storage Structure Hi-
erarchies

Once we select the appropriate storage model scheme from above-mentioned schemes
at the table-level, we move forward to customize the columns as explained next.
At the column-level, we customize the storage structure for each column. Each
column is initially customized as either ordered read-optimized or unordered write-
optimized storage structure. For ordered read-optimized storage structures, we
store data in sorted order with respect to key or value, whereas for unordered
write-optimized storage structure, we store data according to insertion order. We
use the sorted array and the sorted list as ordered read-optimized data storage
structures, whereas the heap array and the heap list is used as unordered write-
optimized data storage structure. In the above-mentioned schemes, dictionary
columns are always stored as ordered read-optimized storage structures.

Persistent

O
p

ti
m

iz
a

ti
o

n
 a

c
c

o
rd

in
g

 t
o

 h
a

rd
w

a
re

 h
ie

ra
rc

h
y B+-Tree (D)

x

C C

…

Index
Storage

Generate index
using ordered
read-optimized

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

d
a

ta
 a

n
d

 i
n

d
e

x
 s

to
ra

g
e

 s
tr

u
c

tu
re

 s
e

le
c

ti
o

n

Memory

O
p

ti
m

iz
a

ti
o

n
 a

c
c

o
rd

in
g

 t
o

 h
a

rd
w

a
re

 h
ie

ra
rc

h
y

T-Tree (C)

+

B B
…

Sorted List (B)

A A
…

A

Storage

Heap List (Y)

X X
…

X

read-optimized

storage

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

d
a

ta
 a

n
d

 i
n

d
e

x
 s

to
ra

g
e

 s
tr

u
c

tu
re

Cache

O
p

ti
m

iz
a

ti
o

n
 a

c
c

o
rd

in
g

 t
o

 h
a

rd
w

a
re

 h
ie

ra
rc

h
y

Sorted Array (A)

Data

A A A

Ordered Read-optimized Storage

Data
Storage

Heap Array (X)

Data

X X X

Unordered Write-optimized Storage

E
v
o

lu
ti

o
n

 w
it

h
 d

a
ta

 g
ro

w
th

A
u

to
n

o
m

ic
 d

a
ta

 a
n

d
 i

n
d

e
x

 s
to

ra
g

e
 s

tr
u

c
tu

re

Figure 1: Evolving hierarchically-
organized storage structures.

Column 1
Column 2 Column 3

PSMeta-data

Column 2 Column 3

PS

Data

Storage
Structure

PS

Meta-data

PS

Data
Storage

Structure

PS

Index
Storage

Structure

PS

Meta-data

PS

Data
Storage

Structure

PS

Index
Storage

Structure

PS: Persistent Storage

Figure 2: Evolutionary column-oriented storage.

Evolving hierarchically-organized storage structure ECOS utilizes the
hierarchically-organized storage structure for data and index storage, such that a
storage structure at each new level of hierarchy is composed of multiple lower level
storage structures as depicted in Figure 1. The usage of hierarchically-organized

14

storage structures is motivated by the possible optimization of the storage struc-
ture hierarchy according to hardware hierarchy and data management needs. For
example, consider the memory hierarchy in modern hardware. We optimize stor-
age structures for cache, main memory, and persistent storage in the specified
order. As shown in Figure 1, the lowest level of hierarchy is using array storage
structures, which are optimized for cache. On the second level above, T-Tree stor-
age structure is used, which is optimized for main memory. At the third level,
B+-Tree is used, which is optimal for persistent storage.

The storage structures that we discussed in this report include heap array,
sorted array, heap list, sorted list, B+-Tree, T-Tree, and hash table. From heap
array/list, we mean a storage structure that always appends new data to exist-
ing data in chronological order and uses the linear search algorithm to traverse
the data. From sorted array/list, we mean storage structures that always main-
tain the sort order for the data. For data retrieval sorted array uses the binary
search algorithm. B+-tree, T-Tree, and hash table operate according to their de
facto standards. Before we continue our discussion, we outline the hierarchically-
organized storage structures, which we use further in our discussion. At the lowest
level of hierarchy, we use:

Sorted array: Optimized for read-access with minimal space overhead. No need
to instantiate a buffer manager or an index manager to manage an array.

Heap array: Optimized for write-access with minimal space overhead.

At the next level, we use composite storage structures:

Sorted list: Sorted list is composed of multiple sorted arrays. It requires the
instantiation of a buffer manager for managing multiple sorted arrays.

Heap list: Heap list is composed of multiple heap arrays. It also requires the
instantiation of a buffer manager for managing multiple heap arrays.

B+-Tree: B+-Tree is composed of multiple arrays as leaf nodes. It requires the
instantiation of a buffer manager for managing multiple arrays as well as an
index manager to manage the multiple index nodes.

On the higher levels, we use high-level composite (HLC) storage structures:

HLC SL: HLC SL is a B+-Tree based structure, where each leaf node is a sorted
list. HLC SL instantiates a buffer manager to manage multiple sorted lists
and an index manager to manage multiple index nodes. Each sorted list
manages its own buffer manager, which ensures the high locality of data for
each sorted list.

15

HLC B+-Tree: HLC B+-Tree is a B+-Tree based structure, where each leaf
node is also a B+-Tree. HLC B+-Tree instantiates a buffer manager to
manage multiple B+-Trees and an index manager to manage multiple index
nodes. Each B+-Tree at leaf nodes manage its own buffer manager and index
manager, which ensures the high locality of data and index nodes for each
B+-Tree.

Once a column is customized as either ordered read-optimized or unordered write
optimized storage, ECOS initializes each column to smallest possible storage struc-
ture, i.e., ordered read-optimized column is initialized as a sorted array, whereas
unordered write-optimized column is initialized as a heap array. ECOS enforces
that each storage structure should be atomic and should be directly accessible
using an access API. The reason for this approach is that small storage structures
consume less memory and generate reduced binary size for small data manage-
ment [28]. If we can use them directly, than there is no reason to use them as
part of complex storage structures (we use storage structure as a common term
for both data storage structure and index storage structure), such as B+-Tree or
T-Tree; avoiding the overheads of complexity associated with these storage struc-
tures. This approach ensures that using smallest suitable storage structures, de-
sired performance is achieved using minimal hardware resources for small database
management.

Storage capacity limitation for predictable performance ECOS imposes
data storage capacity limitation for each storage structure. We enforce this for
more predictable performance and to ensure that storage structure performance
does not degrade because of unlimited data growth. In ECOS, once limited storage
capacity of a storage structure is consumed, it evolves to a larger more complex
storage structure composed of multiple existing ones considering the important
factors, such as hardware, the data growth, and the workload. For ordered read-
optimized data storage, a sorted array is evolved into a sorted list, such that the
sorted list is composed of multiple sorted arrays linked together. For unordered
write-optimized data storage, a heap array is evolved into the heap list. The
evolution of storage structure is an important event for assessing the next suitable
storage structure by analyzing the existing data and the previously monitored
workload.

Similarly, each new storage structure also has a definite data storage capacity
limitation and once again as it is consumed, ECOS further evolves and increases
the hierarchy of the hierarchically-organized storage structures. For ordered read-
optimized data storage, once sorted list storage capacity is consumed it evolves into
new storage structure, such that it becomes part of a new index structure. For
example, it becomes the data leaf node of a B+-Tree. For ordered read-optimized

16

data storage, ECOS does not perform data management operations separately for
data and index structures, instead, each operation interact directly with the index
structure. Here-onwards, index structure will identify, in which sorted list the
data will be stored. For unordered write-optimized storage, operations execute
separately on data and index structures, such that first data is inserted into the
heap list and then the index structure is updated with the new key or index value.
Index structures for unordered write-optimized storage are based on ordered read-
optimized storage and will evolve subsequently.

