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Abstract. A software product line (SPL) is a set of programs that share
features (i.e., user-visible program characteristics) and that differ in fea-
tures. SPLs are commonly developed by reusing code from a shared code
base. The code base of an SPL as well as the individual products are
target of refactoring to maintain them or to integrate them with other
programs. To develop proper refactoring tools, we must formalize the
challenges faced and must distinguish stand-alone-program refactoring
from SPL refactoring. We clarify the relationship between refactoring
and SPLs, develop a formal, algebraic model of refactorings and SPL-
implementation techniques, and prove important properties for the alge-
braic structure of refactorings in this setting. Developers of future refac-
toring tools of SPLs can now tackle the challenges in their tools one by
one.

1 Introduction

A software product line (SPL) is a set of related programs of a domain [1]; each
of these programs in turn is a product of the SPL. Products share features (i.e.,
user-visible program characteristics [2]) and differ in features. Here, we focus
only on the SPL-implementation mechanism of program transformations each
of which encapsulates the code of one feature (for others see [3]); users select
features and, by doing this, they indirectly apply the associated transformations;
the transformations then generate a product.

In practice, individual products as well as the entire code base of an SPL are
often target to refactoring [4–6]. A refactoring is a program transformation that
alters the structure of a program but does not alter the program’s visible behav-
ior [7]. For example, renaming a class and updating all references to that class
is a Rename Class refactoring [6]; once this refactoring is successfully applied to
the code base of an SPL, all products of that SPL contain the renamed class [8,
9].

A number of refactoring techniques exists for stand-alone programs [6, 10–12].
To use these tools for SPLs, researchers stated that certain algebraic properties
are desirable for refactorings with respect to SPLs, e.g., the existence of identity
operations [13, p.13][14, 8, 15]. We investigate whether the structure of refactor-
ings has the desired properties with respect to SPLs, e.g., identity elements,



inverse elements, and distributivity over SPL transformations. To provide an
answer, we conceptualize SPLs and refactorings in an algebra; then, with that
algebra, we prove properties for the algebraic structure of refactorings with re-
spect to SPLs. From the analyzed properties, we derive requirements for future
(SPL-)refactoring techniques and sketch what kind of tools we can expect for
SPLs in the future. Based on the analyzed properties, we finally distinguish
refactorings from transformations of a sample SPL-implementation technique
and show how both can interact.

Feature Module calcbase

1 package util;
2 public class Calc {
3 public int plus(int i, int j) {
4 return i+j; }}

Feature Module logging

5 package util;
6 refines class Calc {
7 private Logger logger;
8 public int plus(int i, int j) {
9 logger.log(”plus”);

10 return Super.plus(i,j); }}

Feature Module makeCompatible

11 Rename Class util.Calc into Calculator

(a) SPL code base

1 package util;
2 public class Calc {
3 private Logger logger;
4 public int plus(int i, int j) {
5 logger.log(”plus”);
6 return i+j; }}

(b) Generation result of calcbase and
logging of Fig. 1a.

1 package util;
2 public class Calculator {
3 private Logger logger;
4 public int plus(int i, int j) {
5 logger.log(”plus”);
6 return i+j; }}

(c) Result of composing calcbase,
logging, and makeCompatible of

Fig. 1a.

Fig. 1. SPL code base and SPL members.

The contributions of this paper are as follows: We formally prove that there
are identity elements in the set of refactorings. We formally prove that there are
inverse elements in the set of refactorings. We formally prove that there are no
refactorings that distribute over module composition of an SPL in general. We
use our results to position refactorings in existing algebras for feature-oriented
programming (FOP), to reason about optimization approaches for refactoring
engines, and to reason about implementation techniques for SPL-refactoring
tools. Though, we show our results for FOP, we argue that our results are general
and cover a number of SPL approaches, like ifdefs [3].

2 Background

2.1 Feature-Oriented Programming

An SPL is a set of programs of one domain that share features (i.e., user-visible
program characteristics [2]) and differ in features. One way to implement SPLs



is to separate the code of every feature in a distinct module and to compose
those modules when selecting their associated features to generate products.

FOP is an approach to implement SPLs. In FOP, a feature is implemented
by a feature module, which is composed with a program to synthesize a new
program – ultimately, a product of the SPL [16]. A feature module is a program
transformation that encapsulates classes and class extensions which all are com-
posed with a program this feature module is composed with. A class extension
adds members to classes and overrides methods of classes in the program.

