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A Query Decomposition Approach for Relational DBMS
using Different Storage Architectures

Andreas Lübcke, Veit Köppen, and Gunter Saake
School of Computer Science,

Otto-von-Guericke-University Magdeburg, Germany
{andreas.luebcke,veit.koeppen,gunter.saake}@ovgu.de

Abstract: Database systems range from small-scale stripped database programs for
embedded devices with minimal footprint to large-scale OLAP applications. For rela-
tional database management systems, two storage architectures have been introduced:
a) row-oriented architecture and b) column-oriented architecture. In this paper, we
analyze the workload for database systems to select the most suitable architecture for
each workload. We present a query decomposition approach to evaluate database op-
erations with respect to their performance according to the storage architecture. De-
composed queries are mapped to workload patterns which contain aggregated database
statistics. Further, we develop decision models which advise the selection of the opti-
mal storage architecture for a given application domain.

1 Introduction

Administration and optimization of database systems is a costly task [WKKS99]. There-
fore, database-management-system (DBMS) vendors and researchers developed self-tuning
techniques to continuously and automatically tune DBMSs [IBM06, WHMZ94]. Interest-
ingly, almost all approaches target at row-oriented DBMSs (row stores) [CN07].

New requirements for database applications (e.g., extraordinary data growth, real-time
data warehousing) came up in recent years. Therefore, DBMS vendors and researchers
developed new technologies. Column-oriented DBMSs (column stores) [Aba08, ABH09,
ZBNH05] were developed to process aggregates (and other typical data-warehouse oper-
ations) more efficiently on exploding data volumes than the long-established row stores
(cf. also Section 2). Researcher investigate approaches that combine transactional and
analytical processing functionality [SB08, VMRC04, ZAL08, Pla09, KN11]1 to support
analyses on up-to-date data (best in real-time) as well as new approaches for decision anal-
yses in new domains like sensor networks [BGS01] and mobile devices [Man04]. New
approaches are developed to satisfy new changed requirements for database applications,
thus the number of candidates in the decision process for physical database design has
also increased. Moreover, new application fields imply a more complex decision process
to find the suitable DBMS for a certain use case.

1Most approaches for both OLTP and OLAP are main-memory-based, thus they are only suitable for large
server environments.
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In this paper, we introduce a new approach of workload-statistics aggregation and main-
tenance whereby we illustrate the performance of relational DBMSs with different archi-
tectures (row or column) concerning a given workload. First, we show that query-syntax-
based workload analyses, as described in [CN98], are not suitable to select the optimal
storage architecture. Second, we define workload patterns based on database operations
that support cost estimations with a basis of comparison. Third, we introduce a work-
load decomposition algorithm that enables us to analyze query parts. Workload patterns
represent decomposed workloads to compare the performance of database operations for
column and row stores. These workload patterns include all statistics needed for cost esti-
mations. We simulate the statistic gathering process with an exemplary workload. Finally,
we show that our approach is feasible for both architectures.

2 Challenges for Physical Design Process

In this section, we illustrate the increased complexity of the physical design process in the
data-warehouse (DWH) domain. Formerly, the dominant architecture for (large-scale and
commercial) relational DWH was row store2 which is similar according to their function-
ality. There are only slight differences in functionality (e.g., TID concept, clustered and
non-clustered data storage, data access via primary key, tuple-wise access based on pages)
between different row-store implementations, thus they are comparable in the manner of
query execution. The data storage of row stores is tuple-wise organized, i.e., tuples are
stored sequentially. In contrast, column stores partition tuples column-wise (vertical), thus
the values of columns are stored sequentially.

TPC-H benchmark results3 show that column stores are faster than row stores for typ-
ical DWH workloads [AMH08, SAB+05]. However, column stores perform worse on
tuple operations and updates because after vertical partitioning, column stores have to re-
construct tuples to proceed. Thus, we assume that there are application fields for row
and column stores in the DWH domain with respect to new requirements like real-time
DWHs [SB08, ZAL08] or dimension updates [VMRC04].

