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Abstract

A floating-point expansion is a sequence of fixed precision floating-point numbers a1, . . . , an, rep-
resenting the sum A=

∑n
i=1 ai . We address the problem of computing A exactly and efficiently as an

arbitrary precision floating-point number. In an expansion the subsequence of nonzero summands is
ordered by magnitude and summands are pairwise nonoverlapping: the most significant nonzero bit
of the smaller summand is less significant than the least significant nonzero bit of the larger summand.
This property allows to compute A more efficiently than simply summing up a1, . . . , an with arbitrary
precision arithmetic.
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1 Introduction

Sums of floating-point numbers can be used to efficiently perform accurate numerical computations
that require slightly more precision than hardware floating-point arithmetic offers [9, Chapter 14]. A
sequence of summands a1, . . . , an is used to represent the sum A =

∑n
i=1 ai . Examples include double-

double or more generally multi word arithmetic, where the number of summands is fixed [2, 3], but also
arithmetic with a variable number of summands [11, 12, 17].
We address the problem of converting sums exactly into an arbitrary precision floating-point number.
As input we accept sums where the subsequence of nonzero summands is ordered by magnitude. Stray
zero summands are explicitly allowed. Furthermore nonzero summands must be pairwise nonoverlap-
ping: the most significant nonzero bit of the smaller summand is less significant than the least significant
nonzero bit of the larger summand. Sums with these properties are called expansions and were intro-
duced by Shewchuk [17]. Shewchuks work is based on work by Priest [11, 12] who uses a different,
more restrictive type of sum. We will see, that these and other types of sums that are used in the literature
are expansions too and hence can be handled our algorithms.
Interestingly, the problem of converting an expansion into an arbitrary precision floating-point number
seems to have not been considered previously. After all there is a trivial solution: convert each summand
individually, then compute the sum exactly using arbitrary precision arithmetic. This is, however, a lot of
unnecessary overhead. Since the summands are nonoverlapping, all the bits of the sum are essentially
known. The only obstruction is that summands may have different signs. Our approach therefore first
turns an expansion into a monotone expansion, where all summands have the same sign. This algorithm
uses floating-point arithmetic only and is independent of the target arbitrary precision type. Then we
convert the monotone expansion by copying the mantissae of the summands to the correct position in
the mantissa of an arbitrary precision floating-point number. As target floating-point numbers we use
both mpfr [8] and leda::bigfloat [5], but other number types could be used as well.
The conversion problem came to our attention through work on our number type Real_algebraic [6,
7]. There, we attempt to avoid or postpone expensive operations by computing exactly with expan-
sions. Ultimately a conversion from expansion to arbitrary precision floating-point number may be nec-
essary. Experiments suggest that this conversion is a major bottleneck in our approach and improvement
seemed possible. An implementation of our conversion methods is available on the Real_algebraic
website [13] and will be part of Real_algebraic soon.
The paper is organized as follows. In Section 2 we subsume basic facts about floating-point numbers that
are required later. In Section 3 we present a new algorithm that turns an expansion into a monotone ex-
pansion and prove its correctness. In Section 4 we give an algorithm that converts a monotone expansion
into an mpfr floating-point number. We also give two algorithms that convert general expansions, one by
transforming into a monotone expansion and another one by splitting the expansion into two monotone
expansion. Finally in Section 5 we compare the efficiency of our new approaches to the trivial approach.

2 Floating-Point Numbers: Notation and Basic Facts

Throughout this paper we use binary floating-point numbers, i.e., real numbers that have a finite binary
representation. We start with two functions that let us control the most significant and least significant
nonzero bit in such a representation. Let x ∈ R, then we define the most significant bit of x as

msb(0) = 0, msb(x) = 2blog2 |x |c for x 6= 0. (1)

This quantity was originally introduced as ufp or unit in the first place by Rump et al. [15] to allow better
analysis of floating-point algorithms.1

1We use the name msb here as it better matches the complimentary name lsb. The name ulp or unit in the last place that
would match ufp already has a meaning different from lsb.
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We can view numbers with a finite binary representation as elements of a ring σZ, where σ is a power
of two. If x ∈ R has a finite binary representation, then we define the least significant bit as

lsb(0) = 0, lsb(x) =max{σ | x ∈ σZ, σ = 2k, k ∈ Z} for x 6= 0. (2)

Using msb and lsb we can now define the set of floating-point numbers.

Definition 1. Let η,εm,τ be powers of two such that η < 1,εm < τ and let F = F(η,εm,τ) be the set of
floating-point numbers. F contains 0. Let 0 6= x ∈ R have a finite binary representation, then x ∈ F if and
only if

η ≤ lsb(x), msb(x) ≤ 1
2
ε−1
m lsb(x), msb(x) ≤ τ. (3)

Let furthermore F= F∪ {±∞}.
Hence x 6= 0 is a floating-point number if its least significant bit is at least η, its most significant bit
is at most τ and the binary representation of x requires at most p = log2(ε

−1
m ) consecutive bits. p is

called the precision of the floating-point set. Most floating-point numbers f have p bits, but if msb( f )
is smaller than 1

2
ε−1
m η, less than p bits are available. Floating-point numbers with msb( f ) < 1

2
ε−1
m η are

called denormalized. The largest number in F is 2τ(1− εm) with most significant bit τ and p consecutive
nonzero bits. Note that F is symmetric, i.e., F=−F.
The binary floating-point formats defined by the IEEE 754-2008 standard [4] can be obtained from
Definition 1 for certain values of η,εm,τ. Of special interest to us is the binary64 format with η =
2−1074, εm = 2−53 and τ= 21023 that is in widespread use and that we also use in our implementation.
A floating-point number f 6= 0 can be decomposed into sign s ∈ {−1,1}, mantissa m ∈ {0,1}p and
exponent e ∈ Z such that

f = s ·m · 2e. (4)

The decomposition is usually made unique by some normalization condition on m. We can for example
require that the leading bit in m is nonzero and assign a value of one to it, i.e., m is interpreted as number
in [1, 2). Another variant is to assign a value of one to the last bit of m, i.e., m is interpreted as integer.
In this case m and e are not necessarily unique. We will state the normalizing conditions whenever we
refer to mantissa or exponent of a floating-point number.
After having fixed the set of numbers we need to discuss basic arithmetic operations over F. Since we
only have a finite set of numbers, rounding is inevitable. Arithmetic is performed as if first the exact
result is computed and then rounded to a floating-point number. We only consider rounding to a nearest
floating-point number here.
Since there are only finitely many floating-point numbers, rounding is essential to floating-point arith-
metic. Let fl : R → F be a function that rounds x ∈ R to a nearest floating-point number. This fixes fl
except for |x |> 2τ(1− εm) and when x falls exactly halfway between two floating-point numbers. Thus,
let F′ = F(η,εm,τ′) be a floating-point set with τ′ > max{τ,msb(x)} and f ′ be a floating-point number
in F′ closest to x . If f ′ ∈ F then fl(x) = f ′, otherwise fl(x) = ±∞. If x is exactly halfway between two
floating-point numbers in F′, then select any of these numbers, however such that fl(−x) = −fl(x) is
preserved for all x . Overflow is said to occur, when x is rounded to a different number in the modified
floating-point set F′ than in F. This coincides with rounding to ±∞ for our rounding function fl. For
x , y ∈ R, fl satisfies:

x ≤ y ⇒ fl(x)≤ fl(y) (5)

fl(x)< fl(y) ⇒ x < y (6)

Equation (5) follows directly from rounding to the nearest floating-point number and Equation (6) is
its contraposition. A nice consequence of Equation (5) (with x ∈ F) is, that we never jump over a
floating-point number in the process of rounding. The two IEEE 754-2008 rounding direction attributes
roundTiesToEven, which is the default rounding attribute, and roundTiesToAway can both serve as round-
ing function fl.
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We will now show a refined variant of the standard error estimate for floating-point numbers which is
due to Rump et al. [15]. As tools but also for later use, we introduce floating-point predecessor and
successor for any real number.

Definition 2. Let x ∈ R, then pred, succ : R→ F with

pred(x) =max{ f ∈ F | f < x} succ(x) =min{ f ∈ F | x < f } (7)

give the predecessor and successor of x.

For floating-point numbers we can give predecessor and successor explicitly [14, 15]. Let 0 ≤ f ∈ F. If
f ≤ 1

2
ε−1
m η then

pred( f ) = f −η, succ( f ) = f +η. (8)

If 1
2
ε−1
m η < f < 2τ(1− εm), then

f 6=msb( f ) ⇒ pred( f ) = f − 2εm msb( f ), succ( f ) = f + 2εm msb( f ),

f =msb( f ) ⇒ pred( f ) = f − εm msb( f ), succ( f ) = f + 2εm msb( f ).
(9)

Finally, if f = 2τ(1− εm), then

pred( f ) = f − 2εm msb( f ), succ( f ) = +∞. (10)

For f < 0 analogous equalities hold. In floating-point arithmetic, basic operations are performed as if
the mathematically correct result is computed and then rounded to a floating-point number. That is, for
a, b ∈ F, ◦ ∈ {+,−, ·,/} and a ◦ b ∈ R, the value fl(a ◦ b) is computed. We often abbreviate fl(a ◦ b) with
aý b. The following theorem bounds the error of these operations.