In Fig. 1a, we show two feature modules calcbase and logging implemented
using the FOP language Jak (please ignore the feature module makeCompatible
for now). The feature modules are composed consecutively in top-down order:
The feature module calcbase extends the program it is composed with (the empty
program) and adds class Calc (Lines 1-4). The feature module logging extends the
program it is composed with (the program generated by calcbase) by extending
the class Calc, i.e., logging adds the field logger and overrides the Calc method
plus (Jak-overriding keyword Super, Line 10). We show the result of composing
the feature modules logging and calcbase with the empty program in Fig. 1b.

2.2 Refactoring and Refactoring-Feature Modules

Refactorings are transformations that alter the structure of a program but do
not alter its visible behavior [7]. Refactorings commonly replace a piece of code
in their input program by a behavior-equivalent piece of code. For example,
a Rename Class refactoring replaces a class with a behavior-equivalent class
that has a new name. Refactorings are used to maintain a program [17] and to
integrate a program as a library with a bigger program [7].

A refactoring accepts parameters [12], which are fully-qualified, scoped names
of pieces of code in general (scoped names for short) which reference the code
the refactoring transforms. For instance, a Rename Class refactoring accepts two
parameters: the scoped name of the class to rename and the new class name.

Refactoring-feature modules (RFMs) are special feature modules that inte-
grate refactorings with FOP [18]. RFMs allow developers to alter the structure
of a program at a high level of abstraction by selecting (refactoring-)features;
selecting according features then applies RFMs. An applied RFM finally refac-
tors the code of the program. We introduce RFMs here to ease the discussion
on refactorings applied during the generation of a product.

In Fig. 1a, we list an RFM makeCompatible; the RFM implements a Rename
Class refactoring that accepts the parameter scoped names util.Calc and Cal-
culator to rename class util.Calc into Calculator. The program synthesized from
feature modules calcbase, logging, and makeCompatible (see Fig. 1c) contains a
class Calculator but no class Calc.

3 An Algebra for Refactorings and Feature Modules

Our algebra is a tupel of terms and operations. In this section, we define the terms
(code, error state, programs) and operations (code composition, program contrac-



tion, program extension, and program composition) of this structure, which we
use to formalize refactorings and feature modules later.

3.1 Terms

Code (Q). We must represent the code of a program in order to make statements
about it; but, we can use a simple representation. In our algebra, as a first step,
we describe code as a set of scoped names because a number of refactorings
alter scoped names, method bodies can be updated in general as needed, the
order of scoped names does not matter in common mainstream languages such
as in Java or C++, and scoped names are unique in the code of a feature mod-
ule and of a program written in common mainstream languages.4 For example,
we describe the code of Fig. 1b by the set {util, util.Calc, util.Calc.plus(int,int),
util.Calc.logger}. As a first step, we just concentrate on refactorings that refer-
ence scoped names and omit refactorings which reference method-local names
or statements. In this paper, we use Qx, Qy, Qz, Qa, and Qb to refer to sets of
scoped names (to range over Q).

Error state (E = {ε,�}). Users must be able to apply the transformation of each
feature they select because users desire a program that provides the features they
select; however, users do not desire programs that were generated erroneously
(those programs do not provide the desired features) and so the application of
a transformation should never result in an error [20, 21]. To record errors, we
annotate pieces of code in our algebra with error states. Error state ε indicates
that the piece was generated erroneously, whereas � indicates that there was no
error so far. We use e1 and e2 to describe states of programs (to range over E).

Programs (F = P(Q)×E). In our algebra, a program is a pair of code and error
state. The error state of a program records whether the features which were com-
posed to create the program were composed without error – if so, the error state
becomes �, and ε otherwise. We define: A feature module is a program (code
with error state) and the code of a feature module is free of error. For example,
we describe the program of Fig. 1b by 〈{util, util.Calc, util.Calc.plus(int, int),
util.calc.Logger};�〉.