API consistency to hide complexity and ensure ease of use To hide the
complexity of different storage structure over different levels of hierarchy, ECOS
keeps the interface for all storage structures consistent. We provide a standard
interface to access columns with simple, Put(), Get(), and Delete() functionality
with record as argument. It is invisible to an end-user, which storage structure is
currently in use for each column.

Automatic partitioning ECOS separates physical storage for each column to
reduce the I/O contention for storage of large database. For large columns, it
also separates the data for a column into multiple separate physical storage units,
which is similar to horizontal partitioning.In Figure 2, at a minimum each column
has its own separate physical storage. With the growth of data, each column may
spread over multiple physical storage units. For example, storage structures of
Table 1, each sorted list or heap list is stored in a separate data file, whereas each
B+-Tree or T-Tree is stored in a separate index file. These physical storage units
may be stored on the single hard disk, or they may spread across the network. This
separation also allows using different compression algorithms for each column (or
each physical storage unit) based on the data type.

Meta-data for efficient traversal ECOS proposes to maintain important meta-
data for efficient traversal of the hierarchically-organized storage structures, which
includes count, minimum key/value, and maximum key/value for each storage
structure. This avoids the access to unnecessary data and improves the efficiency
of hierarchy traversal. ECOS also proposes to maintain the frequently used im-
portant aggregates, e.g., summation, average, etc., as the meta-data at every level
of hierarchy. The request for these aggregates should be satisfied by accumulating
them using the meta-data to reduce the overhead of accessing each value separately
to calculate them again and again.

17

3.3 Evolution and Evolution Paths

By evolution, we mean the transformation of a storage structure from an exist-
ing form into another form such that the previous form becomes an integral and
atomic unit of the new form autonomically. Evolution path is the mechanism to
define how ECOS evolves a smallest simple storage structure into a large com-
plex storage structure. It consists of many storage structure/mutation rules pair
entries that ECOS uses to identify, how to evolve the storage structures. Each
storage structure can have multiple mutation rules mapped to it. These mutation
rules consist of three information elements, i.e., Event, Heredity based selection,
and Mutation. The event identifies, when this mutation rule should be executed.
Different mutation rules can have the same event, but not all of them execute the
mutation. The heredity based selection identifies precisely, when evolution should
occur based on the heredity information gathered for existing storage structure.
Heredity information means the gathered statistics about the storage structure,
e.g., workload type, data access pattern, previous evolution details, etc. The mu-
tation defines the actions that should be executed to evolve the storage structure.
Example of a sample evolution path is shown in Table 8.

We envision that common DBMS maintenance best practices can be docu-
mented using the evolution path mechanism. ECOS assumes that DBMS vendors
provide the evolution paths that best suit their DBMS internals, with the provision
of alteration for a database administrator. The only liability for configuration that
lies with database designers and administrator is to have a look at the evolution
path for the DBMS and alter it with desired changes, if needed. Evolution process
in ECOS is autonomic, and it exploits evolution path to automatically evolve the
storage structures, i.e., our approach for self-tuning is online.

Consider the L ORDERKEY column of the LINEITEM table as shown in
Table 1. Suppose as a database designer, we design this table. According to our
application design, we select the L ORDERKEY column as a part of the primary
key. As we already discussed in Section 3, we have to customize each column
as either ordered read-optimized or unordered write-optimized. Therefore, as a
sample case we customize the L ORDERKEY column as ordered read-optimized.
However, at the initial design time we design according to the domain knowledge,
our experiences, and predictions. As a designer, it is difficult to guarantee, how
much this column grows, and how long it takes to reach that size. As we customize
the column as ordered read-optimized, it is initialized as a sorted array. Now for
the L ORDERKEY column, three initial rows of the sample evolution path of
Table 8 are relevant.

As we mentioned in Section 3, ECOS limits the storage capacity of each storage
structure. Therefore, the initial sorted array has a certain data storage capacity
limit. For example, consider it as 4KB. As long as data is within the 4KB limits,

18

Table 8: Example for evolution paths.

Storage Struc-
ture Initial

Mutation Rules
Storage Struc-
ture 1st Evo-
lution

Mutation Rules
Storage Struc-
ture 2nd Evo-
lution

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Read intensive
Data access=Unordered
Mutation:
=> Evolve (Sorted array
− >Sorted list)

Sorted list of
sorted arrays

Event:
Sorted list=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (Sorted list
− >B+-Tree)

B+-Tree of
sorted lists(As
leaf nodes for
data storage)

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (Sorted array
− >B+-Tree)

B+-Tree of
sorted arrays(As
leaf nodes for
data storage)

Event:
B+-Tree=Full
Heredity based selection:
Workload=Read intensive
Data access=Ordered
Mutation:
=> Evolve (B+-Tree
− >HLC (B+-Tree based))

HLC of B+-
Tree(As leaf
nodes)

Sorted array

Event:
Sorted array=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve (Sorted array
− >Heap array)

Heap list based
on heap array
mutation rules

Heap array

Event:
Heap array=Full
Heredity based selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve (Heap array
− >Heap list) &
Generate (Secondary index =
Sorted list)

Heap list

Event:
Heap list=Full
Heredity based selection:
Workload=Write intensive
Data access=Ordered
Mutation:
=> Evolve (Heap
list− >Hash table) &
Evolve (Secondary index =
Sorted list − >B+-Tree)

Hash table

Heap array

Event:
Heap array=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation:
=> Evolve (Heap array
− >Heap list)

Heap list

Event:
Heap list=Full
Heredity based selection:
Workload=Write intensive
Data access=Unordered
Mutation: => Evolve (Heap
list − >Hash table)

Hash table

sorted array is the storage structure for the L ORDERKEY column, and we gather
the heredity information for the column, such as the number of Get(), the number
of Put(), the number of Delete(), the number of point Get() (for point queries),
the number of range Get() (for range queries), the number of Get() for all records
(for scan queries), etc. What heredity information should be gathered may vary
from one implementation to another. Here, we simplify our discussion by assuming
that a system can identify using heredity information that the workload is either
read-intensive or write-intensive and the access to data is either ordered (range)
or unordered (point or all).

19

The moment the storage limit of the sorted array is consumed, an event is raised
for notification. This event triggers all three initial mutation rules of Table 8. Now
heredity based selection identifies, which one of them to execute. We suppose that
for the L ORDERKEY column, the workload is read-intensive and the data access
is unordered, this scenario executes the first mutation rule of Table 8, which evolves
the existing sorted array into a sorted list. Now-onwards sorted list is the storage
structure for L ORDERKEY column, and it is also constrained with the storage
limit according to the design principle of ECOS. As long as the L ORDERKEY
column data is within the storage limit of the sorted list, heredity information is
gathered, and it is used for the next evolution.

It is observed from Table 1 that only half of columns in LINEITEM table with
high data growth (i.e., eight out of sixteen) evolves during first evolution (i.e.,
L ORDERKEY, L EXTENDEDPRICE, L RECEIPTDATE, L COMMITDATE,
L SHIPDATE, L SUPPKEY, L PARTKEY, and L COMMENT). The rest of the
columns can be stored within an array (either heap array or sorted array). Fur-
thermore, only half of the columns, i.e., four out of eight, which are evolved dur-
ing first evolution evolve again during the second evolution (i.e., L ORDERKEY,
L COMMENT, L EXTENDEDPRICE, and L PARTKEY). The final state of ta-
ble presented in Table 1 shows that each column is using the appropriate storage
structure (we assume for explanation) according to the stored data size and ob-
served workload. We can add more parameters for evolution decision, but we only
used limited parameters (i.e., data size, workload, and data access) to keep our
discussion simple and understandable.