Theorem 3. [15]
Let x ∈ R and f ∈ F with fl(x) = f . Then

| f | ≤ 1
2
ε−1
m η ⇒ f = x +µ with |µ| ≤ 1

2
η (11)

| f | ≥ 1
2
ε−1
m η ⇒ f = x +δ with |δ| ≤ εm msb( f ) (12)

Proof. Since both F and fl are symmetric, we only need to consider the case f ≥ 0. Note that for
| f |= 1

2
ε−1
m η both estimates are equal: εm msb( f ) = 1

2
η. First assume x ∈ F, then |x − f |= 0 and there is

nothing to show. For x 6∈ F, let f ′ = pred(x) ∈ F. In case succ( f ′) 6∈ F, let succ( f ′) = f ′ + 2εm msb( f ′),
which would be the successor of f ′ in some F′ with larger τ′. Now either f = f ′ or f = succ( f ′),
whichever is closer. Therefore

|x − f | ≤ 1
2
(succ( f ′)− f ′). (13)

When f ≤ 1
2
ε−1
m η, then also f ′ ≤ 1

2
ε−1
m η and by Equation 8

|x − f | ≤ 1
2
( f ′+η− f ′) = 1

2
η. (14)

If f > 1
2
ε−1
m η, then f ′ ≥ 1

2
ε−1
m η. If f ′ = 1

2
ε−1
m η, then again

|x − f | ≤ 1
2
η= εm msb( f ′)≤ εm msb( f ). (15)

Finally if f ′ > 1
2
ε−1
m η, then by Equation 9

|x − f | ≤ 1
2
( f ′+ 2εm msb( f ′)− f ′) = εm msb( f ′)≤ εm msb( f ), (16)

which concludes the proof.
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Next, we turn to addition and subtraction, the main issue of this paper. By symmetry of F and fl we can
conclude that

a⊕ b = b⊕ a = b	−a =−(a	 b) (17)

and so forth, so all properties of ⊕ also hold for 	 as long as no condition on the signs of a and b is
imposed. For the same reasons we can retreat to a special case that is symmetric to the remaining cases
in many proofs.
To control the lower bits arising in computations we view floating-point numbers as part of the ring σZ,
where σ is always a power of two. A statement such as f ∈ σZ tells us that f = 0 or σ ≤ lsb( f ). Some
useful properties are:

F ⊂ ηZ (18)

σ1 ≥ σ2 ⇒ σ1Z⊆ σ2Z (19)

a, b ∈ σZ ⇒ a+ b ∈ σZ (20)

a, b ∈ σZ∩ F, u⊕ v ∈ F ⇒ u⊕ v ∈ σZ (21)

Equation (18), Equation (19) and Equation (20) are simply ring properties. We can derive Equation (21)
from Equation (19) and Equation (20) because in the process of rounding u+ v to u⊕ v, trailing bits are
removed, i.e., either u+ v = 0 or η ≤ σ ≤ lsb(u+ v) ≤ lsb(u⊕ v). Equation (21) allows us to keep track
of the least significant bit of floating-point numbers. To demonstrate its usefulness and for later use we
now show that addition and subtraction are exact in case the result falls in the range of denormalized
numbers.

Lemma 4. Let a, b ∈ F with msb(a+ b)≤ 1
2
ε−1
m η. Then a+ b ∈ F and hence a⊕ b = a+ b.

Proof. We know a, b ∈ F and hence from Equation (18) and Equation (20) that a+ b ∈ ηZ. If a+ b = 0
the claim holds. Otherwise we have η≤ lsb(a+ b) and

msb(a+ b) ≤ 1
2
ε−1
m η ≤ 1

2
ε−1
m lsb(a+ b). (22)

Furthermore msb(a+ b)< τ and hence a+ b ∈ F.
Lemma 4 has some nice consequences. It implies for example that no nonzero number is ever rounded
to zero in an addition or subtraction. Since we never jump over a floating-point number when rounding
it follows for a, b ∈ F that

sign(a⊕ b) = sign(a+ b). (23)

Furthermore we get an improved version of Theorem 3. If a, b, a⊕ b ∈ F then

a⊕ b = a+ b+δ with |δ| ≤ εm msb(a⊕ b). (24)

The name error-free transformation has been given to small algorithms that transform expressions of
floating-point numbers into mathematically equivalent expressions [10]. We will now demonstrate one
error-free transformation called fasttwosum that goes back to Dekker [2]. fasttwosum allows to re-
cover the exact roundoff error of a floating-point addition. It is used frequently in algorithms that drive
for exactness or increased accuracy and is a major tool in our algorithm in Section 3 too. Our proof
follows Shewchuk [17], but using the machinery developed above where appropriate. First we show that
the roundoff error in an addition is itself a floating-point number.

Lemma 5. Let a, b, a⊕ b ∈ F and δ = a⊕ b− (a+ b). Then δ ∈ F.
Proof. For δ = 0 there is nothing to show, so assume δ 6= 0. We first assume |a| ≤ |b| and claim
|δ| ≤ |a| ≤ |b|. δ is the distance from a+ b to the closest floating-point number, hence it is at most the
distance to any floating-point number, e.g., b.

|δ| ≤ |a+ b− b|= |a| ≤ |b|. (25)
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As an immediate consequence we get msb(δ) ≤ msb(a) ≤ τ. We now drop the assumption |a| ≤ |b|.
Instead assume a 6= 0 and let σ = lsb(a). Assume further that b ∈ σZ (if not switch roles of a and b).
Then we know a, b, a+ b, a⊕ b,δ ∈ σZ by Equations (19) – (21). Thus it follows η≤ σ ≤ lsb(δ). Finally

msb(δ)≤msb(a)≤ 1
2
ε−1
m lsb(a)≤ 1

2
ε−1
m lsb(δ) (26)

and hence δ ∈ F.
The other tool we need is Sterbenz Lemma. It gives a sufficient condition when the subtraction of two
floating-point numbers with the same sign is free from rounding error.

Lemma 6 (Sterbenz). [18]
Let a, b ∈ F with 1

2
≤ a

b
≤ 2. Then a− b ∈ F and consequently a	 b = a− b.

Proof. Note that a and b have the same sign. It suffices to show the claim for 0 < 1
2
a ≤ b ≤ a

and a − b 6= 0, the other cases being clear or symmetric. By Equations (19) and (20) we have η ≤
min{lsb(a), lsb(b)} ≤ lsb(a− b). Furthermore a− b ≤ a− 1

2
a = 1

2
a ≤ b ≤ a and thus

msb(a− b)≤min{msb(a),msb(b)} ≤ 1

2
ε−1
m min{lsb(a), lsb(b)} ≤ 1

2
ε−1
m lsb(a− b). (27)

Finally msb(a− b)≤msb(a)≤ τ and therefore a− b ∈ F.
Theorem 7 (fasttwosum). [2]
Let a, b ∈ F with |a| ≥ |b| and compute

x = a⊕ b, q = x 	 a, y = b	 q. (28)

Assume x ∈ F. Then a+ b = x + y and |y| ≤ εm msb(x).

Proof. We only consider the case a ≥ 0, the other case being symmetric. If 1
2
a ≤ −b, then by Sterbenz

Lemma x = a⊕ b =−b	 a = a+ b. Then q = b and y = 0. If 1
2
a ≥−b, then 1

2
a = a− 1

2
a ≤ a+ b ≤ 2a

and hence by Equation (5) we have 1
2
a ≤ x ≤ 2a. Then again by Sterbenz Lemma q = x 	 a = x − a.

Therefore y = b	 q = fl(a+ b− x). By Lemma 5 we have a+ b− x ∈ F and therefore y = a+ b− x .
The bound on |y| follows from Equation (24).

2.1 Expansions

Sums of floating-point numbers can be used for accurate computations that require more precision than
available from the floating-point arithmetic directly. Typically some normalization conditions are imposed
on a sum and sums fulfilling these conditions are called expansions. We use the following definition by
Shewchuk.

Definition 8. (nonoverlapping, expansion) [17]
Let a, b ∈ F with |a| ≤ |b|. Then a and b are nonoverlapping if there exist integers r, s such that b = r2s

and |a|< 2s. Otherwise a and b overlap. A sequence f1, f2, . . . , fn ∈ F is called an expansion, if the elements
are pairwise nonoverlapping and they are ordered by increasing magnitude, except that any of the fi may be
zero.

An expansion f1, f2, . . . , fn represents the value F =
∑n

i=1 fi , for this reason we call the elements also
summands. When translating the nonoverlapping condition into our notation, it becomes clear why it is
called nonoverlapping.

Lemma 9. Let a, b ∈ F with 0< |a| ≤ |b|. Then a and b are nonoverlapping if and only if msb(a)< lsb(b).
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Proof. Let a, b be nonoverlapping, i.e., let b = r2s and |a| < 2s. Then msb(a) < 2s ≤ lsb(b). Now let
msb(a)< lsb(b) and let 2s = σ = 2 msb(a). Then b ∈ σZ, i.e., r = b/σ ∈ Z and |a|< 2s.

Expansions can be added, subtracted and multiplied exactly, they form an effective ring.2 The addition
algorithm, however, takes quadratic time. Shewchuk improves upon this for a more restrictive type of
expansion, called strongly nonoverlapping expansion.

Definition 10. (nonadjacent, strongly nonoverlapping) [17]
Let a, b ∈ F with |a| ≤ |b| be nonoverlapping. Then a and b are adjacent, if 2a overlaps b. Otherwise a and
b are nonadjacent. An expansion is called nonadjacent, if its summands are pairwise nonadjacent.
An expansion is strongly nonoverlapping if each summand is adjacent to at most one other summand and
each summand that is adjacent to some other summand is a power of two.

Hence, in a strongly nonoverlapping expansion, adjacent summands come in pairs and both summands
are a power of two. The definition of strongly nonoverlapping expansions may seem a bit complicated,
but they admit a linear time addition algorithm. Furthermore, the multiplication algorithm for expansions
also maintains the strongly nonoverlapping property. Hence strongly nonoverlapping expansion also form
an effective ring. We use strongly nonoverlapping expansions in our number type Real_algebraic [7].
In an expansion, summands may carry only a few nonzero bits, in which case the expansion may have
an unnecessary large number of summands. Shewchuk presents a compression algorithm to put more
bits into each summand and reduce the number of summands, however without an explicit performance
guarantee. Shewchuks work is based on work by Priest [11, 12] who considers a different notion of
nonoverlappingness, we call maximal nonoverlapping.

Definition 11. (maximal nonoverlapping)
Let a, b ∈ F with |a| ≤ |b|. Then a and b are maximal nonoverlapping if msb(a) ≤ εm msb(b). A sequence
f1, f2, . . . , fn ∈ F is maximal nonoverlapping if the elements are pairwise maximal nonoverlapping and they
are ordered by increasing magnitude, except that any of the fi may be zero.