In our algebra, we define that two programs are equal if the code as well as
the error state match:

((Qx �= Qy) → (〈Qx; e1〉 �= 〈Qy; e2〉))
(〈Qx;�〉 �= 〈Qy; ε〉)
(〈Qx; ε〉 = 〈Qx; ε〉)
(〈Qx;�〉 = 〈Qx;�〉)

(1)

4 Textual order is important for scoped names of (static) field initializers and array
initializers in Java [19, p.203]. We assume that our proofs hold in their presence too
because field initializers cannot be parameters of the refactorings we focus on.



3.2 Operations

Code composition (∪ : P(Q) × P(Q) → P(Q)). This operation composes mem-
bers and classes from different pieces of code as described in Section 2.1 for FOP.
In our algebra, code composition corresponds to the union of the sets of scoped
names of the pieces of code to compose. We focus on refactorings in this paper,
so we ignore errors of code composition.

Program contraction (� : F × P(Q) → F ). Refactorings replace code and this
can be interpreted as the removal of pieces of code and the subsequent addition of
pieces of code; we define program contraction to be the removal of code from the
code of a program during a refactoring. To remove a piece of code A successfully
from a program, A must exist in the program. Program contraction fails if the
code to remove does not exist. In our algebra, removing code means to remove
scoped names from the set of scoped names (when the program to remove code
from was generated correctly):

(〈Qx; e1〉 �Qy) =

{
〈(Qx\Qy);�〉, (Qx ∩Qy = Qy) ∧ (e1 = �)
〈Qx; ε〉, otherwise

(2)

Simplification note: Scoped names reference nested pieces of code, e.g., the
scoped name util.Calc references a piece of code Calc that is nested in a piece
of code util. So when an operation removes a piece of code in a program, it
also removes all pieces nested in the removed piece, and their scoped names
respectively. For simplicity, we define that removing a scoped name does not
affect other scoped names than the removed one, e.g., ({util, util.Calc}\{util}) =
{util.Calc} although util.Calc is nested in the removed util. As a result, we cannot
show positive proofs for refactorings that remove classes or packages; negative
proofs however still are general.

Program extension (⊕ : F ×P(Q) → F ). We define program extension to be the
addition of code to the code of a program during a refactoring. To add a piece
of code A successfully to a program, A is required not to exist in the program
code. Program extension thus fails when the scoped names to add to a program
already exist in the program code or when the program to extend is in error
from beginning:

(〈Qx; e1〉 ⊕Qy) =

{
〈(Qx ∪Qy);�〉, (Qx ∩Qy = ∅) ∧ (e1 = �)
〈Qx; ε〉, otherwise

(3)

Program composition (• : F × F → F ). Two programs can be composed as
described in Section 2.1; however, if one of them has the error state ε, the error
state is propagated to the result to trace the failure. Code composition in our
algebra corresponds to the union of the scoped-name sets of both programs to
compose.

(〈Qx; e1〉 • 〈Qy; e2〉) =

{
〈(Qx ∪Qy);�〉, (e2 = e1 = �)
〈Qx; ε〉, otherwise

(4)



Case#1 ((Qx ∩Qy = Qy), (Qx ∩Qz = ∅)):

RQz �→Qy (RQy �→Qz (〈Qx;�〉))

. . . (5)(5)(2)(3)(2)(3)

= 〈Qx;�〉

�

Case#2 ((Qx ∩Qy = Qy), (Qx ∩Qz �= ∅), ((Qx\Qy) ∩Qz �= ∅)):

RQz �→Qy (RQy �→Qz (〈Qx;�〉))

. . . (5)(5)(2)(3)(2)(3)

�= 〈Qx;�〉 (1)

E

Case#3 ((Qx ∩Qy = Qy), (Qx ∩Qz �= ∅), ((Qx\Qy) ∩Qz = ∅)):

RQz �→Qy (RQy �→Qz (〈Qx;�〉))

. . . (5)(5)(2)(3)(2)(3)

= 〈Qx;�〉

�

Case#4 ((Qx ∩Qy �= Qy)):

RQz �→Qy (RQy �→Qz (〈Qx;�〉))

. . . (5)(5)(2)(3)(2)(3)

�= 〈Qx;�〉 (1)

E

Fig. 2. Proof for inverse elements.