Standard TPC-H Adjusted TPC-H
Query # MySQL ICE MySQL ICE
TPC-H Q15 00:00:08 00:00:01 00:00:08 00:00:02
TPC-H Q16 00:00:09 00:00:01 00:00:12 00:00:24

Table 1: Influence of operations to DBMS perfor-
mance [Lüb10] (query execution times in hh:mm:ss).

We compare and estimate perfor-
mance for a given workload for
row and column stores to select
the optimal storage architecture
for a use case (e.g., real-time data
warehousing). For the compar-
ison, we consider different opti-
mization techniques (e.g., differ-

ent index structures) in each architecture. Unfortunately, several optimization techniques
cannot be compared for both architectures because they are architecture-specific (e.g., self-
tuning, vector-based operations). Self-tuning approaches [CN07] (indexes etc.) are well

2The authors are aware that column stores are already proposed in 1979 [THC79] and Sybase releases pro-
prietary products more than 15 years ago.

3http://www.tpc.org/tpch/results/tpch perf results.asp
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investigated for row stores but not for column stores. Column stores support a number of
compression techniques and vector based operations [Aba08] which are not supported by
row stores. New compression techniques are developed for row stores [OJP+11, Ora11]
(e.g., Oracle Hybrid Columnar Compression on Exadata (HCC)) that are similar to com-
pression techniques in column stores. Nevertheless, row stores have to decompress data for
processing while column stores are capable to process on compressed data. The process-
ing on compressed data is (beside aggressive compression) one of the major advantages
of column stores. Moreover, column stores themselves increase the decision complexity
because there is an amount of different approaches (e.g., column stores utilize either tuple-
oriented or column-oriented query processors). Summarizing, there are more choices to
be made for column than for row stores - this increases complexity (beyond choice of
architecture).

1 CREATE VIEW revenue0(supplier_no, total_revenue) AS
2 SELECT l_suppkey,SUM(l_extendedprice * (1 - l_discount))
3 FROM lineitem
4 WHERE l_shipdate>=d a t e ’1993-05-01’
5 AND l_shipdate<d a t e ’1993-05-01’+ i n t e r v a l ’3’month
6 GROUP BY l_suppkey;
7 SELECT s_suppkey,s_name,s_address,s_phone,total_revenue
8 FROM supplier,revenue0
9 WHERE s_suppkey=supplier_no AND total_revenue=

10 (SELECT MAX(total_revenue) FROM revenue0)
11 ORDER BY s_suppkey;
12 DROP VIEW revenue0;

Listing 1: TPC-H query Q15

1 SELECT p_brand,p_type,p_size,COUNT(DISTINCT ps_suppkey)
2 AS supplier_cnt
3 FROM partsupp,part
4 WHERE p_partkey=ps_partkey AND p_brand<>’Brand#51’
5 AND p_type NOT LIKE ’SMALL PLATED%’
6 AND p_size IN(3, 12, 14, 45, 42, 21, 13, 37)
7 AND ps_suppkey NOT IN(
8 SELECT s_suppkey FROM supplier
9 WHERE s_comment LIKE ’%Customer%Complaints%’)

10 GROUP BY p_brand,p_type,p_size
11 ORDER BY supplier_cnt DESC,p_brand,p_type,p_size;

Listing 2: TPC-H query Q16

To show the complexity of storage-architecture decisions, we introduce an example based
on the TPC-H benchmark [Tra10]. We use the DBMSs MySQL 5.1.37 (row store) and In-
fobright ICE 3.2.2 (column store) in our test setup. Our decision to use these two DBMSs
is referable to the fact that both systems are based on the same DBMS-kernel [Inf08]. In
the following, we motivate our work, thus we only present an excerpt of our study. We
modify the number of returned attributes of the TPC-H queries Q15 and Q164 (cf. List-