What heredity information should be gathered for each storage structure, and
how to improve the efficiency of storage and retrieval of heredity information is
a separate topic. Here, we simplify our discussion with an assumption that we
have an efficient and precise mechanism for gathering heredity information. As a
sample demonstration of how the LINEITEM table evolves for the sample evolu-
tion path in Table 8 is shown in Table 1. Table 1 shows only the evolution for
dictionary columns for the LINEITEM table as they utilizes the benefits of evolv-
ing hierarchically-organized storage structures to their full potential. Before we
conclude this section, to avoid any confusion we want to disclaim that the terms
and concepts of evolution, evolution path, mutation rules, and heredity informa-
tion used in this report have no relevance with their counterpart in evolutionary
algorithms or any other non-relevant domain.

20

4 Theoretical Explanation

In this section, we provide the theoretical explanation of evolving hierarchically-
organized storage structures used in ECOS using the time and space complexity
analysis . As we explained in Section 3, we customize a column as either ordered
read-optimized storage structure or unordered write-optimized storage structure.
In both categories, many different combinations of storage structures are possible,
however, we confine our discussion to the storage structures that we implemented
in our prototype implementation. We use three parameters that are common for
both classes of storage structures, which are as follows:

n = Number of key/value pairs in a storage structure
T (n) = Worst-case running time for operations
S(n) = Worst-case space complexity for storage structure
Ei = Evolution overhead where i = evolution identifier, such that Ei occurs before
Ei+1 and Ei < Ei+1

4.1 Ordered Read-Optimized Storage Structure

For ordered read-optimized storage structure, we evaluate a storage structure that
evolves from a sorted array to a sorted list (of sorted arrays) and then to HLC SL
(a B+-Tree based storage structure with sorted lists as data leaf nodes).

Initial storage structure (Sorted array) For sorted array we only have one
important parameter to consider, which is as follows:

nsa = Maximum number of key/value pairs that can be stored as a sorted ar-
ray

The time complexity for different data management operations for a sorted ar-
ray is as follows:
Get − > Θ(lg nsa) //Binary search

Put − > Θ(nsa)
Delete − > Θ(nsa)

The space complexity for a sorted array is as follows:
S(n) = O(nsa)

As long as n ≤ nsa: data storage structure = sorted array. When n > nsa

evolution occurs, such that the existing sorted array becomes the part of a new
data storage structure, e.g., a sorted list.

21

First evolution (Sorted array to sorted list) For sorted list we have three
important parameters to consider, which are as follows:

nsl = Maximum number of key/value pairs that can be stored as a sorted list
lsa = Number of list blocks (sorted array) in a sorted list
np = Number of next and previous pointers in a sorted list

The time complexity for different data management operations for a sorted list
is as follows:

Get − > Θ(lg lsa) + Θ(lg nsa)
Put − > Θ(lg lsa) + Θ(nsa)
Delete − > Θ(lg lsa) + Θ(nsa)

The space complexity for a sorted list is as follows:

lsa = nsl

nsa
//Number of sorted arrays in list

np = lsa ∗ 2 //Number of next and previous pointers in the sorted list

=> np = nsl

nsa
∗ 2 //Number of next and previous pointers in the sorted list

∴ S(n) = O(nsl) + O(nsl

nsa
∗ 2)

As long as n ≤ nsl: data storage structure = sorted list. When n > nsl evo-
lution occurs, such that the existing sorted list becomes the part of a new storage
structure, e.g., B+-Tree, we term this storage structure as HLC SL.

Second evolution (Sorted list to HLC SL) HLC SL is a B+-Tree based
storage structure with sorted list as leaf nodes for storing data. For HLC SL we
have five important parameters to consider, which are as follows:

nbt = Maximum number of key/value pairs that can be stored in sorted list using
HLC SL
lsl = Number of sorted lists as data leaf nodes
t = Minimum degree of HLC SL B+-Tree, such that t ≥ 2
k = Maximum number of elements in each node, such at each index node can have
k-1 keys and k children where k=2t.
h = Height of the HLC SL B+-Tree

The time complexity for different data management operations for a HLC SL
with sorted list (of sorted arrays) as its data leaf node is as follows:

22

Get − > O(t logt lsl) + Θ(lg lsa) + Θ(lg nsa)
Put − > O(t logt lsl) + Θ(lg lsa) + Θ(nsa)
Delete − > O(t logt lsl) + Θ(lg lsa) + Θ(nsa)

The space complexity for a HLC SL with sorted list (of sorted arrays) as its data
leaf node is as follows:

lsl = nbt

nsl
//Number of sorted list as data leaf node

=> S(nbt) = O(lsl) //We store one key for each sorted list

∴ S(n) = O(lsl) + O(nsl) + O(nsl

nsa
∗ 2)

As long as n ≤ nbt: data storage structure = HLC SL. When n > nbt evolu-
tion may again occur, however, we confine our discussion to this level. Overall
ECOS behavior for our example of ordered read-optimized data storage structure
with two levels of evolution can be summarized as follows:
Get:

T (n) =


Θ(lg nsa) if n ≤ nsa

Θ(lg lsa) + Θ(lg nsa) if n ≤ nsl

O(tlogt lsl) + Θ(lg lsa) + Θ(lg nsa) if n ≤ nbt

Put:

T (n) =


Θ(nsa) if n ≤ nsa

Θ(lg lsa) + Θ(nsa) if n ≤ nsl

O(tlogt lsl) + Θ(lg lsa) + Θ(nsa) if n ≤ nbt

Delete:

T (n) =


Θ(nsa) if n ≤ nsa

Θ(lg lsa) + Θ(nsa) if n ≤ nsl

O(tlogt lsl) + Θ(lg lsa) + Θ(nsa) if n ≤ nbt

Space complexity

S(n) =


O(nsa) if n ≤ nsa

O(nsl) + O(nsl

nsa
∗ 2) if n ≤ nsl

O(lsl) + O(nsl) + O(nsl

nsa
∗ 2) if n ≤ nbt

23

4.2 Unordered Write-Optimized Storage Structure

As second example, we discuss write optimized hierarchically-organized storage
structures used in ECOS. For unordered write-optimized storage structure, we
evaluate a heap array that evolves into heap list and then we generate B+-Tree
based index structure on heap list, which further evolves as an ordered read-
optimized storage structure.

Initial storage structure (Heap array) For heap array we only have one
important parameter to consider similar to sorted array, which is as follows:

nha = Maximum number of key/value pairs that can be stored as a heap array

The time complexity for different data management operations for a heap array is
as follows:

Get − > Θ(nha) //Linear search

Put − > Θ(1)
Delete − > Θ(1) //Mark delete

Defragmentation − > Θ(nha) //Linear

The space complexity for a heap array (with defragmentation) is as follows:

S(n) = O(nha)

As long as n ≤ nha: data storage structure = heap array. When n > nha evolu-
tion occurs, such that the existing heap array becomes part of a new data storage
structure, e.g., heap list.