4 Properties of the Algebraic Structure of Refactorings

In the context of our algebra, refactoring a program can be described as follows:
First, a refactoring removes all elements of the set of scoped names Qx from the
set of scoped names of a program; second, the refactoring joins the set of scoped
names of the program with a set of new scoped names Qy (R : F ×Q×Q → F ).
For example, a refactoring that renames class Calc into Calculator in a program,
removes the elements of the set of scoped names Qx = {Calc} from the set of
scoped names of the program and joins the set of scoped names of the program
with the set of new scoped names Qy = {Calculator}. Generally, all refactorings
accept as parameters a set of scoped names Qx to remove and a set of scoped
names Qy to generate, e.g., a refactoring “Rename Class Calc into Calculator”
accepts the set Qx = {Calc} as parameter and the set Qy = {Calculator}. Refac-
torings that affect more scoped names than those given to them in Qx and Qy,
are considered in a simplified way to only affect the scoped names of Qx and Qy,



e.g., Rename Overridden Method5 is considered in a simplified way. As the code
to remove must exist and the code to create must not exist, we can describe a
refactoring with a sequence of program-contraction and program-extension op-
erations. We use this highly simplified representation of refactorings on purpose
because it suffices for our purposes. Formally, we describe a refactoring R that
removes the set of scoped names Qy and generates the set of scoped names Qz

in a program F1 by:

RQy �→Qz
(F1 ) = ((F1 �Qy)⊕Qz) (5)

Next, we prove some properties for the algebraic structure we described
for refactorings. We clarify challenges and opportunities for patching refactored
products, for optimizing refactoring sequences, and for implementing tools that
refactor SPL code bases. For every property, we discuss its potential benefits for
SPL engineering and discuss the consequences of the corresponding proof result.
If a property is found not to hold, we discuss ways to establish the property. If
a property holds in a case with an erroneously generated product, we call this a
failure because this product is undesired.

4.1 Theorem: An identity element exists in the algebraic structure

of refactorings

The identity element in the algebraic structure of refactorings is a refactoring
that removes the same set of scoped names which it adds back (RQy �→Qy

(F1 ) =
F1 ). Refactorings that implement identity elements can be removed without
effect on the generated product – this can reduce product-generation time.

In the case (Qx∩Qy = Qy) of our proof (omitted for brevity), we could apply
the Equations 5, 2, 3 to the formula RQy �→Qy

(〈Qx;�〉) to derive the original
program 〈Qx;�〉. We thus conclude that the hypothesis holds, i.e., that there
are refactorings that implement an identity element.

Consequences. Identity elements can be removed to decrease product-generation
time.

4.2 Theorem: Inverse elements exist in the algebraic structure of

refactorings

If two refactorings, that execute consecutively, are no identity elements but to-
gether do not change the transformed program, then they invert each other
and can be removed without affecting the generated product; this can reduce
product-generation time. Inverting refactorings is also important for patching
refactored or optimized products. Inverse elements thus exist if
RQy �→Qx

(RQx �→Qy
(F )) = RQx �→Qx

(F ) = F .

5 Renaming an overridden method A renames A along with all methods that override
A and that are overridden by A. Scoped names of overriding and overridden methods,
however, are not given to the refactoring as parameters.



There are inverse transformations for refactorings, see Fig. 2, Case #1. In
Case #1, the refactoring that is to be inverted later, executed without error
and so the inverse refactoring reestablishes the original program. In Cases #2,
and #4, the preconditions of the first refactoring (RQy �→Qz

(〈Qx;�〉)) are not
met and so the refactoring generates an erroneous program – thus, the inverting
refactoring fails, as well (an erroneously generated product is undesirable). We
conclude that, though there is an inverse refactoring operation for every refac-
toring, the operation of a particular refactoring can only be inverted by a second
refactoring operation if the first refactoring succeeded.

Consequences. We can reduce the time that is required to execute a sequence
of refactorings by removing refactorings that follow each other and invert each
other. If approaches rely on that there is an inverse refactoring for a refactoring,
then these approaches must ensure that every refactoring succeeds.

4.3 Theorem: Refactorings do not distribute over program

extension

Different researchers stated their desire for refactorings being distributive over
program composition [13, p.13][14, 8, 15]. If refactorings distribute over program
composition, then we could refactor SPL code bases by refactoring every feature
module independently. If refactorings distribute over program composition, then
we could refactor products of an SPL with different approaches – either com-
pose programs (feature modules) and refactorings (RFMs) successively (Fig. 4,
left perimeter) or refactor the individual programs first and compose the refac-
tored programs later (Fig. 4, right perimeter). If refactorings distribute over
program composition, then we could reuse tools, which deal with the refactoring
of stand-alone programs, to refactor SPL code bases. If refactorings distribute
over program composition, then we could reorder refactorings and feature mod-
ules in mixed sequences of refactorings and feature modules, in order to re-group
refactorings and feature modules (desired in [22, 13]).