4These two queries illustrate typical results from our study, thus they are representative.
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1 CREATE VIEW revenue0(supplier_no, total_revenue) AS
2 SELECT l_suppkey,SUM(l_extendedprice * (1 - l_discount))
3 FROM lineitem
4 WHERE l_shipdate>=d a t e ’1993-05-01’
5 AND l_shipdate<d a t e ’1993-05-01’+ i n t e r v a l ’3’month
6 GROUP BY l_suppkey;
7 SELECT *,total_revenue
8 FROM supplier,revenue0
9 WHERE s_suppkey=supplier_no AND total_revenue=

10 (SELECT MAX(total_revenue) FROM revenue0)
11 ORDER BY s_suppkey;
12 DROP VIEW revenue0;

Listing 3: Adjusted TPC-H query Q15

1 SELECT *,COUNT(DISTINCT ps_suppkey) AS supplier_cnt
2 FROM partsupp,part
3 WHERE p_partkey=ps_partkey AND p_brand<>’Brand#51’
4 AND p_type NOT LIKE ’SMALL PLATED%’
5 AND p_size IN(3,12,14,45,42,21,13,37)
6 AND ps_suppkey NOT IN(
7 SELECT s_suppkey FROM supplier
8 WHERE s_comment LIKE ’%Customer%Complaints%’)
9 GROUP BY p_brand,p_type,p_size

10 ORDER BY supplier_cnt DESC,p_brand,p_type,p_size;

Listing 4: Adjusted TPC-H query Q16

ing 1 and 2) to demonstrate influences of a single operation to the query performance. We
choose the naive approach to return all attributes (cf. Listing 3 and 4; i.e., we increase the
size of processed tuples). Note that we do not change the query structure. We assume that
query-based workload analyses [CN98] are not sufficient to estimate performance behav-
ior using different storage architectures if there is an influence by our changes. The results
(cf. Table 1) show that there is only a negligent influence by our changes to Q15, i.e., the
mutual performance of both DBMS is not affected. In contrast, the mutual performance
of both DBMS alters for Q16. The differences are not obvious from the query structure or
syntax (cf. Listing 1 and 2). We propose that the change of projection differentially alters
the size of intermediate and final results of both queries. Hence, the performance differ-
ences are caused by different number of involved columns5. In other words, modifications
to a single operation have different impacts on different queries. Our complete study can
be found in [Lüb10]. Hence, we state that a general decision regarding the storage archi-
tecture is not possible based only on the query structure, as described in [CN98]. We have
to analyze single operations of a query (e.g., join operation or tuple selection) to select the
optimal storage architecture for each query.

5Projection does not change number of tuples but number of columns per tuple.
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3 Workload Patterns

To select the optimal storage architecture, we have to analyze a given workload; therefore,
we need workload-statistic representations. We decompose the workload to aggregate,
to process, as well as to administrate the extracted statistics. In the following, we map
single operations of a workload (at least of one query) and their optimizer statistics to
evaluable patterns. Therefore, we present our pattern framework which stores all necessary
statistics for subsequent performance analyses. Figure 1 illustrates the procedure of our
decision process regarding the storage-architecture selection. In the following, we outline
the design of our pattern framework.

Workload Workload 
Decomposition

Workload 
Patterns

Statistics

Improvements & 
Weighting Factors

Decision 
Model

Figure 1: Workflow of the storage-architecture decision process.

3.1 Pattern Classes

To analyze the influence of single operations, we propose three patterns for operations in
workload queries. The three operation patterns are tuple operations, aggregations and
groupings, and join operations. We define a number of sub-patterns for each of those
three to characterize particular operations more precisely within the patterns. This way, we
support analyses based on the three patterns and additionally fine granular analyses based
on sub-patterns. In our approach, statistic representation is not limited to query-wise nor
to overall point of view for analyses. Hence, we can determine where the majority of cost
emerge within a workload (at least one query).

First, the tuple operation pattern covers all operations that process or modify tuples (e.g.,
selection, sort). We propose this pattern for performance analyses because row stores
process directly on tuples in contrast to column stores that costly reconstruct tuples. We
identify the following sub-patterns:

Sort/order operation: Sort/order operation creates sequences of tuples and affects all
attributes of a tuple. We consider duplicate elimination as a sort operation because
sort accelerates speed to find duplicates. Herein, we only consider explicit sort/order
operations caused by workload or user.