Each maximal nonoverlapping sequence is an expansion since for b 6= 0

msb(a)≤ εm msb(b)≤ εm 1
2
ε−1
m lsb(b)< lsb(b) (29)

and Lemma 9. Hence we can talk of maximal nonoverlapping expansions. In a maximal nonoverlapping
expansion, the summands are optimally spaced. Priest presents arithmetic operations maintaining max-
imal nonoverlapping expansions without stray zero summands, particularly exact ring operations. An
important substep is a renormalization procedure that restores the maximal nonoverlapping property.
Rump et al. [16] present an algorithm that transforms any sum of floating-point numbers into a maximal
nonoverlapping expansion, either exactly, or approximately, with a relative error that depends on the
number of output summands only. The quad double arithmetic of Hida et al. [3] maintains maximal
nonoverlapping expansions too. Here the number of summands is fixed to four.
Our conversion algorithms accept general expansions as input, hence output from any of the mentioned
algorithms may be used. An important step is our algorithm monotonize in Section 3, converting an
expansion into a monotone expansion. This algorithm is quite similar to the renormalization procedure
of Priest or the compression algorithm of Shewchuk.

Definition 12. (monotone expansion)
An expansion is called monotone if all summands are positive or all summands are negative or it consists of
one zero summand only.

A monotone expansion is truly monotone in that the summands are strictly ordered, increasing if the
summands are positive, decreasing otherwise. A monotone expansions f1, f2, . . . , fn is very useful because

2Ignoring, of course, the problem of overflow and underflow.
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f7:

f6:

f5:

f4:

f3:

f2:

f1:

7∑
i=1

fi :

Figure 1: Copying the mantissae of a monotone expansion onto the mantissa of an arbitrary precision
floating-point number.

it contains each nonzero bit of a binary representation of F =
∑n

i=1 fi explicitly. The bits only have
to be copied to convert F into an arbitrary precision floating-point number, see Figure 1. Monotone,
maximal nonoverlapping expansions are unique, for x ∈ R there exists at most one monotone, maximal
nonoverlapping expansion f1, . . . , fn with x =

∑n
i=1 fi .

Lemma 13. Let e1, . . . , em and f1, . . . , fn be two monotone and maximal nonoverlapping expansions with∑m
i=1 ei =

∑n
j=1 f j . Then n= m and ei = fi for 1≤ i ≤ n.

Proof. Clearly, em and fn have the same sign. We can assume the sign is positive, the other case is
symmetric. Let s =

∑n
i=1 ei . It is s ≥ em and hence msb(s)≥msb(em). Furthermore

s =
m∑

i=1

ei (30)

≤
m∑

i=1

2 msb(ei)(1− εm) (31)

≤
m∑

i=1

2 msb(em)ε
m−i
m (1− εm) (32)

= 2msb(em)




m−1∑
i=0

εi
m−

m∑
i=1

εi
m


 (33)

= 2msb(em)(1− εm
m ) (34)

and therefore msb(s) ≤ msb(em). The same reasoning applies to fn and therefore msb(em) = msb( fn).
Let σ = 2εm msb( fn), then em− fn ∈ σZ. Assume em > fn, then

σ ≤ em− fn =
n−1∑
j=1

f j −
m−1∑
i=1

ei ≤
n−1∑
j=1

f j < 2 msb( fn−1) ≤ 2εm msb( fn), (35)

which is a contradiction. The case em < fn follows analogously. Therefore em = fn. The claim follows by
induction.

2.2 Hardware Representation of binary64

Our implementation uses the C++ type double for floating-point arithmetic. On contemporary architec-
tures, the double type is an IEEE 754-2008 number in binary64 format. For conversion to arbitrary
precision floating-point numbers we need direct access to the sign, the exponent and the mantissa of
a double. The IEEE 754-2008 standard fixes the storage format, which enables platform independent
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access. Code similar to the one below is present in other projects, for example the mpfr library. Using the
union keyword, we interpret a double d as 64 bit unsigned integer l. The code depends on unsigned
long long having 64 bits and having the same endianness as double.
〈direct access to double representation〉≡
union ieee_binary64{
double d;
unsigned long long l;

〈access individual double parts〉
};

sign bit

11 bits exponent

52 bits fraction

Figure 2: The IEEE 754-2008 binary64 format.

The placement of the individual data is shown in Figure 2. A double stores one bit for the sign, 11 bits
for the exponent and 52 bits for a part of the mantissa called fraction. The following methods directly
return this data as integers. Denote these integers by sb, eb and f respectively.
〈access individual double parts〉≡
inline long sign_b(){
return (l & 0x8000000000000000ULL) » 63;

}

inline long exponent_b(){
return (l & 0x7FF0000000000000ULL) » 52;

}

inline unsigned long long fraction(){
return (l & 0x000FFFFFFFFFFFFFULL);

}

A triple (sb, eb, f ) ∈ {0, 1}×{0, . . . , 211−1}×{0, . . . , 252−1} represents the following double d. If eb = 0
then d is zero or denormalized nonzero:

d = (−1)sb · f · 2−1074 (36)

If 0< eb < 211− 1 then d is a normalized number:

d = (−1)sb · (252+ f ) · 2eb−1075 (37)

If eb = 211− 1 then d 6∈ R:

f = 0 ⇒ d = (−1)sb ·∞ (38)

f 6= 0 ⇒ d = nan (39)

Access to these raw numbers is however not sufficient for our needs. Assuming d 6∈ {0,nan,±∞} we
need integral sign s, mantissa m and exponent e such that

d = s ·m · 2e. (40)

For efficiency reasons, we do not check whether d ∈ {0,nan,±∞}. For these cases the following code
will not return a correct or desired result. Omitting these cases, allows to perform all computations
branch free. The difficulty that remains, is to handle normalized and denormalized numbers uniformly.
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By casting eb to bool and back we map nonzero eb to one and zero eb to zero and can then compute the
remaining quantities with simple arithmetic.
〈access individual double parts〉+≡
inline bool normalized(){

return static_cast<bool>(l & 0x7FF0000000000000ULL);
}

The following functions return s, e, m satisfying Equation (40).

〈access individual double parts〉+≡
inline long sign(){

return 1-2*sign_b();
}

inline long exponent(){
const long norm = static_cast<long>(normalized());
return exponent_b() - 1074 - norm ;

}

inline unsigned long long mantissa(){
const unsigned long long norm =
static_cast<unsigned long long>(normalized());

return ( (norm « 52) + fraction() );
}

3 Converting Expansions to Monotone Expansion

We are now ready to present our algorithm monotonize to convert an expansion into a monotone max-
imal nonoverlapping expansion. monotonize is similar to the first stage of Shewchuks compression
algorithm. In Shewchuks compression, starting with the most significant summand, the summands are
added to a running total x , using fasttwosum. Once the error term y is nonzero, x is stored away and
y becomes the new running total x ′. At this point, x and x ′ are maximal nonoverlapping. Since more
summands are added to x ′, it may however later overlap x . The first stage continues until all summands
have been processed. Then the second stage of compression removes any overlap. After both stages,
stored summands may have different signs.
The difference of monotonize is, that it handles the case of a roundoff error with wrong sign differently.
We describe monotonize first for an expansion e1, e2, . . . , en with en > 0, the case en < 0 is handled anal-
ogously. Since the summands are nonoverlapping, it is E =

∑n
i=1 ei > 0 too. A flowchart for monotonize

for the case en > 0 is given in Figure 3.
We compute the bits of E starting with the more significant bits and summands. Using fasttwosum

we add the summands to a running total x until the error term y becomes nonzero. Adding a less
significant, nonoverlapping summand ei to x is much like incrementing or decrementing x . No bit of x
more significant that lsb(x) will be altered. Hence, once y 6= 0, the remaining summands ei , ei−1, . . . can
not alter the bits in x but only those in y .
If y is positive, this means x now stores the leading bits of E. We store x into an output summand f j and
continue with y as new running total. If y is negative, then x is too large. We can however store pred(x)
as output summand, since the error term w = x − pred(x) is positive and protects the bits in pred(x)
from being changed. Note that w is a floating-point number. With fasttwosum(w, y) we compute a new
running total and error term and continue as before.
Let f1, . . . , fk be the sequence of output summands. Several properties must be shown. First of course,
that

∑n
i=1 ei =

∑k
j=1 f j and also that f j > 0 for 1 ≤ j ≤ k. The most interesting claim is however that the

f j are maximal nonoverlapping. This reduces to the claim that, when y 6= 0 occurs, x does not overlap
already stored summands. We show below that if overlap occurs, then in at most one bit, x is exactly this
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en a

ei--

fast
two
sum

x

y

fast
two
sum

v=pred(x)
w=x 	 v

f j--

y < 0

yes

no y > 0

yes

no i = 0

yes

no

Figure 3: Flowchart for monotonize, applied to an expansion e1, e2, . . . , en with en > 0. The output is a
monotone, maximal nonoverlapping expansion f1, f2, . . . , fk.

bit, and y is negative. Hence, by passing on to pred(x), the potential overlap is removed. We formally
prove these claims in Lemma 17 below. To this end we need to analyze the operations in monotonize

more closely. Our first lemma corresponds to the fasttwosum operation on the left in Figure 3.

Lemma 14. Let a, ei ∈ F be nonoverlapping with a > |ei|. Furthermore, let x , y ∈ F with x = a⊕ ei and
x + y = a+ ei . Then x > 0 and either

msb(x)≤msb(a) or x = 2msb(a), y < 0. (41)

Proof. Since a+ ei > 0 also x > 0 by Equation (23). Since a and ei are nonoverlapping, it is 2msb(a) >
a+ ei and since rounding never skips over a floating-point number also 2msb(a) ≥ x . (If 2 msb(a) 6∈ F,
then actually 2msb(a)> x , since x ∈ F.) If 2 msb(a)> x , then msb(a)≥msb(x). Otherwise 2msb(a) =
x , in this case x > a+ ei and hence y < 0.