We show representative cases of the proof in Fig. 3 and indicate the com-
plete proof in Section 7. Case #1 justifies the desire of refactorings and program
composition being distributive, i.e., there are situations in which refactoring
distributes over program composition. In Case #1, refactoring distributes over
program composition because the scoped names to refactor exist in every feature
module of the SPL (〈Qx;�〉, 〈Qy;�〉) and the scoped names, which the refac-
toring requires not to exist, do not exist in any feature module. However, with
the counter examples in Case #2 and many cases in Section 7, we prove formally
that refactoring does not distribute over program composition in general. Fur-
thermore, from all cases of this proof (shown in Fig. 3 and Sec. 7), we can count
that distributivity in theory is the exception rather than the rule – it holds in
3 special cases (cases #1, #5, #8; 4 preconditions in average) but it does not
hold in 7 general cases (cases #2, #3, #4, #6, #7, #9, #10; 3 preconditions in
average).



Case #1 ((Qx ∩Qa = Qa), (Qy ∩Qa = Qa), (Qx ∩Qb = ∅), (Qy ∩Qb = ∅)):

RQa �→Qb
(〈(Qx ∪Qy);�〉)

= ((〈(Qx ∪Qy);�〉 �Qa)⊕Qb) (5)
= (〈((Qx ∪Qy)\Qa);�〉 ⊕Qb) (2)
= 〈(((Qx ∪Qy)\Qa) ∪Qb);�〉 (3)
= 〈(((Qx\Qa) ∪ (Qy\Qa)) ∪Qb);�〉
= 〈(((Qx\Qa) ∪Qb) ∪ ((Qy\Qa) ∪Qb));�〉
= (〈((Qx\Qa) ∪Qb);�〉 • 〈((Qy\Qa) ∪Qb);�〉) (4)
= (〈((Qx\Qa) ∪Qb);�〉 • (〈(Qy\Qa);�〉 ⊕Qb)) (3)
= (〈((Qx\Qa) ∪Qb);�〉 • ((〈Qy;�〉 �Qa)⊕Qb)) (2)
= (〈((Qx\Qa) ∪Qb);�〉 • RQa �→Qb

(〈Qy;�〉)) (5)
= ((〈(Qx\Qa);�〉 ⊕Qb) • RQa �→Qb

(〈Qy;�〉)) (3)
= (((〈Qx;�〉 �Qa)⊕Qb) • RQa �→Qb

(〈Qy;�〉)) (2)

= (RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉)) (5)

�

Case #2 ((Qx ∩Qa = Qa), (Qy ∩Qa �= Qa), (Qx ∩Qb = ∅), (Qy ∩Qb = ∅)):

RQa �→Qb
(〈(Qx ∪Qy);�〉)

= ((〈(Qx ∪Qy);�〉 �Qa)⊕Qb) (5)
= (〈((Qx ∪Qy)\Qa);�〉 ⊕Qb) (2)
= 〈(((Qx ∪Qy)\Qa) ∪Qb);�〉 (3)

�= 〈((Qx\Qa) ∪Qb); ε〉 (1)

= (〈((Qx\Qa) ∪Qb);�〉 • 〈Qy; ε〉) (4)
= (〈((Qx\Qa) ∪Qb);�〉 • (〈Qy; ε〉 ⊕Qb)) (3)
= (〈((Qx\Qa) ∪Qb);�〉 • ((〈Qy;�〉 �Qa)⊕Qb)) (2)
= (〈((Qx\Qa) ∪Qb);�〉 • RQa �→Qb

(〈Qy;�〉)) (5)
= ((〈(Qx\Qa);�〉 ⊕Qb) • RQa �→Qb

(〈Qy;�〉)) (3)
= (((〈Qx;�〉 �Qa)⊕Qb) • RQa �→Qb

(〈Qy;�〉)) (2)

= (RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉)) (5)

E

Fig. 3. Proof of distributivity of refactorings and program composition.