Data access and tuple reconstruction: Row stores always access tuples and column stores
have to reconstruct tuples to access more than one column.
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Projection: Projection returns a subset of tuple attribute values and causes (normally) no
additional cost for query execution.

Filtering: Filtering selects tuples from tables or intermediate results based on a selection
predicate (e.g., selection in WHERE-clause and HAVING-clause).

Second, we cover all column processing operations in the aggregation and grouping pat-
tern (e.g., COUNT and MIN/MAX). We propose this pattern as counterpart to the tuple
operation pattern. Operations which we assign to this pattern process data only on sin-
gle columns except for grouping operations which can also process several columns (e.g.,
GROUP BY CUBE). Due to column-wise partitioned data in column stores and single
column processing of the herein assigned operations, column stores perform well on ag-
gregations (cf. Section 2). Hence, we identify the following sub-patterns:

Min/Max operation: The min/max operation provides the minimum/maximum value of
a single attribute (column).

Sum operation: This operation computes the sum of all values in one column.

Count operation: The count operation provides the number of attribute values in a col-
umn and COUNT(*) provides the number of key values, thus it processes a single
column.

Average operation: The average operation computes all values of a single column as
well as the sum operation, but it can have different characteristics (e.g., mean (avg)
or median).

Group by operation: This operation merges equal values according to a certain column
and results in a subset of tuples. Grouping across a number of columns is also
possible.

Cube operator: The cube operator computes all feasible combinations of groupings for
selected dimensions. This generation requires the power set of aggregating columns,
i.e., n attributes are computed by 2n GROUP BY clauses.

Standard deviation: The standard deviation (or variance) is a statistical measure for the
variability of a data set and is computed by a two pass algorithm (i.e., two complete
processing cycles).

Third, the join pattern matches all join operations of a workload. Join operations are costly
tasks for DBMSs. We propose this pattern to show different join techniques between col-
umn and row stores (e.g., join processing on compressed columns or on bitmaps). Within
this pattern, we evaluate different processing techniques against each other. Consequently,
we define the following sub-patterns:

Vector-based: The column-oriented architecture naturally supports vector based join tech-
niques while row stores have to maintain and create structures (e.g., bitmap (join)
indexes [Aba08, Lüb08]).
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Workload
 

Min / Max
 

Sum
 

Count
 

Cube
 

Avg
 

St. Dev.
 

Sort / Order
 

Non-vector-based
 

Tuple Reconstruction / 
Data Access

 

Projection
 

Filtering
(Having, Selection)

 

Vector-based
 

Tuple Operation
 

Aggregation & 
Grouping

 

Join
 

Group by
 

Figure 2: Workload patterns based on operations.

Non-vector-based: This pattern matches ”classic” join techniques (from row stores6, e.g.,
nested loop or merge join) to differentiate the performance between vector and non-
vector-based join, thus we can estimate effects on the join behavior by architecture.

We only propose these two sub-patterns because the processing on bit-vectors/bitmaps
is a distinction between an amount of join techniques. Hence, we assume that there is
no necessity to map each join technique into its own sub-pattern. Figure 2 shows all
introduced patterns and their relation to each other.

3.2 Dependencies between Patterns

Database operations are not always independent from each other. We identify dependen-
cies between the following patterns: join, filtering, sort/order, group/cube, and data access
pattern.

Join operations innately imply tuple selections (filtering pattern). However, the tuple se-
lection itself is part of the join operation by definition, thus we assume that an additional
decomposition of join operations is not necessary. Moreover, new techniques have to be
implemented to further decompose join operations and gather necessary statistics, thus ad-
ministrative cost for tuning will be noticeably increased. To a side-effect, each DBMSs
have to be extended with this new system-specific decomposition and the comparison
of join techniques belonging to different architectures are no longer possible (system-
independence is lost again).