Assuming a does not overlap the last stored summand f j , we see that x overlaps f j in at most one
bit and in this case x is a power of two and y < 0. Both x and y may also be recomputed by the
other fasttwosum operation at the bottom of Figure 3. We show a similar result for this fasttwosum
operation in Lemma 16. But first we collect some properties of v and w = x 	 v that are computed prior
to it.

Lemma 15. Let x , y ∈ F with x = x ⊕ y and x > 0, y < 0. Then x > 1
2
ε−1
m η. Let furthermore v = pred(x)

and w = x 	 v. Then v > 0, msb(w) = w = x − v and w >−y.

Proof. Since y is the rounding error in x ⊕ y , x and y are maximal nonoverlapping. Assume x ≤ 1
2
ε−1
m η,

then msb(x + y)≤ 1
2
ε−1
m η and hence x ⊕ y = x + y by Lemma 4. This is a contradiction to y 6= 0.

Since x > 1
2
ε−1
m η, also v ≥ 1

2
ε−1
m η > 0. Since x is the successor of v, it is w = x − v = 2εm msb(v) ∈ F by

Equation (9). We have v < x + y < x and since we round to nearest, it follows w ≥−2y >−y .

Note that w and v are not maximal nonoverlapping but overlap in one bit. We next look what happens
when we compute a new running total x and error term y from w and the old error term y ′.

Lemma 16. Let w, y ′ ∈ F with msb(w) = w > −y ′ > 0. Furthermore let x , y ∈ F with x = w ⊕ y ′ and
x + y = w+ y ′. Then x > 0 and either

msb(x)<msb(w) or x = w, y = y ′. (42)

Proof. Since w+ y ′ > 0 also x > 0 by Equation (23). It is msb(w)> w+ y ′, therefore msb(w)≥ x , since
msb(w) ∈ F. If msb(w)> x , then msb(w)>msb(x). If otherwise w = x , then y = y ′.
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Thus, either x and the last output summand v are maximally nonoverlapping, or we are again in the
situation where x is a power of two, the overlap is exactly one bit and y < 0. We are now ready to
combine these results into our main technical lemma summarizing properties of monotonize for en > 0.

Lemma 17. Call monotonize with an expansion e1, e2, . . . , en with en > 0 and assume that no overflow oc-
curs. Let the output be the sequence of summands f1, f2, . . . , fk. After any of the two fasttwosum operations,
we have a sequence of summands

s = e1, e2, . . . , ei , y, x , f j , f j+1, . . . , fk. (43)

Then

y + x +
k∑

l= j

fl =
n∑

l=i+1

el (=Σ)

and

x , fl > 0 for j ≤ l ≤ k (Æ)

msb( fl−1)≤ εm msb( fl) for j < l ≤ k (Î)

msb(y)≤ εm msb(x). (Í)

Furthermore, either
msb(x)≤ εm msb( f j) or x = 2εm msb( f j), y < 0. (ú)

Thus, monotonize iteratively transforms the sequence of summands into a new sequence with the
same sum. Along the way, the subsequence e1, . . . , ei , y, x stays nonoverlapping, while the subsequence
y, x , f j , . . . , fk is maximal nonoverlapping, with the only exception, that x may overlap the last bit of f j .
Furthermore the subsequence x , f j , . . . , fk is monotone.

Proof. First we note that (Í) follows from Theorem 7 by msb(y) ≤ |y| ≤ εm msb(x), since x and y are
always the results of a fasttwosum operation. It remains however to be shown that Theorem 7 can be
applied, i.e., that the input numbers to fasttwosum were ordered by absolute value.
For (=Σ), (Æ), (Î) and (ú) we proceed by induction. The base case occurs at the start of monotonize.
The sequence

s′ = e1, . . . , en is turned into s = e1, . . . , en−2, y, x (44)

by
(x , y) = fasttwosum(en, en−1). (45)

The summands en > 0 and en−1 are nonoverlapping and hence we can apply Theorem 7 and Lemma 14.
Equations (=Σ) and (Æ) follow directly and for (Î) and (ú) there is nothing to show.

For the induction step, let y ′ be the error term in the sequence, before the fasttwosum operation to
be considered. We distinguish three cases, y ′ < 0, y ′ > 0 and y ′ = 0, corresponding to different
computation paths in Figure 3. In case y ′ < 0, the sequence

s′ = . . . , ei , y ′, x ′, f j+1, . . . is turned into s = . . . , ei , y, x , f j , f j+1, . . . (46)

by

f j = pred(x ′) (47)

w = x ′	 pred(x ′) (48)

(x , y) = fasttwosum(w, y ′). (49)
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By induction hypothesis, for s′ we get,

y ′+ x ′+
k∑

l= j+1

fl =
n∑

l=i+1

el (=′Σ)

x ′, fl ,> 0 for j+ 1≤ l ≤ k (Æ′)
msb( fl−1)≤ εm msb( fl) for j+ 1< l ≤ k (Î′)

msb(y ′)≤ εm msb(x ′). (Í′)

Furthermore by induction hypothesis, either

msb(x ′)≤ εm msb( f j+1) or x ′ = 2εm msb( f j+1), y ′ < 0. (ú′)

We can apply Lemma 15 to x ′ and y ′. Hence f j > 0, which together with (Æ′) shows (Æ). Furthermore
w = x ′−pred(x ′) and msb(w) = w >−y ′. Thus we can apply Theorem 7 and Lemma 16 to w and y ′. It
follows that

y ′+ x ′ = y ′+w+ f j = y + x + f j (50)

and together with (=′Σ) follows (=Σ). Since f j < x ′ we can deduct from (ú′) that msb( f j)≤ εm msb( f j+1)
which together with (Î′) yields (Î). Since w is the distance from f j to the next larger floating-point num-
ber, we have w = 2εm msb( f j) by Equation (9). Following Lemma 16 we either have msb(x)<msb(w) =
w = 2εm msb( f j), i.e., msb(x) ≤ εm msb( f j) or x = w = 2εm msb( f j), y = y ′ < 0. This shows (ú) and
concludes this case.

In case y ′ ≥ 0, the fasttwosum operation on the left in Figure 3 is used. We next show that ei does
not overlap a and hence Theorem 7 and Lemma 14 can be applied. Let σ = 2k, k ∈ Z be maximal such
that ei+1, . . . , en ∈ σZ. We need to show that no nonzero bit smaller than σ is created before ei is used.
monotonize manipulates summands with addition and subtraction, which are safe by Equation (21) and
by computing the predecessor v = pred(x). While v may have smaller nonzero bits than x , the error term
y contains already smaller bits, i.e., lsb(v) ≥ lsb(y) and no nonzero bit smaller than already present is
created. Hence a ∈ σZ and a does not overlap ei .

We return to the induction. In case y ′ > 0, the sequence

s′ = . . . , ei , ei+1, y ′, x ′, f j+1, . . . is turned into s = . . . , ei , y, x , f j , f j+1, . . . (51)

by

f j = x ′ (52)

(x , y) = fasttwosum(y ′, ei+1). (53)

By induction hypothesis, for s′ we get,

y ′+ x ′+
k∑

l= j+1

fl =
n∑

l=i+2

el (=′Σ)

x ′, fl > 0 for j+ 1≤ l ≤ k (Æ′)
msb( fl−1)≤ εm msb( fl) for j+ 1< l ≤ k (Î′)

msb(x ′)≤ εm msb( f j+1) since y ′ > 0 (ú′)
msb(y ′)≤ εm msb(x ′). (Í′)
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From Theorem 7 follows that
ei+1+ y ′+ x ′ = y + x + f j (54)

and together with (=′Σ) follows (=Σ). By Lemma 14, x > 0 therefore together with (Æ′) we have (Æ).
Furthermore (Î) follows from (Î′) and (ú′). Again by Lemma 14 (with a = y ′), either msb(x) ≤
msb(y ′) or x = 2msb(y ′), y < 0 and by (Í′) msb(y ′) ≤ εm msb( f j). If x = 2 msb(y ′) and msb(y ′) =
εm msb( f j) then x = 2εm msb( f j), y < 0 otherwise msb(x)≤ εm msb( f j), i.e., (ú) holds.

In case y ′ = 0, the sequence

s′ = . . . , ei , ei+1, y ′ = 0, x ′, f j , . . . is turned into s = . . . , ei , y, x , f j , . . . (55)

by
(x , y) = fasttwosum(x ′, ei+1). (56)

By induction hypothesis, for s′ we get,

x ′+
k∑

l= j

fl =
n∑

l=i+2

el (=′Σ)

x ′, fl > 0 for j ≤ l ≤ k (Æ′)
msb( fl−1)≤ εm msb( fl) for j < l ≤ k (Î′)

msb(x ′)≤ εm msb( f j) since y ′ = 0. (ú′)

For (Î) there nothing to show, it is identical to (Î′). From Theorem 7 follows that

ei+1+ x ′ = y + x (57)

and together with (=′Σ) we have (=Σ). By Lemma 14, x > 0, and together with (Æ′) we have (Æ).
Again by Lemma 14 (with a = x ′), either msb(x) ≤ msb(x ′) or x = 2msb(x ′), y < 0 and by (ú′)
msb(x ′)≤ εm msb( f j). If x = 2msb(x ′) and msb(x ′) = εm msb( f j) then x = 2εm msb( f j), y < 0 otherwise
msb(x)≤ εm msb( f j), i.e., (ú) holds.

We still need to extend monotonize to expansions e1, . . . , en with en < 0 and en = 0. The first case is
handled analogously to the case en > 0 and the second case is handled by skipping over summands until
a nonzero summand is found. If only zero summands are present, a single zero summand is returned.
Below an implementation of monotonize in C++ and using floating-point numbers in the binary64 for-
mat is given. It is necessary to provide a buffer h, large enough for the output expansion. By Theorem 21
below, for binary64 we have k ≤ 40. The computation of pred(x) (and succ(x) in case en < 0) is
done by the function call nexttozero(x). In Section 3.1 we present two alternative implementations
of nexttozero() that may be used.