First evolution (Heap array to heap list) For heap list we have three im-
portant parameters to consider, which are as follows:

nhl = Maximum number of key/value pairs that can be stored as a heap list
lhl = Maximum number of list blocks(heap array) in heap list
np = Number of next and previous pointers in the heap list

The time complexity for different data management operations for a heap list
of heap arrays is as follows:

Get − > Θ(nhl) //Linear Search

Put − > Θ(1)

24

Delete − > Θ(1) //Mark delete

Defragmentation − > Θ(nhl) //Linear

The space complexity for a heap list of heap arrays (with defragmentation) is
as follows:

lha = nhl

nha
//Number of heap arrays in the heap list

np = lha ∗ 2 //Number of next and previous pointers in the heap list

=> np = nhl

nha
∗ 2 //Number of next and previous pointers in the heap list

∴ S(n) = O(nhl) + O(nhl

nha
∗ 2)

It can be observed that we do not get any benefit in terms of performance, when
we evolve a heap array to a heap list. However, we should also consider here
the possibility of evolving to different storage structure, e.g., hash table. Each
evolution is the point to observe the statistics that we gather as long as previous
storage structure is usable. These statistics gives us insight for the workload on
the column. For example, in case of a heap array evolving to hash table, we have
following time complexity for new hash table storage structure:

Get − > Θ(nha) //Ignoring the hash calculation and bucket selection overhead

Put − > Θ(1)
Delete − > Θ(1) //Mark delete

Defragmentation − > Θ(nhl) //Linear

However, for our discussion, here we do not evolve heap list to hash table. As
long as n ≤ nsl: data storage structure = heap list. When n > nsl evolution
occurs, however, in unordered write-optimized storage scenario, we do not evolve
a heap list to any other storage structure. Instead, we use the heap list as the
primary storage structure for data and we generate indexes on it based on the
statistics we generated while populating this heap list. Since an index is an or-
dered data storage structure, we use the evolving storage structure for storing
index as we have discuss above in Section 4.1. In this scenario, we assume that
according to the gather statistics, we identify B+-Tree as an appropriate index.
Here we mean a standard B+-Tree, i.e., leaf node stores the pointer/identifier to
data in the heap list.

Second evolution (Heap list with a B+-Tree as an index) For heap list
with a B+-Tree as an index, we have five important parameters to consider, which
are as follows:

25

nibt = Maximum number of keys that can be stored in the B+-Tree
lhl = Number of heap lists for data storage
t = Minimum degree of the B+-Tree, such that t ≥ 2
k = Maximum number of elements in each node, such at each index node can have
k-1 keys and k children where k=2t.
h = Height of the tree

The time for different data management operations for a heap list of heap ar-
rays with B+-Tree as an index is as follows:

Get − > O(t logtnibt) + Θ(1)
Put − > O(t logtnibt) + Θ(1)
Delete − > O(t logtnibt) + Θ(1) //Mark delete

Defragmentation − > O(t logtnibt) + Θ(nhl)

The space complexity for a heap list (with defragmentation) of heap arrays with
B+-Tree as an index is as follows:

S(n) = O(nibt) + O(nhl) + O(nhl

nha
∗ 2)

since nibt = nhl //Number of keys in B+-Tree is same as number of records in a heap list

∴ S(n) = O(2 ∗ nibt) + O(nhl

nha
∗ 2)

As long as n ≤ nibt: data storage structure = heap list with the B+-Tree as
an index. When n > nibt evolution may again occur for index storage structure,
however, we confine our discussion to this level. Overall ECOS behavior for our
example of unordered write-optimized data storage structure with two level of evo-
lution is as follows:
Get:

T (n) =

{
Θ(nha) if n ≤ nhl

O(tlogtnibt) + Θ(1) if n ≤ nibt

Put:

T (n) =

{
Θ(1) if n ≤ nhl

O(tlogtnibt) + Θ(1) if n ≤ nibt

Delete:

T (n) =

{
Θ(1) if n ≤ nhl

O(tlogtnibt) + Θ(1) if n ≤ nibt

26

Defragmentation:

T (n) =

{
Θ(nhl) if n ≤ nhl

O(tlogtnibt) + Θ(nhl) if n ≤ nibt

Space complexity

S(n) =


O(nha) if n ≤ nha

O(nhl) + O(nhl

nha
∗ 2) if n ≤ nhl

O(2 ∗ nibt) + O(nhl

nha
∗ 2) if n ≤ nibt

It can be observed from above-provided time and space complexity analysis of
evolving storage structures that for different database size, we obtain different re-
source consumption (i.e., we take both CPU time and storage space as resources).
To simplify our discussion, we take an example of ordered read-optimized stor-
age. It can be observed that space requirement of complex storage structure, e.g.,
B+-Tree is high in comparison with the sorted array. Whereas insertion and dele-
tion CPU time for the sorted array is high. However, as we have mentioned and
discussed earlier, we restrict the data storage capacity of storage structure. This
ensures that we keep the insertion and deletion time for each storage structure
within the acceptable limit.

27

5 Implementation of Evolution Mechanism

In this section, we explain, how we implemented the evolution mechanism in
ECOS. Our aim for evolution mechanism implementation was to keep the over-
heads to be negligible, whereas at the same time ensure that the implementation of
evolution should not get tightly coupled with standard storage manager implemen-
tation. For this purpose, we used innovative software engineering techniques to
ensure that evolution behavior can be added or removed from the storage manager
without affecting the other storage manager functionalities. This section contains
few details regarding the software engineering techniques that we used for imple-
menting ECOS to give a reader better understanding of how ECOS internals work
as a software.

5.1 Monitoring Functionality Implementation

The most important functionality of the evolution mechanism is the monitoring
functionality. ECOS monitors existing storage structures to gather the heredity
information and to observe the data management operation events (see Section 3.3
for details of heredity information and events). Monitoring functionality in ECOS
is implemented using AspectC++1, which is a set of C++ language extensions
to facilitate aspect-oriented programming with C++. Details regarding why and
how we used different programming techniques, such as aspect-oriented program-
ming [19] and feature-oriented programming [25] for our prototype implementation
can be found in our previously published work in [29].

Below is the code snippet 1 of our monitoring functionality implemented as
an aspect (a modular way to separate the common code that otherwise is part of
different software components) using AspectC++ language constructs:

Listing 1: Monitoring implementation code snippet
1 aspect Monitor {

Autonom a ;
3 MSG msgid ;

5 /∗Monitoring f o r t r a c i n g ∗/
adv ice execut ion (”MSG Composite : : ICPutData (. . .) ”) : b e f o r e () {

7 Composite ∗c ;
msgid = (MSG) ∗ t jp−>r e s u l t () ;

9 c = tjp−>that () ;
a . TraceICPutData ((RECORD∗) t jp−>arg (0) , (COLUMN∗) t jp−>arg (1)) ;

11 }

1“AspectC++”, http://www.aspectc.org/

28

http://www.aspectc.org/

13 /∗Monitoring f o r p o s s i b l e events , ana ly s i s , and f i x i n g s ∗/
adv ice execut ion (”MSG Page : : PutData (. . .) ”) : a f t e r () {

15 Page ∗pg ;
i f (t jp−>r e s u l t () != NULL) {

17 msgid = (MSG) ∗ t jp−>r e s u l t () ;
switch (msgid) {

19 case SUCCESS:
// Result i s SUCCESS

21 break ;
case NO SPACE:

23 // Result i s NO SPACE
pg = tjp−>that () ;

25 msgid = a . AnaFixCheckStorageNoSpace (pg) ;
∗ t jp−>r e s u l t () = msgid ;

27 i f (msgid == SUCCESS) {
a . TraceReset () ;

29 }
break ;

31 case NOT FOUND:
. . .

33 d e f a u l t :
// Unexpected r e s u l t

35 break ;
} } } . . . }

In the above mentioned code snippet, the code between line numbers 6 to 11 is
an advice code. An advice is used to specify the additional code that could be
executed before, after, or at both points (i.e., around) during the flow of program.
For example, on the line number 6 in the code snippet 1, the before keyword
ensures that the advice is executed before the execution of ICPutData function.