Consequences. It is impossible in general that existing refactoring tools for stand-
alone programs can be used to refactor the code base of an SPL; for that, we must
change our expectations in this direction. It is impossible to re-group sequenced
feature modules and RFMs in general as found desirable in models of FOP
approaches, e.g., for having an additional (normalized) way of generating an
SPL product [22, 13].

Solutions. We proved that a generally distributive refactoring operation does
not exist though it is desirable. As a trade-off, tools can distribute parts of a
refactoring operation over feature modules. For distributing parts of refactoring
operations over feature modules (e.g., to refactor an SPL), tools must evaluate
sophisticated error states at the level of an individual feature module, i.e., a
global check remains and not the whole refactoring is distributed (RQa �→Qb

((Qx∪



Qy)) = R∫ ((RQa �→Qb
(Qx) • RQa �→Qb

(Qy)))). However, the global test (R∫ ) for
success of refactorings at the feature-module level is complex because it must
distinguish non-critical and critical error states from the feature-module level.
Non-critical error states in feature-module-level refactorings do not harm the
success of the global refactoring but critical do.

R((F2 • F1))

F7 = F6

(F5 • F4)R(F3)

?

�
���

F3 = (F2 • F1) �
���

F4 = R(F1)
F5 = R(F2)

�
F7 = R(F3)

�
F6 = (F5 • F4)

Fx = program;
R = refactoring-feature module;
• = program composition

Fig. 4. Does refactoring compo-
sition results (R((F2 • F1))) and
refactoring-feature modules be-
fore composition ((R(F2)•R(F1)))
yield equal programs?

For illustration, we now discuss critical
and non-critical errors for Rename Class:
the refactoring at the feature-module level
must return whether the class to rename
existed in the transformed feature module
and whether a class with the name to gen-
erate existed. The absence of the class to
rename is non-critical when the class exists
in at least one feature module; the absence
of the class to rename is critical when the
class does not exist in any feature module.
The presence of the class-to-generate in a
feature module can be alerted as critical er-
ror, or a tool could evaluate that this class
will not cause composition errors in in any
legal product of that SPL.

To check in one feature module whether
a field in one class extension can be renamed
without accidentally overriding an existing
field of a superclass is even harder. When
all products share a common structure with respect to class names and class
relations (advised in [8]) then we can decide whether two fields can override
each other.

Table 1. Comparision of feature modules with
RFMs.

Algebraic Property SPL Transform.‡ RFM

Identity element � �

Inverse element ✗ �

Distribut.� (R & •) ✗

‡shown in [22]; �property holds; ✗ property does not hold;
�
can only hold for multiple operations

Inline Method refactor-
ing cannot be distributed
over current feature modules
at all because the method
must be composed first be-
fore its body can replace
calls. So, new FOP mecha-
nisms would be needed, like
statement refinements.

4.4 Discussion on Generality

Some of our proofs are limited in generality. We did not consider (static) field
initializers and array initializers. We did not consider refactorings that accept
statements or method-local names as parameters. We assumed that method-local
names can be adapted when conflicts with scoped names occur. We assumed that
removing a scoped name does not remove other scoped names. These simplifica-
tions still match the refactorings Rename Monomorphic Method, Move Method,



Rename Field, and Move Field, i.e., the positive proofs hold for these refactor-
ings. However, we proved that distributivity does not hold in general for any
refactoring in our simplified representation of code and refactorings – thus, dis-
tributivity will also not hold for full-fletched representations of Java programs,
Jak programs, and refactorings.

4.5 Lessons learned

Refactorings are complex program transformations. However, by looking at scoped
names of code we already could prove properties of refactorings. We learned from
these properties that there are numbers of identity elements in the set of refactor-
ings, that there are numbers of inverse operations in the set of refactorings, and
that refactorings do not distribute over feature modules, in general. In Tab. 1,
we summarize the properties of the algebraic structure of refactorings and com-
pare them to algebraic properties of the structure of feature modules (proven
before [22]).

Tools may implement a refactoring by adding feature modules that replace all
feature modules with an obsolete structure. To implement the same functionality
multiple times, however, is laborious and error-prone.