Algorithm 18. Let e0, e1, . . . , en−1 be an expansion. Then de_monotonize() computes an expansion with
k summands, stored in hl−k, hl−k+1, . . . , hl−1 and returns k.
〈monotonize an expansion〉≡
inline int de_monotonize(const int n, const double *const e,

const int l, double *const h){

〈check summands are finite〉

int j=l-1;

int i=n-1;
while(i>0 && e[i] == 0.0) i–;
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double a = e[i–];
const double s = a > 0.0 ? 1.0 : -1.0;

while(i >= 0){
double x,y;
de_fast_two_sum(a,e[i–],x,y);

while(s*y < 0.0){
const double v = nexttozero(x);
const double w = x - v;
h[j–] = v;
de_fast_two_sum(w,y,x,y);

}

if(s*y > 0.0){
h[j–] = x;
a = y;

}else{
a = x;

}
}

assert(s*a > 0.0 || j==l-1);
h[j] = a;
assert(j >= 0);

return l-j;
}

We next give a criterion, when no overflow occurs in monotonize and all computations are therefore
correct. Note that the number τ(2−εm) is the smallest number that may be rounded to +∞, it is halfway
between 2τ(1− εm) and succ(2τ(1− εm)) = 2τ, where the successor is taken in some floating-point set
F′ with τ′ > τ.

Lemma 19. Call monotonize with an expansion e1, e2, . . . , en with
∑n

i=1 |ei|< τ(2−εm), then no overflow
occurs.

Proof. We only have to show a ⊕ b ∈ F for all a, b that we call fasttwosum(a, b) for, cf. Theorem 7.
Assume en > 0. At the start of monotonize we add en, en−1, en−2, . . . to our running total x until the exact
sum is not a floating-point number for first time. Let l be the index where this happens, then

x = fl

 
n∑

i=l

ei

!
. (58)

Since �����
n∑

i=l

ei

�����≤
n∑

i=1

|ei|< τ(2− εm) (59)

we round to a real number, i.e., x ∈ F. We store either x or pred(x) as first output summand fk and
therefore fk ∈ F. All further computations involve numbers smaller than fk by Lemma 17 and hence no
overflow can occur.

This criterion is useful because it allows us to show that for strongly nonoverlapping expansions mono-
tonize will always work correctly.

Lemma 20. Let e1, e2, . . . , en, be a strongly nonoverlapping expansion, then
∑n

i=1 |ei|< τ(2− εm).
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Proof. The sequence |e1|, |e2|, . . . |en| is a strongly nonoverlapping expansion too. Consider the binary
representation of E =

∑n
i=1 |ei|. We have msb(E) ≤ τ and E contains a zero bit at least every p+ 1 bits.

Hence E < τ(2− εm).
Finally we can state our main result.

Theorem 21. Given an expansion e1, e2, . . . , en with
∑n

i=1 |ei|< τ(2−εm), monotonize computes a mono-

tone, maximal nonoverlapping expansion f1, f2, . . . , fk with
∑n

i=1 ei =
∑k

i=1 fi and k ≤ dlog2(2τ/η)/pe
summands. monotonize takes O(n+ k) steps.

The bound on k is tight, running monotonize with −η,τ as input expansion will create an output
expansion with dlog2(2τ/η)/pe summands. This example furthermore shows that k > n is possible.

Proof. monotonize first skips zero summands. If there are only zero summands, a single zero is returned
which is a monotone, maximal nonoverlapping expansion. Otherwise it continues computing with a
leading nonzero summand and Lemma 17 can be applied. After the last fasttwosum operation we have
y ≥ 0 since otherwise monotonize would perform further fasttwosum operations. Therefore at this
point we either have a sequence

y = 0, x , f2, f3, . . . , fk with msb(x)≤ εm msb( f2) (60)

and the computation ends with f1 = x or we have a sequence

y > 0, x , f3, f4, . . . , fk with msb(x)≤ εm msb( f3) (61)

and the computation ends with f2 = x , f1 = y . Therefore by Lemma 17

k∑
i=1

fi =
n∑

i=1

ei (62)

and
msb( fl−1)≤ εm msb( fl) for 1< l ≤ k (63)

and all summands have the same sign. Output summands are optimally spaced, i.e., their leading bits are
at least p bits apart. Hence there can be at most dlog2(2τ/η)/pe summands. Each iteration consumes
an input summand or creates an output summand, therefore the number of iterations is bounded by
O(n+ k).

3.1 Computing the Next Floating-Point Number Towards Zero

Let x ∈ F. For our implementation of monotonize, we need a subroutine nexttozero(x) that com-
putes pred(x) if x > 0 and succ(x) if x < 0. By Lemma 15 |x | > 1

2
ε−1
m η, i.e., x is normalized in this

case. We present two alternative implementations of nexttozero(). The first method is a slight mod-
ification of an algorithm by Rump et al. [14] to simultaneously compute predecessor and successor of
a floating-point number. We removed the part handling denormalized numbers and we replaced |c| by
c in the computation of e, to always compute the next number in direction towards zero instead of the
predecessor. This gives the desired result by symmetry of F and fl.

Algorithm 22. Let c ∈ F with |c| > 1
2
ε−1
m η. If c > 0, then nexttozero(c) returns pred(c), otherwise

succ(c) is returned.
〈next to zero〉≡
inline double nexttozero(const double c){

const double eps = std::numeric_limits<double>::epsilon();
const double u = 0.5*eps;
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const double invu = 9007199254740992.0;
assert(invu == ldexp(1.0,53));
const double phi = u*(1+eps);
assert(phi == std::ldexp(1.0,-53)+ldexp(1.0,-105));
const double nearsubn = invu*std::numeric_limits<double>::min();

double cinf;
if(std::fabs(c) > nearsubn){
double e = phi*c;
cinf = c - e;

}else{
double C = invu*c;
double e = phi*C;
cinf = (C-e)*u;

}

assert(cinf == nextafter(c,0));
return cinf;

}

Since our modifications are minimal, we refer to [14] for a proof of correctness. The second method
computes predecessor or successor using bit access. The representation of IEEE 754-2008 numbers is
such that the floating-point number next to x in direction towards zero is simply the next smaller number
when interpreting x as unsigned integer, see Section 2.2.

Algorithm 23. Let 0 6= x ∈ F. If x > 0 then nexttozero(x) returns pred(x), if x < 0, then succ(x) is
returned.
〈basic next to zero〉≡
inline double nexttozero(const double x){

ieee_binary64 X;
X.d = x;
X.l–;
assert(X.d == nextafter(x,0));
return X.d;

}

In preliminary experiments, both methods showed comparable performance when used in monotonize.
Using the C99 nextafter() function was slightly but noticeably slower. The first method is certainly
more elegant since it uses basic floating-point operations only, while the other approach relies on moving
a floating-point number into an integer register and bit manipulation. Nevertheless, it avoids branches
and may be faster inside an algorithm that is also branch free.

4 Converting Expansions to mpfr

In this section we present algorithms and code to convert expansions into arbitrary precision floating-
point numbers. While our algorithms convert to the mpfr number type, they can easily be carried over
to other arbitrary precision floating-point types. For example in Appendix A we provide the same func-
tionality for the leda::bigfloat number type.
We want to set an mpfr number x to some real value represented by a monotone expansion. An mpfr

number consists of the following four fields (excerpt from mpfr.h).
〈mpfr.h〉≡
typedef struct {
mpfr_prec_t _mpfr_prec;
mpfr_sign_t _mpfr_sign;
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mpfr_exp_t _mpfr_exp;
mp_limb_t *_mpfr_d;

} __mpfr_struct;

For 0 6= x ∈ R the fields have the following semantics (again from mpfr.h).
〈mpfr.h〉+≡
/*

The represented number is
_sign*(_d[k-1]/B+_d[k-2]/B^2+...+_d[0]/B^k)*2^_exp

where k=ceil(_mp_prec/GMP_NUMB_BITS) and B=2^GMP_NUMB_BITS.

For the msb (most significant bit) normalized representation, we must have
_d[k-1]>=B/2, unless the number is singular.

We must also have the last k*GMP_NUMB_BITS-_prec bits set to zero.
*/

Thus, _mpfr_prec stores the precision or number of bits of the mantissa. The mantissa is stored in
_mpfr_d, in pieces of GMP_NUMB_BITS consecutive bits each. Such a piece is called a limb and limbs
at a higher index store the more significant bits of the mantissa. The most significant bit in the most
significant limb must be nonzero and has value 1

2
. Hence, the mantissa is interpreted as a number in

[0.5, 1). The sign is stored in _mpfr_sign and the exponent in _mpfr_exp.
mpfr can also represent some special values. The cases x ∈ {0,nan,±∞} correspond to _mpfr_exp
being near the smallest number representable by mpfr_exp_t. To set a number to zero, we use an mpfr

function call and we never set a number to nan or ±∞. Exponents arising in expansions are always in
the safe range of mpfr_exp_t.
To set an mpfr number to some 0 6= x ∈ R we first set the precision by calling mpfr_set_prec(). This
will allocate the array _mpfr_d with sufficient entries. Then we write _mpfr_sign, _mpfr_exp and the
entries of _mpfr_d. Thus we only rely on our knowledge of the representation of nonzero, real numbers
in mpfr.

4.1 Expansions of Length One

For warmup we discuss converting a single floating-point number d into an mpfr number. Similar code
is available in mpfr, but we can omit the special cases d ∈ {nan,±∞} and the possibility to reduce the
precision by rounding. Our code can be inlined into our other functions.

Algorithm 24. Let d ∈ F, then mpfr_set_double() computes an mpfr number rop with rop= d.
〈convert a double to mpfr〉≡
inline void mpfr_set_double(mpfr_t rop,const double d){
assert(ra_isfinite(d));
〈double to mpfr〉

}

First we handle the case d = 0 using an mpfr function call. If d 6= 0 we set the precision of rop to 53
bits, allocating the mantissa.
〈double to mpfr〉≡
if(d == 0.0){
mpfr_set_ui(rop,0,GMP_RNDN);
return;

}
mpfr_set_prec(rop,53);

Remember that ieee_binary64 computes integral sign s, exponent e and mantissa m such that

d = s ·m · 2e. (64)
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Hence, if d is normalized, the most significant nonzero bit in the mantissa has value 252. The leading bit
of an mpfr mantissa must be nonzero and has value 1

2
. Therefore, we have to adjust the exponent by 53.