5.2 Trace Functionality Implementation

Another important functionality of evolution implementation is the trace func-
tionality, which executes before the execution of data management operation and
stores the heredity information, such as column information and record details.
The advice defined at the line number 6 in the code snippet 1 is a sample trace
code. For example, in the above-mentioned code, we gather the statistics for all
ICPutData function executions, which for presented sample scenario includes tak-
ing reference to the involved column and record objects. We use this information
to call ICPutData again, if it fails to execute successfully.

29

5.3 Analysis and Fixing Functionality Implementation

The advices between line numbers 14 to 36 in the code snippet 1 define the code
that analyzes the execution of different data management functions. It also ex-
ecutes the fixing code if some problem is identified. For example, advice at the
line number 14 in the code snippet 1 checks the execution result of the PutData
function of the Page implementation class. If some problem is identified, such as
NO SPACE at the line number 22 in the code snippet 1, it executes the code that
analyzes the problem based on the recorded trace data and fixes the problem. All
functions used in advices in the code snippet 1 are defined in the Autonom class.
The code snippet 2 from the implementation of Autonom class is presented below:

Listing 2: Autonom class implementation code snippet
c l a s s Autonom {

2 pub l i c :
// Evolve c l a s s implements the evo lv ing f u n c t i o n a l i t y

4 Evolve evo ;
// Trace func t i on f o r PutData method

6 void TraceICPutData (RECORD∗ r , COLUMN∗ c) ;
// Ana lys i s and f i x i n g f u n c t i o n s

8 MSG AnaFixCheckStorageNoSpace (Page ∗p) ;
. . . } ;

10

/∗Trace f u n c t i o n s ∗/
12 void Autonom : : TraceICPutData (RECORD∗ r , COLUMN∗ c) {

th i s−>evo . r = r ;
14 th i s−>evo . c = c ;

th i s−>evo . i s b y v a l = f a l s e ; }
16

/∗Analys i s and f i x a t i o n f u n c t i o n s ∗/
18 MSG Autonom : : AnaFixCheckStorageNoSpace (Page ∗p) {

// This i s f o r evo lv ing from Sorted Array to Sorted L i s t
20 th i s−>evo . msgid = NO SPACE;

// Evolut ion AnaFix func t i on implements the a n a l y s i s and f i x i n g
22 re turn th i s−>evo . AnaFix () ; }

It can be observed from the code snippet in 2 that the Autonom class contains the
implementation of trace functions and uses the Evolve class to execute the analysis
and fixing. However, we use the above code (i.e., the code snippet 1 and 2) for
two fold purpose. As first purpose during analysis we identify, when to evolve
the existing storage structure. For example, as shown at the line number 22 in
the code snippet 1, each case triggers an event for possible evolution of existing
storage structure. Furthermore, as second purpose we also identify, either the

30

existing storage structure should be evolved into new storage structure or not.
The AnaFix function at the line number 22 in the code snippet 2 contains the
functionality to take this decision. Below we present the code snippet 3 for our
evolution code:

Listing 3: Evolution implementation code snippet
MSG Evolve : : EvolveColumnIM () {

2 //We evo lve Sorted array to Sorted l i s t
// or Heap Array to Heap L i s t

4 // This column should be t raced during t r a c i n g
i f (th i s−>c == NULL) { re turn UNRESOLVED; }

6

// F i r s t we change column type to so r t ed l i s t
8 th i s−>c−>columntype = SL ;

// I n s t a n t i a t e new Sorted L i s t
10 th i s−>c−>s l = new StorageManager () ;

msgid = c−>s l−>CreateDatabase (th i s−>c−>im−>database) ;
12 i f (msgid != SUCCESS) re turn msgid ;

14 //Now evo lve from Array to L i s t
//Such that e x i s t i n g Array w i l l become an i n t e g r a l un i t o f L i s t

16 msgid = th i s−>c−>s l−>Evolver (th i s−>c−>im) ;
i f (msgid != SUCCESS) re turn msgid ;

18

//Now a f t e r evo lut ion , redo l a s t bu f f e r ed operat i on
20 re turn th i s−>EvolveColumnIMPutData () ; }

22 MSG StorageManager : : Evolver (Page∗ page) {
MSG msgid = pb−>EvolvePB (page) ;

24 i f (msgid != SUCCESS) re turn msgid ;
th i s−>tup lecount += page−>CountTuples () ;

26 dd−>SetStartPage (page−>GetID ()) ;
dd−>SetEndPage (page−>GetID ()) ;

28 re turn SUCCESS;}

30 MSG PageBuffer : : EvolvePB (Page∗ page) {
tmpPID++;

32 pg [tmpPID − 1] = page ;
pg [tmpPID − 1]−>SetID (tmpPID) ;

34 ++usedPageCount ;
fOnUsedPageCountChanged (evenSink , usedPageCount) ;

36 re turn SUCCESS;}

31

In above code snippet, the function EvolveColumnIM() at the line number 1 evolves
a sorted array storage structure into sorted list storage structure. The c− > im
object refers to a sorted array storage structure and the c− > sl refers to a newly
instantiated sorted list storage structure. Each storage structure implements an
Evolver function, such as the one used at the line number 16 in the code snippet 3.

The Evolver function contains the implementation that makes the existing
storage structure, which is provided as an argument, an integral component of the
newly instantiated storage structure. For example, the Evolver function at line
number 16 in the code snippet 3 takes a sorted array as an argument and makes it
an integral part of the sorted list. For better understanding, the implementation
of the Evolver function of the sorted list is also provided at line number 22 in the
code snippet 3. The Evolver function at the line number 22 in the code snippet 3
instantiates a new sorted array and distributes the data of existing sorted array
among them equally, than it makes both sorted array a part of the new sorted list.
It is a naive implementation that we used to demonstrate the concept, however,
the Evolver function is an important code fragment. The implementation of an
Evolver function identifies the associated overhead for an evolution.

Listing 4: ECOS interface code snippet
RECORD∗ c r e co rd s =

2 (RECORD ∗) mal loc (s i z e o f (RECORD) ∗ <No . o f columns >); . . .
c r e co rd s [< index >] . key = <key >;

4 c r e co rd s [< index >] . columnindex = <column index >;
c r e co rd s [< index >] . s i z e = <No . o f bytes f o r value >;

6 c r e co rd s [< index >] . va lue =
(cbyte ∗) mal loc (s i z e o f (cbyte) ∗ <No . o f bytes f o r value >); . . .

8 msgid = c e l l . GetDataNext (c r e co rd s) ; //Scan . . .
msgid = c e l l . GetData (c r e co rd s) ; / / Get record . . .

10 msgid = c e l l . PutData (c r e co rd s) ; / / Put record . . .
msgid = c e l l . DeleteData (c r e co rd s) ; / / Delete record . . .

The interface provided to the end-user or external application by ECOS is simple
and consistent. Which storage structure is in use by the column?, when it is
evolved?, all these aspects are hidden. A sample code snippet to give an insight
for ECOS interface is provided as the code snippet 4 above.

32

6 Empirical Evaluation

In this section, we provide the details of our micro benchmark that we used to gen-
erate the evaluation results, the performance comparison of evolving storage struc-
tures with fixed storage structures, and the performance comparison of different
DSM based schemes (for both fixed storage structures and evolving hierarchically-
organized storage structure versions)2.

The data and index storage structures that we have implemented in the existing
ECOS prototype implementation are sorted array, sorted list (of sorted arrays),
B+-Tree (with sorted arrays as data leaf nodes), HLC SL (B+-Tree based structure
with sorted lists as data leaf nodes), HLC B+-Tree (B+-Tree based structure with
B+-Trees as data leaf nodes), heap array, and heap list. To simplify our discussion,
we present the results involving sorted array, sorted list, B+-Tree, HLC SL, and
HLC B+-Tree.