5 Related Work

Batory et al. listed desirable properties for the algebraic structure of refactorings
and argued some of these properties to hold [13, 14, 8, 15]. We formally proved
properties for the algebraic structure of refactorings in the context of SPLs and
showed that some algebraic properties do not hold. Apel et al. formally proved
algebraic properties of different FOP approaches [22], but not for refactorings.

Lynagh proposed an algebra of patches [23]. In this algebra, Lynagh resolves
conflicts between concurrent patch sequences. We focus on refactorings which
have different preconditions than patches; thus, the properties Lynagh showed
do not hold all for refactorings.

Alves et al. refactor models of SPLs [24] but these models are far from being
code. Different researchers refactored code of SPLs by extracting the code of
features into new feature modules [25, 5, 26]; in contrast, we focus on object-
oriented refactorings, e.g., the renaming or moving of classes in an SPL product.

Vittek applied refactorings to the code base of an ifdef-based SPL and demon-
strated problems [27]. In contrast, we conceptualized refactorings and thus de-
scribed challenges in refactoring SPLs, formally. The challenges we formalized
can now be used to evaluate arbitrary refactoring engines.

6 Conclusions

We compared and distinguished program transformations used in software prod-
uct lines (SPLs) versus refactorings. Specifically, we defined an algebra that in-
tegrates SPL transformations and refactorings and proved algebraic properties



that we and others desired. However, we also proved that certain intuitive as-
sumptions about desirable properties for the algebraic structure of refactorings
do not hold, e.g., distributivity of refactorings over SPL transformations. That
is, we formally proved that we cannot refactor SPL transformations with the
same techniques and tools that exist for programs. With the proof results, we
also explained why expectations in refactoring tools for SPLs should be changed.
We formalized the challenges that tools must overcome in order to refactor SPL
code bases and we sketched solutions; in future work, refactoring tools for SPLs
can be evaluated using the individual challenges that we describe.

7 Appendix: Remaining Cases of Distributivity-Proof

Case #3 ((Qx ∩Qa = Qa), (Qx ∩Qb = ∅), (Qy ∩Qb �= ∅)):

RQa �→Qb
(〈(Qx ∪Qy);�〉)

. . . (5)(2)
= 〈((Qx ∪Qy)\Qa); ε 〉 (3)
E

Case #4 ((Qy ∩Qa = Qa), (Qx ∩Qb �= ∅), (Qy ∩Qb = ∅)):

RQa �→Qb
(〈(Qx ∪Qy);�〉)

. . . (5)(2)
= 〈((Qx ∪Qy)\Qa); ε 〉 (3)
E

Case #5 ((Qx ∩Qa = Qa), (Qy ∩Qa = Qa), Qa = Qb):

RQa �→Qb
(〈(Qx ∪Qy);�〉)

. . . (5)(2)(3)(4)(3)(2)(3)(2)

= (RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉)) (5)

�

Case #6 ((Qx ∩Qa = Qa), (Qy ∩Qa = Qa), Qa �= Qb, ((Qx\Qa) ∩Qb �= ∅)):

(RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉))

. . . (5)(2)(3)
= 〈(Qx\Qa); ε 〉 (4)
E

Case #7 ((Qx ∩ Qa = Qa), (Qy ∩ Qa = Qa), Qa �= Qb, ((Qx\Qa) ∩ Qb =
∅), ((Qy\Qa) ∩Qb �= ∅)):

(RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉))

. . . (5)(2)(3)(5)(2)(3)
= 〈((Qx\Qa) ∪Qb); ε 〉 (4)
E



Case #8 ((Qx ∩ Qa = Qa), (Qy ∩ Qa = Qa), Qa �= Qb, ((Qx\Qa) ∩ Qb =
∅), ((Qy\Qa) ∩Qb = ∅)):

(RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉))

. . . (5)(2)(3)(5)(2)(3)(4)(3)(2)

= RQa �→Qb
(〈(Qx ∪Qy);�〉) (5)

�

Case #9 ((Qy ∩Qa �= Qa)):

(RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉))

. . . (5)(2)(3)
= 〈Qz; ε 〉 (4)
E

Case #10 ((Qx ∩Qa �= Qa)):

(RQa �→Qb
(〈Qx;�〉) • RQa �→Qb

(〈Qy;�〉))

. . . (5)(2)(3)
= 〈Qx; ε 〉 (4)
E
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