In case d is denormalized, we normalize it by multiplying with 253, to ensure that the most significant bit
is nonzero. In this case, the necessary exponent corrections cancel.
〈double to mpfr〉+≡
ieee_binary64 X;
X.d = d;
rop->_mpfr_sign = X.sign();

if(X.normalized()){
rop->_mpfr_exp = X.exponent()+53;

}else{
double p = 9007199254740992.0;
assert(p == ldexp(1.0,53));
X.d *= p;
assert(X.normalized());
rop->_mpfr_exp = X.exponent(); //-53+53;

}

Since d in X is now normalized, the most significant nonzero bit in the mantissa is the 53rd bit. Hence,
in case of 64 bit limbs we have to shift 11 bits to the left. For 32 bit limbs, the mantissa overlaps two
limbs and different shifting is needed, cf. m′ in Figure 4.
〈double to mpfr〉+≡
#if GMP_NUMB_BITS==32
rop->_mpfr_d[1] = (X.mantissa() » 21);
rop->_mpfr_d[0] = (X.mantissa() « 11);

#else //GMP_NUMB_BITS==64
rop->_mpfr_d[0] = (X.mantissa() « 11);

#endif

4.2 Monotone Expansions

Recall that in a monotone expansion all summands have the same sign. No zero summands are allowed
unless there is only one summand. Since the summands are also nonoverlapping, converting into an
arbitrary precision floating-point number becomes as simple as aligning the mantissae of the summands
by exponent and copying them, as already illustrated in Figure 1. This is done in the following algorithm.

Algorithm 25. Given a monotone expansion e0, e1, . . . , en−1, mpfr_set_monotone_expansion() com-
putes an mpfr number rop with rop=

∑n−1
i=0 ei .

〈convert a monotone expansion to mpfr〉≡
inline void mpfr_set_monotone_expansion(mpfr_t rop,

const int n ,const double *const e){
〈check summands are finite〉
〈handle less than two summands〉
〈check summands are nonzero〉
〈set up precision, sign and exponent〉
〈clear mantissa and write first summand〉
〈write remaining summands〉

}

Here we have some debug code to check that all input summands represent real numbers and are
nonzero.
〈check summands are finite〉≡
#ifndef NDEBUG
for(int i=0;i<n;++i) assert(ra_isfinite(e[i]));

#endif
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〈check summands are nonzero〉≡
#ifndef NDEBUG

for(int i=0;i<n;++i) assert(e[i] != 0.0);
#endif

First we handle the case of less than two summands. If the expansion has at least two summands, all
summands are nonzero and we can use ieee_binary64 safely.

〈handle less than two summands〉≡
if(n == 0){

mpfr_set_ui(rop,0,GMP_RNDN);
return;

}else if(n == 1){
mpfr_set_double(rop,e[0]);
return;

}

The sign and exponent of rop are determined by the leading summand of the expansion and are com-
puted as above in Section 4.1. The exponent maxexp of rop can be interpreted as pointing directly
in front of the most significant nonzero bit of the expansion. The exponent minexp of the last sum-
mand points somewhere behind the least significant nonzero bit, so it is sufficient to set the precision to
maxexp− minexp. In case the leading summand is not normalized, this value may be smaller than 53
and even as low as 1. Therefore we adjust minexp to fulfill the minimal precision requirements of mpfr.
Setting the precision allocates a mantissa with k = d(maxexp− minexp)/GMP_NUMB_BITSe limbs. We
use maxexp later to align the remaining summands to the mantissa of rop. Figure 4 shows the alignment
of the first and later summands on the mantissa of rop for the case of 32 bit limbs.
〈set up precision, sign and exponent〉≡
ieee_binary64 X;
X.d = e[0];
mp_exp_t minexp = X.exponent();

X.d = e[n-1];
mp_exp_t maxexp = X.exponent()+53;

if(!X.normalized()){
const double d = 9007199254740992.0;
assert(d == ldexp(1.0,53));
X.d *= d;
assert(X.normalized());
maxexp = X.exponent(); //+53-53;
minexp = std::min(minexp,maxexp-MPFR_PREC_MIN);

}

const mpfr_prec_t prec = maxexp-minexp;
assert(prec >= MPFR_PREC_MIN);
mpfr_set_prec(rop,prec);
assert(rop->_mpfr_prec == prec);

const int k = (prec+GMP_NUMB_BITS-1)/GMP_NUMB_BITS;
assert( (k-1)*GMP_NUMB_BITS < prec && prec <= k*GMP_NUMB_BITS );

rop->_mpfr_sign = X.sign();
rop->_mpfr_exp = maxexp;
mp_limb_t *const mant = rop->_mpfr_d;

Writing the mantissa of the leading summand is again done as in Section 4.1. The lower limbs of rop
may be overlapped by multiple mantissae of remaining summands. Furthermore, mantissae may overlap
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rop:

maxexp exp

32k

p

i limbsj bits

m>> (64− j) m>> (32− j) m<< j

m′:

m′ >> 21 m′ << 11

Figure 4: Aligning the mantissa of the leading summand m′ and any other mantissa m to a 32 bit limb
arbitrary precision mantissa.

each other, however in all but one mantissa the overlapping bits are zero, cf. again Figure 1. We zero the
lower limbs of rop so we can write the remaining summands by bitwise or.
〈clear mantissa and write first summand〉≡
#if GMP_NUMB_BITS==32
mant[k-1] = (X.mantissa() » 21);
mant[k-2] = (X.mantissa() « 11);
for(int i=k-3;i>=0;–i) mant[i] = 0;

#else //GMP_NUMB_BITS==64
mant[k-1] = (X.mantissa() « 11);
for(int i=k-2;i>=0;–i) mant[i] = 0;

#endif

We iterate over the remaining summands and copy each mantissa. This loop is completely free of
branches, including computations inside ieee_binary64 member functions.
〈write remaining summands〉≡

int i = n-2;
while(i>=0){

const double wrt = e[i–];
〈write summand〉

}

For any of the remaining summands we compute the position p of the last bit of its mantissa m in the
mantissa of rop, cf. Figure 4. Then we compute the index i of the limb this bit belongs to and the number
of bits j it has to be shifted to the left.
〈write summand〉≡
{
X.d = wrt;
mpfr_exp_t exp = X.exponent();
unsigned long long m = X.mantissa();

const int p = GMP_NUMB_BITS*k - maxexp + exp;
assert(p >= 0);

const int i = p/GMP_NUMB_BITS;
const int j = p%GMP_NUMB_BITS;
assert(0 <= i && i < k);

#if GMP_NUMB_BITS==32
〈write mantissa to 32 bit limbs〉

#else //GMP_NUMB_BITS==64
〈write mantissa to 64 bit limbs〉

#endif
}
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For 32 bit limbs, the mantissa m may overlap up to three limbs. While index i always points to an existing
limb, the limbs at position i + 1 and i + 2 may not exist, i.e., we are out of array bounds. In this case,
however, the part m1 of m overlapping this nonexisting limb is zero. Instead of branching whether we
are outside bounds, we use m1 to recalculate the index. If m1 = 0 then i1 = 0 and otherwise i1 = i + 1.
Since we write the mantissa using bitwise or, no harm is done in the first case and the mantissa is written
correctly in the other case.
〈write mantissa to 32 bit limbs〉≡
const unsigned long long m1 = (m » (32 - j));
const unsigned long long m2 = (m1 » 32);

const int i1 = (i+1) * static_cast<bool>(m1);
const int i2 = (i+2) * static_cast<bool>(m2);

assert(i+1 < k || m1 == 0);
assert(i+2 < k || m2 == 0);

mant[i] |= (m « j);
mant[i1] |= m1;
mant[i2] |= m2;

For 64 bit limbs the mantissa may overlap up to two limbs. We use the same trick as above to avoid
branching when out of array bounds. But there is another issue. Shifting m by 64 bits will quite unintu-
itively leave m unchanged instead of setting m = 0. Since j may be zero, we halve 64− j and perform
the right shift in two steps.
〈write mantissa to 64 bit limbs〉≡
const int j1 = (64 - j) » 1;
const int j2 = (64 - j) - j1;

const unsigned long long m1 = ((m » j1) » j2);
const int i1 = static_cast<bool>(m1)*(i+1);

assert(i+1 < k || m1 == 0);

mant[i] |= (m « j);
mant[i1] |= m1;

4.3 General Expansions

Using the algorithms from above we present two options to convert a general expansion into an mpfr

number. The first option is to split the expansion into two monotone expansions, convert them sepa-
rately and then perform an exact addition of two mpfr numbers. Note that there are no floating-point
operations involved, hence there is no danger of overflow.

Algorithm 26. Given an expansion e0, e1, . . . , en−1, the function mpfr_set_expansion_split() com-
putes an mpfr number rop with rop=

∑n−1
i=0 ei .

〈convert an expansion by splitting to mpfr〉≡
void mpfr_set_expansion_split(mpfr_t rop,const int n ,const double *const e){

〈check summands are finite〉

double pos[n];
double neg[n];

int plen=0;
int nlen=0;
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for(int i=0;i<n;i++) {
if(e[i]>0.0) pos[plen++]=e[i];
else if(e[i]<0.0) neg[nlen++]=e[i];

}

if(plen*nlen!=0){

mpfr_t x1,x2;
mpfr_init(x1);
mpfr_init(x2);

mpfr_set_monotone_expansion(x1,plen,pos);
mpfr_set_monotone_expansion(x2,nlen,neg);

mp_exp_t e1 = mpfr_get_exp(x1);
mp_exp_t p1 = mpfr_get_prec(x1);

mp_exp_t e2 = mpfr_get_exp(x2);
mp_exp_t p2 = mpfr_get_prec(x2);

mp_prec_t p = std::max(e1,e2) - std::min(e1-p1,e2-p2);

mpfr_set_prec(rop,p);

#ifndef NDEBUG
int round =

#endif
mpfr_add(rop,x1,x2,GMP_RNDN);
assert(!round);

mpfr_clear(x1);
mpfr_clear(x2);

}else if(plen!=0){
mpfr_set_monotone_expansion(rop,plen,pos);

}else if(nlen!=0){
mpfr_set_monotone_expansion(rop,nlen,neg);

}else{
mpfr_set_ui(rop,0,GMP_RNDN);

}
}

The exact addition of x1 and x2 in mpfr_set_expansion_split() is justified by the following lemma.
For the proof we reuse the functions msb and lsb that were defined for arbitrary floating-point numbers.