6.1 Micro Benchmark Details

For ECOS evaluation, we set up a micro benchmark with repeated insertion, selec-
tion, and deletion of data using API based access method. The data contain keys
in ascending, descending, and random order, which also represents their insertion,
selection, and deletion order in the database. For different columns, number of
records ((cardinality)) is kept different to assess the impact of change in data size
using ECOS. We defined seven columns with two unique non-null columns, one
of them used as a primary key. We used three different widths for columns, i.e.,
16, 85, and 4096 bytes to assess the impact of tuple width on performance of dif-
ferent storage schemes. All storage structures used in a micro benchmark operate
in main-memory. For ECOS evaluation, we used CPU cycles and heap memory
as resources. The reason for selecting these parameters is the change in bottle-
necks. In the last two decades, the processor speed has been increasing at the
much faster rate of around 60% per annum in comparison with the memory speed
that increases only around 10% per year [23]. Therefore, it is essential for DBMS,
to make optimal use of increased processing power and large main memories while
avoiding the overheads associated with memory latencies. We used OpenSuse 11.2
operating on Intel(R) Core(TM)2 Duo CPU E6750 @ 2.66GHz with four GB of
RAM. We measured execution speed by taking the average of CPU cycles observed
over multiple iteration of the micro benchmark. We used Valgrind tools suite [31]
to measure the heap usage.

We used a micro benchmark to generate the empirical results. We understand

2 “Please refer to web link for all related publications and prototype evaluation binaries.”,
http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php

33

http://wwwiti.cs.uni-magdeburg.de/~srahman/CellularDBMS/index.php

1000000

1500000

2000000

2500000

C
P

U
 c

y
c
le

s

0

500000

1000000

1500000

2000000

2500000

Sorted array Sorted list B+-Tree HLC SL HLC B+-Tree

C
P

U
 c

y
c
le

s

Figure 3: Performance comparison of differ-
ent storage structures for a single record.

200000000

300000000

400000000

500000000

600000000

CPU cycles Memory (bytes)

0

100000000

200000000

300000000

400000000

500000000

600000000

HLC SL

Evolve

HLC SL SL HLC B+-Tree

Evolve

HLC B+-Tree B+-Tree

CPU cycles Memory (bytes)

Figure 4: Performance comparison of differ-
ent storage structures for 4048 records.

5E+10

1E+11

1,5E+11

2E+11

2,5E+11

C
P

U
 c

y
c
le

s

0

5E+10

1E+11

1,5E+11

2E+11

2,5E+11

HLC SL

Evolve

HLC SL SL HLC B+-

Tree

Evolve

HLC B+-

Tree

B+-Tree

C
P

U
 c

y
c
le

s

Figure 5: Performance comparison of dif-
ferent storage structures for 100K records.

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

C
P

U
 c

y
c
le

s

0

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

7E+11

HLC SL

Evolve

HLC SL SL HLC B+-

Tree

Evolve

HLC B+-

Tree

B+-Tree

C
P

U
 c

y
c
le

s

Figure 6: Performance comparison of dif-
ferent storage structures for 500K records.

the need for empirical results using standard benchmarks, such as TPC, however,
existing implementation of ECOS is a prototype implementation and can only be
tested using a micro benchmark. Furthermore, ECOS is a research prototype with
many implementation details still in progress. We are using our best effort to pro-
vide reliable and repeatable results that can compare ECOS with the performance
of other existing commercial products; however, it is left as part of the future work.

6.2 ECOS Performance Improvement

To demonstrate the performance gain using the ECOS, we first present our obser-
vation of the effect of an increase in data size on performance of different storage
structures. We executed our benchmark for different storage structures for the dif-
ferent number of records (i.e., single record, 4048 records, 100K records, and 500K
records). It can be observed in Figure 3, for a single record sorted array consumes
less CPU cycles in comparison with other storage structures. For 4048 records, ar-
ray consumes much more CPU cycles in comparison with other storage structures
therefore we omitted it in Figures 4, 5, and 6. In Figure 4, it can be observed

34

that for 4048 records, sorted list and B+-Tree based storage structures consume a
similar number of CPU cycles and amount of memory. However, Figure 5 and 6
shows that B+-Tree based storage structures perform better for 100K and 500K
records. According to the above observation, we suggest the performance gain
and reduced resource consumption using the evolving storage structures because
evolving storage structures attempt to use minimal/simple storage structures as
long as possible using the definitions from evolution paths, such as sorted array
for small data management.

To further clarify the evolving storage structures evolution, we present the eval-
uation results for evolving HLC SL and evolving HLC B+-Tree storage structure
in Figure 7 and 8. In both figures, evolving storage structure evolves with the data
growth. It can be seen that both HLC SL and HLC B+-Tree storage structures
consume more CPU cycles in comparison with sorted list and B+-Tree. This be-
havior is due to the complexity of these storage structures, which are meant to
be used for extremely large data sizes. These two structures (i.e., HLC SL and
HLC B+-Tree) automatically partition the data and uses separate buffer and in-
dex managers for each partition, which is not the requirement for presented 500K
records storage. However, for the purpose of demonstration of evolution concept
we forced storage structures to evolve to HLC SL and HLC B+-Tree level for 500K
records. To demonstrate the difference of performance for different DSM based

6000

8000

10000

12000

14000

16000

CP
U

 c
yc

le
s

Evolving storage structures evolve from simple to complex storage structure

HLC SL Evolve HLC SL SL Evolve SL

0

2000

4000

6000

8000

10000

12000

14000

16000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

1
2

9

1
3

3

1
3

7

1
4

1

1
4

5

1
4

9

1
5

3

1
5

7

1
6

1

1
6

5

1
6

9

1
7

3

1
7

7

1
8

1

1
8

5

1
8

9

1
9

3

1
9

7

CP
U

 c
yc

le
s

Data growth (1=500 Records)

Evolving storage structures evolve from simple to complex storage structure

HLC SL Evolve HLC SL SL Evolve SL

Figure 7: Evolving HLC SL storage structure evolution.

schemes and the performance gains using the evolving storage structures, we exe-
cuted our micro benchmark in two configurations for all five schemes explained in
Section 3. In the first configuration, we instantiated all columns as fixed HLC SL
storage structure. In the second configuration, we used evolving HLC SL storage
structure, which instantiate all columns as a sorted array on start up and then

35

4000

6000

8000

10000

12000

C
P

U
 c

yc
le

s

Evolving storage structures evolve from simple to complex storage structures

HLC B+tree Evolve HLC B+Tree B+Tree Evolve B+Tree

0

2000

4000

6000

8000

10000

12000

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

1
1

3

1
1

7

1
2

1

1
2

5

1
2

9

1
3

3

1
3

7

1
4

1

1
4

5

1
4

9

1
5

3

1
5

7

1
6

1

1
6

5

1
6

9

1
7

3

1
7

7

1
8

1

1
8

5

1
8

9

1
9

3

1
9

7

C
P

U
 c

yc
le

s

Data growth (1=500 Records)

Evolving storage structures evolve from simple to complex storage structures

HLC B+tree Evolve HLC B+Tree B+Tree Evolve B+Tree

Figure 8: Evolving HLC B+-Tree storage structure evolution.

evolve the column with data growth to a sorted list, and finally to HLC SL (using
the evolution path presented in Table 8). As different columns contain the differ-
ent size of data for two dictionary based schemes, i.e., DMDSM and VDMDSM,
in second configuration data of few dictionary columns can be accommodated in
a sorted array, few evolve to a sorted list, and rest of the dictionary columns with
large data evolves to HLC SL (sample scenario shown in Table 1). In Figure 9
and 10, results for evolving storage structures have evolve keyword appended in
front of DSM based scheme name.