6Some column stores also support these join techniques (especially if tuple-oriented query processor is used).
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We state that two different types of sort/order operation can occur, i.e., implicit and explicit
sort. The explicit sort is caused by workload or user, thus we consider this operation in
the sort/order pattern. In contrast, we do not consider the implicit sort operation in the
sort/order pattern because this sorting is caused by the optimizer (e.g., for sort-merge join
or duplicate elimination). Therefore, we assign all cost of grouping to the GROUP BY (or
CUBE) pattern including the sort cost to sustain comparability.

Third, tuple reconstruction is part of several operations for column stores. We add this
cost to the tuple operation pattern and maintain comparability of operations beyond the
architectures because row stores are not affected by tuple reconstructions.

We assume, further workload decomposition is not meaningful because administrative cost
affects the performance of existing systems as well as the comparability of performance
issues between the architectures according to certain workload parts. These impacts dis-
advantageously affect the usability of our pattern framework.

4 Query Decomposition

In this section, we introduce our approach to decompose the workload. First, we illustrate
the (re-) used DBMS functionality and how we gather necessary statistics from existing
systems. Second, we introduce the mapping of decomposed query parts to our established
workload patterns and show a decomposition result by example. Our approach is applica-
ble to each relational DBMS. Nevertheless, we decide to use a closed source system for
the following considerations because the richness of detail of optimizer/query plan out-
put is higher and easier to understand. More detailed information result in more accurate
recommendations.

4.1 Query Plans

A workload decomposition based on database operations is necessary to select the optimal
storage architecture (cf. Section 2). Therefore, we use query plans [ABC+76] which exist
in each relational DBMS. On the one hand, we reuse database functionality and avoid new
computation cost for optimization. On the other hand, we make use of system optimizer
estimations that are necessary for physical database design [FST88].

1 SELECT *
2 FROM employees e JOIN departments d
3 ON e.department_id=d.department_id
4 ORDER BY last_name;

Listing 5: Example SQL query (14-1) [Ora10a]

Based on query plans, we collect statis-
tics directly from a DBMS and use the
optimizer cost estimations. The exam-
ple in Listing 5 shows an SQL query and
we transform this to a query plan in Ta-
ble 2 [Ora10a]. Table 2 already offers
some statistics such as number of rows,
accessed bytes by the operation, or cost.

Nevertheless, Table 2 shows only an excerpt of gathered statistics. All possible values
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for query plan statistics can be found in [Ora10b, Chapter 12.10]. Hence, we are able to
determine the performance of operations on a certain architecture (in our example a row
store) by statistics such as CPU cost and/or I/O cost7.

In addition to performance evaluation by several estimated cost, we gather further statis-
tics from query plans which influence performance of an operation on a certain architec-
ture (e.g., cardinality of attributes). For column stores, the operation cardinality indirectly
affects performance if the operation processes several columns, thus column stores have
to process a number of tuple reconstructions (e.g., high cardinality means many recon-
structions). Thus, we use meta-data (e.g., compute the selectivity of attributes) to estimate
influences of data itself on the performance.

ID Operation Name Rows Bytes Cost (%CPU) ...
0 SELECT STATEMENT 106 9328 7 (29) ...
1 SORT ORDER BY 106 9328 7 (29) ...

* 2 HASH JOIN 106 9328 6 (17) ....
3 TABLE ACCESS FULL DEPARTMENTS 27 540 2 (0) ...
4 TABLE ACCESS FULL EMPLOYEES 107 7276 3 (0) ...

Table 2: Textual query plan of SQL example (14-1) [Ora10a]

4.2 From Query Plans to Workload Patterns

In order to benefit from the collected statistics, we map them to our workload patterns. We
use a second example [Ora10c] (Listing 6 and Table 3) to simulate a minimum workload
instead of a single query. In the following, we illustrate the mapping approach by using
the examples in Listing 5 and 6. In our name convention, we define a unique number8

that identifies a query within our mapping algorithm. Furthermore, we reuse the operation
IDs from query plans (Table 2 and 3) in the second hierarchy level to identify operations
within queries (i.e., 2.6 represents the second query (cf. Listing 6) and its HASH JOIN
(cf. Table 3)). In the following, we refer the CPU cost from Table 2 and 3.