Lemma 27. Let x i = mi ·2ei , i = 1,2 be two positive mpfr numbers, where the precision of mi is pi . For the
difference x = x1− x2 to be exact, it suffices to set the precision of x to

p =max{e1, e2} −min{e1− p1, e2− p2}. (65)

Proof. It suffices to set
p = log2(msb(x))− log2(lsb(x)). (66)

mpfr normalizes numbers such that mi ∈ [0.5,1), so we have

log2(msb(x i)) = ei

log2(lsb(x i)) = ei − pi for i = 1, 2.
(67)
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Furthermore x ≤max{x1, x2}, so

log2(msb(x)) ≤ max{e1, e2} (68)

and
log2(lsb(x)) ≥ log2(min

i=1,2
lsb(x i)) = min{e1− p1, e2− p2}. (69)

The second option is, to first convert an expansion into an equivalent monotone expansion and then into
an mpfr number. By Theorem 21, the expansion generated by monotonize has at most dlog2(2τ/η)/pe
summands which yields d(1024+ 1074)/53e= 40 for binary64.

Algorithm 28. Given an expansion e0, e1, . . . , en−1 with
∑n−1

i=0 |ei| < τ(2 − εm), e.g., a strongly nonover-
lapping expansion, the function mpfr_set_expansion_monotonize() computes an mpfr number rop
with rop=

∑n−1
i=0 ei .

〈convert an expansion by monotonizing to mpfr〉≡
void mpfr_set_expansion_monotonize(mpfr_t rop, const int n, const double *const e){

〈check summands are finite〉
〈handle less than two summands〉

const int l = 40;
double h[l];

const int k = de_monotonize(n,e,l,h);
double *const f= h+l-k;

mpfr_set_monotone_expansion(rop,k,f);
}

5 Experiments

We compare the running time of our new conversion approaches to two direct conversion approaches
that compute the sum exactly using mpfr functionality. In both direct approaches we add summands in
decreasing magnitude to a total s using the mpfr_add_d() function. For the addition to be exact, s has
to have sufficient precision. The first variant direct 1 increases the precision in every step, if necessary,
while the second variant direct 2 sets the precision to a sufficient value at the beginning. The latter
method turned out to be more efficient. Using the mpfr function mpfr_sum(), to compute s in one step
is even slower. Our two conversion approaches are called split if the first step is to split the expansion
and monotonize if the first steps consists of using monotonize.
As input data we use randomly generated expansions. Although expansions could be generated artifi-
cially summand by summand, we create them by evaluating a polynomial expression using Shewchuks
arithmetic operations. This way, test expansions are more likely to have a structure that actually occurs
in applications. As expression D we compute a 4×4 determinant of 4×4 determinants of randomly gen-
erated numbers. D has a polynomial degree of d = 16. We compute input numbers using the rand48()
family of functions. We chose a floating-point number x ∈ [0,1], a sign s ∈ {−1,+1} and an exponent
e ∈ {−17, . . . , 17} uniformly at random and use s · x · 2e as input number. All input numbers can be uni-
formly scaled to integers with p = 35+53 bit precision. Hence, D can be represented with approximately
dp ≈ 1400 bits. We observed however that D was in fact representable with approximately 1000 bits on
average only.
The result of the evaluation are strongly nonoverlapping expansions with about 220 summands on aver-
age. If we additionally compress the sums, we get nonadjacent expansions with about 20 summands on
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average. In fact, we chose d and the range for e above to generate expansions with about 20 summands
after compression. In a compressed expansion, each summand carries about 52 bits of information.
Therefore, before compressing, each summand carries only about 5 bits of information on average. Thus,
uncompressed and compressed expansions are input sets with quite different characteristics. This is inter-
esting insofar monotonize compresses as a side effect and hence may reduce the number of summands
significantly before the actual conversion. We consider expansions with n= 1,2, . . . , 64 summands in the
uncompressed case and n = 1,2, . . . , 20 in the compressed case. To generate expansion with fewer than
220 (respectively 20) summands we simply ignore the leading summands.
We run tests for an mpfr limb size of both 64 bit and 32 bit. For 64 bit limbs we use mpfr 3.0.1 (with
gmp 5.0.1) as provided by our operating system, for 32 bit limbs we compiled mpfr 3.0.1 (with gmp

5.0.2) on our own. This was done using g++’s -m32 flag, since mpfr does not support 32 bit limbs in
a 64 bit environment. All our code was compiled with g++ 4.6.1 and −O3. Experiments were run on
an Intel Core i5 CPU with 3.33 Ghz. To get measurable running times, we generate 2000 expansions as
described above, and measure the total time for converting all expansions a 1000 times. The results are
shown in Figure 5. The graphs do not show running time but the speedup tdirect 1/t x of each method x
with respect to the faster direct approach direct 1 on a logarithmic scale. This improves the display of
differences for the important range with very few summands, where the actual running times are very
small.
Both, monotonize and split clearly outperform the direct approaches, and monotonize is uniformly the
fastest method. As expected, monotonize achieves greater speedup for uncompressed than compressed
expansions. There is a small dip in the speedup achieved by monotonize for uncompressed expansions,
starting at approximately 12 summands. Since these summands carry only about 5 bits of information,
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Figure 5: Experimental results for converting expansions to mpfr. Plottings show the speedup for each
conversion method, relative to the trivial conversion direct 2 on a logarithmic scale.
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this is the range where the number of output summand of monotonize jumps from one to two. While
in general the graphs look similar for 32 bit and 64 bit limbs, the advantage of our new methods is even
larger for 64 bit limbs.
Note that even in the case of one summand, our new approaches are better. In this case both direct
approaches simply call mpfr_set_d(), while our new approaches call mpfr_set_double() from Sec-
tion 4.1. The differences between monotonize and split on the one hand and direct 1 and direct 2 on
the other hand originate from noise in the measurement process, since the actual running times are very
small if only one summand is converted.

6 Conclusion

We have presented two new methods to convert expansions to arbitrary precision floating-point numbers.
The faster method, based on our new algorithm monotonize works for almost all expansions, in partic-
ular for strongly nonoverlapping expansions that are relevant in practice. Only expansions with a value
that is very close to the overflow range, i.e., almost not representable as expansion can not be converted.
For these cases the other conversion method may be used, which still gives a significant improvement
over the trivial approach to conversion.
Our methods are so fast, that they may help to speed up the exact computation of arbitrary sums, not only
expansions, too. Efficient algorithms to compute a sum of floating-point numbers exactly as expansion
have been given by Shewchuk [17] or Rump et al. [16].
Considering our own application, we have yet to integrate the new conversion methods into our package
Real_algebraic and examine the resulting speedup.
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A Converting Expansions to leda::bigfloat

Similar to Section 4 we present algorithms and code to convert expansions to leda::bigfloat.

A.1 Monotone Expansions

We have two alternative functions to convert a monotone expansion into a leda::bigfloat. The first
one is based on the leda interface, since we can not access the internal structure of a leda::bigfloat
without some hackery. Instead we extract sign and exponent as integers and the mantissa as an array of
limbs first and then create a leda::bigfloat using low level constructors.

Algorithm 29.
Given a monotone expansion e0, e1, . . . , en−1, then monotone_expansion_to_leda_bigfloat() com-
putes a leda::bigfloat rop with rop=

∑n−1
i=0 ei .

〈convert a monotone expansion to leda::bigfloat〉≡
inline void
monotone_expansion_to_leda_bigfloat(leda::bigfloat& rop,

const int n, const double *const e){

〈check summands are finite〉
const int crossover = 4;
〈handle expansions shorter than crossover〉
〈check summands are nonzero〉

27

http://wwwisg.cs.uni-magdeburg.de/ag/RealAlgebraic/
http://wwwisg.cs.uni-magdeburg.de/ag/RealAlgebraic/


〈leda set up precision and sign〉
〈leda set up mantissa and write first summand〉
〈leda write all summands〉
〈create leda::bigfloat from extracted data〉

}

If we stick to the leda interface, our conversion method is inefficient for expansions with only a few sum-
mands. Hence we convert short expansions directly. The crossover point of 4 summands was determined
experimentally.
〈handle expansions shorter than crossover〉≡
if(n==0){
rop = 0;
return;

}else if(n < crossover){
rop = e[n-1];

for(int i=n-2;i>=0;–i){
leda::bigfloat y = e[i];
rop = add(rop,y,53,leda::EXACT);

}
return;

}

Then we compute the necessary precision. maxexp points somewhere before the most significant bit and
minexp somewhere behind the least significant bit of the expansion. leda considers the mantissa to be
an integer, hence we use minexp as exponent for the final result and there is no need to normalize in
any way.
〈leda set up precision and sign〉≡
ieee_binary64 X;
X.d = e[n-1];
long maxexp = X.exponent()+53;

X.d = e[0];
long minexp = X.exponent();

const long prec = maxexp-minexp;
assert(prec >= 2);

const int k = (prec+LEDA_NUMB_BITS-1)/LEDA_NUMB_BITS;
assert( (k-1)*LEDA_NUMB_BITS < prec && prec <= k*LEDA_NUMB_BITS );

int sign = X.sign();