In four proposed variations of DSM based schemes in Section 3, we altered the
2-copy DSM by reducing the duplicate copies for each column, which should affect
the time for read operations with search criteria on non-key attributes. To assess
the impact of proposed change on performance, we evaluated all five schemes in
two configurations, i.e., the first configuration with search criteria involving key
attribute as shown in Figure 9, and the second configuration with search criteria
involving non-key attribute as shown in Figure 10.

The results presented in Figure 9 and 10 shows that DSM and PDSM perform
better for evaluation with search criteria on key-attributes, whereas for evaluation
with search criteria on non-key attributes DSM outperforms the other schemes.
It is observed that storage requirement for DSM is highest, whereas the storage
requirement is the lowest for VDMDSM. It can also be observed that evolving
storage structures perform better than fixed storage structures with minor per-
formance gains. As we have discussed in Section 1, our work is based on the
ideology from Chaudhuri and Weikum presented in [8]. They used the notion of
“gain/pain ratio” to discuss the overall gain of their proposed approach. They ad-
vocate the ideology of less complex, more predictable, and self-tuning RISC-style

36

50000000

100000000

150000000

200000000

250000000

500000000

1E+09

1,5E+09

2E+09

2,5E+09

3E+09

3,5E+09

4E+09

B
y
te

s

C
P

U
 c

y
c

le
s

Evolving storage structures give a minor performance gain for all schemes

Memory CPU cycles

0

50000000

100000000

150000000

200000000

250000000

0

500000000

1E+09

1,5E+09

2E+09

2,5E+09

3E+09

3,5E+09

4E+09

B
y
te

s

C
P

U
 c

y
c

le
s

Evolving storage structures give a minor performance gain for all schemes

Memory CPU cycles

Figure 9: Performance comparison of dif-
ferent DSM based schemes in ECOS with
primary key based search criteria.

50000000

100000000

150000000

200000000

250000000

1E+09

1,5E+09

2E+09

2,5E+09

3E+09

3,5E+09

4E+09

4,5E+09

5E+09

B
y
te

s

C
P

U
 c

y
c

le
s

Evolving storage structures give a minor performance gain for all schemes

Memory CPU cycles

0

50000000

100000000

150000000

200000000

250000000

0

500000000

1E+09

1,5E+09

2E+09

2,5E+09

3E+09

3,5E+09

4E+09

4,5E+09

5E+09

B
y
te

s

C
P

U
 c

y
c

le
s

Evolving storage structures give a minor performance gain for all schemes

Memory CPU cycles

Figure 10: Performance comparison of
different DSM based schemes in ECOS
with non-key based search criteria.

1,5E+11

2E+11

2,5E+11

3E+11

3,5E+11

6E+09

8E+09

1E+10

1,2E+10

C
P

U
 c

y
c
le

s
 f

o
r

<
4
0
9
6

C
P

U
 c

y
c
le

s
 f

o
r

<
1
6
 a

n
d

 <
8
5

DMDSM and VDMDSM perform better for large column width

Column width<16 bytes Column width<85 bytes Column width<4096 bytes

0

5E+10

1E+11

1,5E+11

2E+11

2,5E+11

3E+11

3,5E+11

0

2E+09

4E+09

6E+09

8E+09

1E+10

1,2E+10

DSM KDSM MDSM DMDSM VDMDSM

C
P

U
 c

y
c
le

s
 f

o
r

<
4
0
9
6

C
P

U
 c

y
c
le

s
 f

o
r

<
1
6
 a

n
d

 <
8
5

DMDSM and VDMDSM perform better for large column width

Column width<16 bytes Column width<85 bytes Column width<4096 bytes

Figure 11: Performance improvement for
dictionary based DSM schemes for large
column width.

6E+10

8E+10

1E+11

1,2E+11

6E+11

8E+11

1E+12

1,2E+12

W
ri

te
 C

P
U

 c
y
c
le

s

R
e
a
d

 C
P

U
 c

y
c
le

s
DSM, VMDSM, and VDMDSM perform better for both workloads

Read-intensive Write-intensive

0

2E+10

4E+10

6E+10

8E+10

1E+11

1,2E+11

0

2E+11

4E+11

6E+11

8E+11

1E+12

1,2E+12

DSM KDSM MDSM DMDSM VDMDSM

W
ri

te
 C

P
U

 c
y
c
le

s

R
e
a
d

 C
P

U
 c

y
c
le

s
DSM, VMDSM, and VDMDSM perform better for both workloads

Read-intensive Write-intensive

Figure 12: Performance comparison of
different DSM based schemes in ECOS for
read and write intensive workloads.

components with minor compromise on performance to achieve overall improve-
ment in “gain/pain ratio”. Our results show the minor performance gain, which
should be a good achievement considering the overall benefits we achieve in terms
of simplicity, predictability, and self-tuning.

The results of Figure 9 and 10 are observed for values with width of 16. We
increased the width of value for all columns to 85 and then to 4096 to assess
the impact of change in tuple width on performance of different schemes. It can
be observed in Figure 11 that dictionary based schemes performance is improved
and becomes comparable with standard 2-copy DSM scheme for large tuple width.
However, PDSM and MDSM still perform poor. We also analyzed the performance
difference for different DSM schemes on both the read-intensive and write-intensive
workloads. It is observed in Figure 12 that for write-intensive workload DSM
outperforms other schemes; however, for the read-intensive workload differences in
performance between the 2-copy DSM and the dictionary based DSM schemes is
minimum. This is a promising result for dictionary based schemes, and it shows
their potential to act as a better alternative to DSM if their short comings are
overcome.

37

7 Related Work

Hierarchically-organized storage structures have already been in use in the data
warehousing domain. Morzy et al. in [21] proposed a hierarchical bitmap index for
indexing set-valued attributes. Later, Chmiel et al. in [11] extended that concept
to present hierarchically-organized bitmap indexes for indexing dimensional data.
ECOS uses hierarchical organization differently. It allows the use of different data
and index storage structures at the different level of hierarchy and increases the
hierarchy with data growth autonomically.

Database cracking is an innovative approach proposed by Kersten and Mane-
gold [18]. It proposes the continuous physical reorganization of a database based
on the query processing. It cracks the database into manageable pieces based on
the user queries to decrease the access time and implementing self-organizing be-
havior. Our approach is different from the database cracking. ECOS in comparison
implements self-organization at the storage manager level. ECOS evolves storage
structures with data growth to ensure consistent performance while maintaining
minimal resource consumption.

Bender et al. proposed the cache-oblivious B-Trees [6] that performs the op-
timal search across different hierarchical memories with varying memory levels,
cache size, and cache line size. Fractal prefetching B+-Trees [10] proposed by Chen
et al. is the most relevant work for the ECOS and is similar in concept to cache-
oblivious B-Trees with an additional concept of prefetching. Fractal prefetching
B+-Trees are optimized for both cache and disk performance, which is also a goal
for the ECOS. However, the ECOS concepts do not restrict the use of any fixed
structure; instead it suggests the use of different storage structures in the hierarchy
to support an efficient use of underlying hardware.