1 SELECT c.cust_last_name, SUM(revenue)
2 FROM customers c, v_orders o
3 WHERE c.credit_limit > 2000
4 AND o.customer_id(+) = c.customer_id
5 GROUP BY c.cust_last_name;

Listing 6: Example SQL query (11-9) [Ora10c]

The first query (Listing 5) is decomposed
into four patterns. First, we see the data
access operation of employees (ID 3)
and department (ID 4) tables in the
corresponding query plan in Table 2. The
total cost for the data access operations is
5. Second, the join operation (ID 2)
is executed with a hash-join algorithm.
Due to bottom-up summation in the given

query plans, the hash-join cost is only 1 because up to this point the cost (cf. Table 2)
is 6 and the cost of its children is already 5 (i.e., cost of children (5) summed up with

7We receive query plans directly from DBMS optimizer (e.g., EXPLAIN PLAN) or use sample workloads
with operation-type distribution and corresponding cost.

8In the following considerations, we start with 1 which represents the first query.
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own cost of 1 results in total cost of 6). Third, the sort operation (ID 1) implements
the ORDER BY statement with cost of 1. The total cost of all processed operations is
7. Fourth, the select statement (ID 0) represents the projection and causes no additional
cost (remain 7). The identifiers from 1.0 to 1.4 represent all operations of the first query
(Listing 5) in Figure 3.

ID Operation Name Rows Bytes Cost (%CPU) ...
0 SELECT STATEMENT 144 4608 16 (32) ...
1 HASH GROUP BY 144 4608 16 (32) ...

* 2 HASH JOIN OUTER 663 21216 15 (27) ...
* 3 TABLE ACCESS FULL CUSTOMERS 195 2925 6 (17) ...

4 VIEW V ORDERS 665 11305 ...
5 HASH GROUP BY 665 15960 9 (34) ...

* 6 HASH JOIN 665 15960 8 (25) ...
* 7 TABLE ACCESS FULL ORDERS 105 840 4 (25) ...

8 TABLE ACCESS FULL ORDER ITEMS 665 10640 4 (25) ...

Table 3: Textual query plan of SQL example (11-9) [Ora10c]

We also decompose the second example (Listing 6) into four operation types (cf. Table 3).
First, IDs 3, 7, and 8 represent data access operations and cause total cost of 14.
Second, the optimizer estimates both hash joins (ID 2 and 6) with no (additional) cost
because their cost is only composed by the summed cost of their children (ID 3, 4 and
ID 7, 8). Third, the GROUP BY statement in Listing 6 is implemented by hash-based
grouping operations (ID 1 and ID 5). The cost of each HASH GROUP BY is 1 and the
total cost of this operation type is 2. Fourth, the projection (ID 0) and the sum operation
represented by select statement causes again no additional cost9. If the sum operation
causes cost then it is represented by a separate operation (ID). We also classify the view
(ID 4) as projection. If a view implements joins (or other complex operations) they are
separately distinguished in the query plan. The identifiers from 2.0 to 2.8 represent all
operations of the second query (Listing 6) in Figure 3.

In the following, we summarize single operations of similar types (five for example query
two). We list the five operation types and assign them to the workload patterns and their
sub-patterns that we introduce in Section 3. The join operations of our example queries ID
1.2, 2.2, and 2.6 are assigned to the non-vector based join pattern. We assign the
operations with ID 1.3, 1.4, 2.3, 2.7, and 2.8 to the data access sub-pattern
of the tuple operation pattern. We also assign the projections (ID 1.0, 2.0, and 2.4)
and the sort operation (ID 1.1) to the tuple operation pattern. Finally, we assign the
group by operations (ID 2.1 and 2.5) to the group by sub-pattern within the aggregation
and grouping pattern. We present the result in Figure 3 whereby we only show ID and cost
of each operation for reasons of readability.