We create a vector for the mantissa and copy the mantissa of the least significant summand such that its
last bit (zero or nonzero), corresponding to minexp, is the last bit of the vector.
〈leda set up mantissa and write first summand〉≡
leda::digit mant[k];

#if LEDA_NUMB_BITS==32
mant[0] = X.mantissa();
mant[1] = (X.mantissa()»32);
for(int i=2;i<k;i++) mant[i] = 0;

#else //LEDA_NUMB_BITS==64
mant[0] = X.mantissa();
for(int i=1;i<k;i++) mant[i] = 0;

#endif
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Then we convert the remaining summands.
〈leda write all summands〉≡
int i = 1;
do{
const double wrt = e[i++];
〈leda write summand〉

}while(i < n);

We align the summand using minexp. Copying the mantissa is done in code chunks from Section 4.
〈leda write summand〉≡
{
X.d = wrt;
long exp = X.exponent();
unsigned long long m = X.mantissa();

const int p = exp-minexp;
assert(p >= 0);

const int i = p/LEDA_NUMB_BITS;
const int j = p%LEDA_NUMB_BITS;
assert(0 <= i && i < k);

#if LEDA_NUMB_BITS==32
〈write mantissa to 32 bit limbs〉

#else //LEDA_NUMB_BITS==64
〈write mantissa to 64 bit limbs〉

#endif
}

Then we create a leda::integer for the mantissa and a leda::bigfloat from there. This has the
disadvantage that the mantissa must be copied to the leda::integer and will probably be copied
again when creating the leda::bigfloat. For this reason, this conversion method is inefficient for
short expansions.
〈create leda::bigfloat from extracted data〉≡
leda::integer mantissa(k,mant,sign);
rop = leda::bigfloat(mantissa,minexp);

We now give an alternative, that writes all data directly into the leda::bigfloat data-structures. The
code below works by
〈include leda::bigfloat public〉≡
#define private public
#include <LEDA/numbers/bigfloat.h>
#undef private

you have been warned. leda is not an open source library, so we have little insight into the internals.
What we know, we learned from a very outdated technical report [1] on one of the first versions of
leda::bigfloat, from access to source code for leda 4.4 and from the header files of a current leda
version.

Algorithm 30.
Given a monotone expansion e0, e1, . . . , en−1, then monotone_expansion_to_leda_bigfloat() com-
putes a leda::bigfloat rop with rop=

∑n−1
i=0 ei .

〈convert a monotone expansion to leda::bigfloat faster〉≡
inline void
monotone_expansion_to_leda_bigfloat(leda::bigfloat& rop,

const int n ,const double *const e){

〈check summands are finite〉
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〈handle zero or one summand〉
〈check summands are nonzero〉

〈set up precision leda internal〉
〈set up bigfloat representation〉
〈copy all summands to mantissa〉
〈remove trailing zero limbs〉
〈set bigfloat to representation〉

}

We handle expansions with less than two summands first and separately.
〈handle zero or one summand〉≡
if(n == 0){
rop = 0;
return;

}else if(n == 1){
rop = e[0];
return;

}

leda::bigfloat has some interesting normalizing conditions. Stored are an integer mantissa m and
exponent e representing m · 2e. Let b = LEDA_NUMB_BITS be the number of bits in a limb, then e must
be divisible by b. The trailing log2(b) bits of e are therefore always zero and not stored! Furthermore the
least significant and most significant limb in m must be nonzero.
From the leading summand, we first compute maxexp to point directly in front of the most significant
nonzero bit of the expansion. This ensures later that the most significant limb is not zero. Then we
compute minexp, to point somewhere behind the least significant nonzero bit of the expansion. We
decrease minexp further to be divisible by b. Integer division rounds towards zero, so we have to make
sure minexp is positive at the point of division. Then we can compute the necessary precision and
number of limbs k.
〈set up precision leda internal〉≡
ieee_binary64 X;
X.d = e[n-1];
long maxexp = X.exponent()+53;

if(!X.normalized()){
const double d = 9007199254740992.0;
assert(d == ldexp(1.0,53));
X.d *= d;
assert(X.normalized());
maxexp = X.exponent(); //+53-53;

}

X.d = e[0];
long minexp = X.exponent();

minexp += 100*LEDA_NUMB_BITS;
minexp = LEDA_NUMB_BITS*(minexp/LEDA_NUMB_BITS);
minexp -= 100*LEDA_NUMB_BITS;

const long prec = maxexp-minexp;
assert(prec >= 2);

const long k = (prec+LEDA_NUMB_BITS-1)/LEDA_NUMB_BITS;
assert( (k-1)*LEDA_NUMB_BITS < prec && prec <= k*LEDA_NUMB_BITS );
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leda::bigfloat is reference counted. We create a representation for k limbs and set/check some
variables. The less obvious ones are: count – the reference counter, size – the number of available
limbs, exp_ptr – pointer to a representation for the exponent if it is not representable as long and
used – the number of limbs in use.
〈set up bigfloat representation〉≡
leda::bigfloat_rep* rep = leda::bigfloat::new_rep(k);
assert(rep->count == 1);
assert(rep->size == k);
assert(rep->exp_ptr == 0);

rep->used = k;
rep->bitlength=prec;
rep->sign = X.sign();
rep->exponent = minexp/LEDA_NUMB_BITS;

Then we copy the mantissae of the summands. We need to align the least significant summand like all
other summands, since minexp is not necessarily its exponent.
〈copy all summands to mantissa〉≡
leda::digit *const mant = rep->vec;
for(int i=0;i<k;i++) mant[i] = 0;

for(int i=0;i<n;i++){
const double wrt = e[i];
〈leda write summand〉

}

After copying the mantissae, there may be trailing zero limbs, however at most b(52+ 31)/32c = 2 for
32 bit limbs (52 zero bits in the least significant summand + 31 zero bits for decreasing minexp) and
b(52+ 63)/64c= 1 for 64 bit limbs.
〈remove trailing zero limbs〉≡
if(mant[0] == 0){
int z=0;
while(mant[++z]==0);
rep->vec+=z;
rep->exponent+=z;
rep->used-=z;
rep->bitlength -= z*LEDA_NUMB_BITS;

}

Then we assign the new representation to rop. rop may currently point to some other representation,
so we have to clear it fist.
〈set bigfloat to representation〉≡
rop.clear();
rop.PTR = rep;
rop.special = leda::bigfloat::NOT_VAL;

A.2 General Expansions

The code here is really just a copy from Section 4.3. leda::bigfloat does however have an exact addi-
tion that we can use in expansion_to_leda_bigfloat_split(). Again we handle short expansions
with fewer than 8 summands directly if we are bound to the leda interface.

Algorithm 31.
Given an expansion e0, e1, . . . , en−1, then the function expansion_to_leda_bigfloat_split() com-
putes a leda::bigfloat rop with rop=

∑n−1
i=0 ei .
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〈convert an expansion by splitting to leda::bigfloat〉≡
void expansion_to_leda_bigfloat_split(leda::bigfloat& rop,

const int n ,const double *const e){
〈check summands are finite〉

#ifdef USE_DOCUMENTED_LEDA_INTERFACE
const int crossover = 8;
〈handle expansions shorter than crossover〉

#else
〈handle zero or one summand〉

#endif

double pos[n];
double neg[n];

int plen=0;
int nlen=0;

for(int i=0;i<n;i++) {
if(e[i]>0.0) pos[plen++]=e[i];
else if(e[i]<0.0) neg[nlen++]=e[i];

}

if(plen*nlen!=0){

leda::bigfloat x;

monotone_expansion_to_leda_bigfloat(rop,plen,pos);
monotone_expansion_to_leda_bigfloat(x,nlen,neg);

rop = leda::add(rop,x,53,leda::EXACT);

}else if(plen!=0){
monotone_expansion_to_leda_bigfloat(rop,plen,pos);

}else if(nlen!=0){
monotone_expansion_to_leda_bigfloat(rop,nlen,neg);

}else{
rop = 0;

}
}

Algorithm 32. Given an expansion e0, e1, . . . , en−1 with
∑n−1

i=0 |ei| < τ(2− εm), e.g., a strongly nonoverlap-
ping expansion, then expansion_to_leda_bigfloat_monotonize() computes a leda::bigfloat
rop with rop=

∑n−1
i=0 ei .

〈convert an expansion by monotonizing to leda::bigfloat〉≡
void expansion_to_leda_bigfloat_monotonize(leda::bigfloat& rop,

const int n ,const double *const e){
〈check summands are finite〉
〈handle zero or one summand〉

const int l = 40;
double g[l];

const int k = de_monotonize(n,e,l,g);
double *const f = g+l-k;

monotone_expansion_to_leda_bigfloat(rop,k,f);
}

32



A.3 Experiments

For experiments with leda, we use leda 6.3 that comes precompiled for both 32 bit and 64 bit environ-
ments. Here, leda::bigfloat has a limb size of 32 and 64 bits in the corresponding leda versions. For
the direct conversion direct 1, we convert each summand individually. Then we add them up one by one
and by decreasing magnitude, using leda’s exact addition. In direct 2 we add by increasing magnitude.
Otherwise, the experimental setup is the same as in Section 5. We have each of the new conversion
approaches split and monotonize in two version, one that adheres to the leda interface and one that
bypasses the interface and writes directly to leda::bigfloat internals. Results are shown in Figure 6
and are similar to the results obtained for conversion to mpfr.
If we rely on the leda interface, an improvement is made with monotonize for more than 3 summands
and with split for more than 7 summands only. Originally, monotonize and split were even slower below
these thresholds, but the final versions use a direct conversion approach in this case. For monotonize,
one can nicely see the ranges where number of output summands of monotonize increases from one to
two and from two to three for the case of uncompressed input expansions.
The conversion methods that avoid the leda interface and write data directly to the leda::bigfloat
internals are a much better choice. They improve upon the direct approaches starting with two summands
and by a much wider margin. Conversion by monotonize is uniformly the best choice in this case.
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Figure 6: Experimental results for converting expansions to leda::bigfloat. Plottings show the
speedup for each conversion method, relative to the trivial conversion direct 1 on a logarithmic
scale.
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