An automated tuning system (ATS) [16] is a feedback control mechanism that
automatically adjusts the tuning knobs using the defined tuning policies, accord-
ing to the monitoring statistics. ECOS also works in similar fashion as suggested
in ATS. ECOS also monitors and adjust storage structures with changing data
management needs. Malik et al. in [20] suggested the benefit of online physical
design techniques and proposed an online vertical partitioning technique for phys-
ical design tuning. Similarly, ECOS also operates in online fashion. Automated
physical design research focuses on finding the best physical design structure for
running workload, e.g., indexes, materialized views, partitioning, clustering, and
views [4]. Existing automated physical design tools assume the workload as a set
of SQL statements [4]. These tools use query optimizer to identify the appropriate
physical design selection from various proposed candidate designs [22]. The cost
of using a query optimizer is huge. Papadomanolakis et al. in [22] mentioned that
for index selection algorithms on average 90% of running time is spent in the query
optimizer. ECOS also performs automated physical design, but at the different

38

level, i.e., at the storage manager level. It does not rely on a query optimizer. Fur-
thermore, ECOS design is motivated from the idea of exploring new architectures
for developing self-tuning DBMS instead of developing techniques to self-tune the
existing ones.

39

8 Conclusion

In this report, we presented ECOS, a customizable online self-tuning storage man-
ager and the concept of the evolution path. ECOS and evolution path enables
and uses the customization of storage structures at the fine-grained table and
column-level. In addition, ECOS and evolution path allows storage structures
to autonomically evolve (to more suitable storage structures) with the change in
the data management needs. It allows ECOS to maintain the desirable perfor-
mance while keeping the human intervention at a minimum. We also presented
detailed discussion and evaluation of the ECOS and evaluation path showing the
performance improvement and reduced resource consumption.

As a future work, we plan to enhance the presented dictionary based DSM
schemes for better performance. For ECOS, what heredity information should be
gathered for each storage structure, and how to improve the efficiency of stor-
age and retrieval of heredity information is also an important topic for further
work. ECOS self-tuning design makes it a suitable candidate for emerging cloud
computing platforms for data services. We also intend to investigate the efficient
utilization of multi-core and many-core parallel processors using the presented evo-
lution mechanism. How the presented concepts of evolving hierarchically-organized
storage structures in conjunction with the concept of the evolution path can be
used for a self-tuning storage manager using the row-oriented storage model is an
important open research question. Once query processing is implemented, we want
to integrate presented evolution mechanism with query processing, and we will be
able to evaluate the ECOS using the TPC-H benchmark. Transaction management
is also an implementation specific future work for our ECOS prototype.

40

References

[1] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution
in column-oriented database systems. In SIGMOD, pages 671–682, 2006.

[2] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores:
how different are they really? In VLDB, pages 967–980, 2008.

[3] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach. Scalable semantic
web data management using vertical partitioning. In VLDB, pages 411–422,
2007.

[4] S. Agrawal, E. Chu, and V. Narasayya. Automatic physical design tuning:
workload as a sequence. In SIGMOD, pages 683–694, 2006.

[5] D. S. Batory. On searching transposed files. ACM Trans. Database Syst.,
4(4):531–544, 1979.

[6] M. A. Bender, E. D. Demaine, and M. Farach-Colton. Cache-oblivious B-
trees. In FOCS, pages 399–409, 2000.

[7] S. Chaudhuri and V. Narasayya. Self-tuning database systems: a decade of
progress. In VLDB, pages 3–14, 2007.

[8] S. Chaudhuri and G. Weikum. Rethinking Database System Architecture:
Towards a Self-Tuning RISC-Style Database System. In VLDB, pages 1–10,
2000.

[9] S. Chaudhuri and G. Weikum. Foundations of automated database tuning.
In SIGMOD, pages 964–965, 2005.

[10] S. Chen, P. B. Gibbons, T. C. Mowry, and G. Valentin. Fractal prefetching
B+-Trees: optimizing both cache and disk performance. In SIGMOD, pages
157–168, 2002.

[11] J. Chmiel, T. Morzy, and R. Wrembel. HOBI: Hierarchically Organized
Bitmap Index for Indexing Dimensional Data. In DaWaK, pages 87–98, 2009.

[12] G. P. Copeland and S. N. Khoshafian. A decomposition storage model. SIG-
MOD Rec., 14:268–279, 1985.

[13] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin. Auto-
matic SQL tuning in oracle 10g. In VLDB, pages 1098–1109, 2004.

41

[14] A. P. de Vries, N. Mamoulis, N. Nes, and M. L. Kersten. Efficient image
retrieval by exploiting vertical fragmentation. Technical Report INS-R0109,
CWI, 2001.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: ama-
zon’s highly available key-value store. SIGOPS Oper. Syst. Rev., 41:205–220,
2007.

[16] J. L. Hellerstein. Automated tuning systems: Beyond decision support. In
CMG, pages 263–270. Computer Measurement Group, 1997.

[17] A. L. Holloway and D. J. DeWitt. Read-optimized databases, in depth. Proc.
VLDB Endow., 1:502–513, 2008.

[18] M. L. Kersten and S. Manegold. Cracking the Database Store. In CIDR,
pages 213–224, 2005.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Lo-
ingtier, and J. Irwin. Aspect-Oriented Programming. In ECOOP, pages
220–242, 1997.

[20] T. Malik, X. Wang, R. Burns, D. Dash, and A. Ailamaki. Automated physical
design in database caches. In ICDE Workshop, pages 27–34, 2008.

[21] M. Morzy, T. Morzy, A. Nanopoulos, and Y. Manolopoulos. Hierarchical
Bitmap Index: An Efficient and Scalable Indexing Technique for Set-Valued
Attributes. In ADBIS, pages 236–252, 2003.

[22] S. Papadomanolakis, D. Dash, and A. Ailamaki. Efficient use of the query
optimizer for automated physical design. In VLDB, pages 1093–1104, 2007.

[23] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis,
R. Thomas, and K. Yelick. A Case for Intelligent RAM. IEEE Micro, 17:34–
44, 1997.

[24] D. A. Patterson and D. R. Ditzel. The case for the reduced instruction set
computer. SIGARCH Comput. Archit. News, 8:25–33, 1980.

[25] C. Prehofer. Feature-oriented programming: A fresh look at objects. In
ECOOP, pages 419–443, 1997.

[26] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and
S. Zdonik. C-store: a column-oriented DBMS. In VLDB, pages 553–564,
2005.

42

[27] TPC-H. http://www.tpc.org/tpch/.

[28] S. S. ur Rahman. Using evolving storage structures for data storage. In FIT,
2010.

[29] S. S. ur Rahman, V. Köppen, and G. Saake. Cellular DBMS: An Attempt
Towards Biologically-Inspired Data Management. Journal of Digital Infor-
mation Management, 8:117–128, 2010.

[30] P. Valduriez, S. Khoshafian, and G. P. Copeland. Implementation Techniques
of Complex Objects. In VLDB, pages 101–110, 1986.

[31] Valgrind. http://www.valgrind.org.

[32] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback. Self-tuning database
technology and information services: from wishful thinking to viable engi-
neering. In VLDB, pages 20–31, 2002.

[33] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano,
and S. Fadden. DB2 design advisor: integrated automatic physical database
design. In VLDB, pages 1087–1097, 2004.

43

	Introduction
	Problem Statement and Motivation
	Evolutionary Column-Oriented Storage
	Table-level Customization
	Column-level Customization and Storage Structure Hierarchies
	Evolution and Evolution Paths

	Theoretical Explanation
	Ordered Read-Optimized Storage Structure
	Unordered Write-Optimized Storage Structure

	Implementation of Evolution Mechanism
	Monitoring Functionality Implementation
	Trace Functionality Implementation
	Analysis and Fixing Functionality Implementation

	Empirical Evaluation
	Micro Benchmark Details
	ECOS Performance Improvement

	Related Work
	Conclusion