However, we are able to compare performance of operations as well as to describe the
behavior of operations on different architectures with the stored information in workload
patterns. Therefore, we use (a combination of) different metrics in our decision mod-
els like CPU or I/O cost to evaluate the performance with respect to certain cost criteria
(e.g., minimal I/O cost). We derive heuristics and rules for the design process of relational

9We state that the sum operation is already processed on-the-fly while grouping.
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Figure 3: Workload patterns with cost of operations for the row store example workload

databases from operations behavior evaluated by statistics. Heuristics and rules further im-
prove our decision models (i.e., reduce complexity of design decision process and/or give
previews for design decision without holistic workload computation). Furthermore, we
state that our design decision (process) is not static because we can periodically repeat the
process to react on workload changes. We suggest an integration with self-tuning/alerter
tools [CN07, SGS03] that continuously monitor the workload and update statistics. Due
to the system-independent and transparent framework design, we are also able to use al-
ready extracted (or aggregated) data as well as estimated values (i.e., the statistics do not
have to be extracted from existing systems). Furthermore, our approach is transparent to
any workload type. We can evaluate the performance for on-line analytical processing
(OLAP) and on-line transactional processing (OLTP) workloads just as mixed workloads
with OLAP and OLTP parts. The transparency of our approach is necessary to also con-
sider new requirements (e.g., real-time DWH) for database and data-warehouse systems.

4.3 Representation for Column Stores

For our approach, we do not need a separate decomposition algorithm for column stores
(i.e., the query plan operations of column stores can also be mapped to our workload pat-
terns) because only the naming in column stores for operations differ from the typical
naming in row stores but the abstracted functionality is equal. Representatively, we illus-
trate the mapping of C-Store/Vertica query plan operations introduced in [SAB+05] and
map these operations to our workload patterns as follows:

Decompress: Decompress is mapped to our data access pattern. This operation decom-
presses data for subsequent operations in the query plan that cannot be processed on
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compressed data (cf. [Aba08]).

Select: Select is equivalent to the selection of relational algebra with the exception that
the result is represented as bitstring. Hence, we map it to our filtering pattern.

Mask: Mask operation processes on bitstrings and returns only those values whose asso-
ciated bits in the bitstring are 1. Consequently, we map mask to our filtering pattern.

Project: Projection is equivalent to the projection of relational algebra. Thus, we map
this operation to our projection pattern.

Sort: This operation sorts columns of a C-Store projection according to a (set of) sort
column(s). This technique is equivalent to sort operations on projected tuples, i.e.,
we map this operation to our sort/order pattern.

Aggregation operators: These operations compute aggregations and groupings equiva-
lent to SQL [Aba08], thus we directly map these operations to the corresponding
sub-pattern in our aggregation & grouping pattern.

Concat: Concat combines C-Store projections sorted in the same order into a new projec-
tion. We regard this operation as tuple reconstruction and map it to the correspond-
ing pattern.

Permute: This operation permutes the order of columns in C-Store projections according
to the given order by a join index. It prevents additional replication overhead that
emerges through creation of join indexes and C-Store projections in several orders.
This operation is used for joins, thus we map its cost to our join pattern.

Join: We map this operation to the join pattern and distinguish two join types. First, if the
tuples are already reconstructed then we process them as row stores, i.e., we map
this join type to the non-vector based join pattern. Second, the join operation only
processes on columns that are needed to evaluate the join predicate. The join result
is only a set of pairs of positions in the input columns [Aba08]. This join type can
process on compressed data as well as it can use vector based join techniques, thus,
we map this join type to the vector based join pattern.

Bitstring operations: These operations (AND, OR, NOT) process bitstrings and compute
a new bitstring with respect to the corresponding logical operator. These operations
implement the concatenation of different selection predicates. Therefore, we map
these operations to our filtering pattern.

Finally, we state that our approach can be used for each relational DBMS. Each relational
DBMS is referable to the relational data model, so these DBMSs are based on the rela-
tional algebra in some manner, too. Thus, we can reduce or map those operations to our
workload patterns; in worst case, we have to add an architecture-specific operation (e.g.,
tuple reconstruction for column stores) for hybrid DBMSs to our pattern. For a future
(relational) hybrid storage architecture, such an operation could be necessary to map the
cost for conversions between row- and column-oriented structures and vice versa.
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Threats to validity. We know that hundreds of relational DBMSs exist. We state that
we cannot test all existing systems to claim generality of the approach nor can we formally
prove all different implementations of general concepts based on the relational data model.
Nevertheless, each relational DBMS is referable to the relational data model as well as
relational algebra operations are based on the relational data model. The relational data
model serves in this sense as an interface between implementation of database operations
and general concept concerning the relational data model, thus we can map each database
operation of relational DBMSs to our framework. Furthermore, we argue that (internal)
database operations of each DBMS that use SQL can be mapped to relational algebra
operations.

5 Evaluation

We decide to simulate the workload with the standardized TPC-H benchmark (2.8.0, scale
factor 1) to show the usability of our approach. We use the DBMSs Oracle 11gR2 Enter-
prise Edition and Infobright ICE 3.3.1 for our experiments. We run all 22 TPC-H queries
and extract the optimizer statistics from the DBMSs. For reasons of clarity and compre-
hensibility, we only map three representative10 TPC-H queries namely Q2, Q6, and Q14
to the workload patterns, see Figure 4. The results for the remaining queries can be found
in Appendix A11.

The query structure, syntax, and execution time are not sufficient to estimate the query-
performance behavior on different storage architectures. We introduce an approach based
on database operations that provides analyses to find long running operations (bottle-
necks). Moreover, we want to figure out reasons for bad (or good) performance behavior
of operations in DBMSs, thus we have to use additional metrics. We select the I/O cost12

to compare DBMSs and summarize the optimizer output in Table 4. We state that I/O cost
is a reasonable cost metric but not sufficient to select the optimal storage architecture. We
will show this effect for I/O cost with a negation example in the following. Following
our previous name convention, we define the query IDs according to their TPC-H query
number (i.e., we map the queries with the IDs 2, 6, and 14). The operations are iden-
tified by their query plan number (IDs in Table 4), thus the root operation of TPC-H query
Q2 has the ID 2.0 in Figure 4. All values in Table 4 are given in Kbytes. The given
values are input cost of each operation except the table access cost because no information
on input cost to table access operations are available. Note, the granularity of Oracle’s
cost measurements is on the byte level whereas the measurements of ICE are on the data
pack (65K) level. Nevertheless, we used the default data block size 8kbytes in our Oracle
installation; that is the smallest accessible unit.

In Figure 4, we present the workload patterns with I/O cost of the corresponding TPC-H
queries. As mentioned before, the projection operation causes no additional cost. Hence,
the I/O cost in Table 4 and Figure 4 represent the size of final results. The stored infor-

10The queries show typical results for the TPC-Benchmark in our test environment.
11Please cf. [Tra10] for the complete schema and query description.
12I/O cost is a best practice cost metric.
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Oracle
Operation Q2 (8.14sec) Q6 (22.64sec) Q14 (22.55sec)
Data Access ID7:0.8;ID12:0.029;ID13:11.2; ID2:3118 ID3:1620.894;

ID15:0.104;ID16:1440 ID4:5400
Non-vector based join ID6:202.760;ID8:1440;ID9:88.016; ID2:7020.894

ID10:17;ID11:11.229
Sort ID3:33.18;ID5:45.346
Count ID1:31.284
Sum ID1:3118 ID1:3610.173
Projection ID0:19.800;ID2:33.18;ID4:45.346 ID0:0.020 ID0:0.049

ICE
Operation Q2 (41sec) Q6 (2sec) Q14 (3sec)
Data Access ID4:65;ID5:65;ID6:845;ID7:65ID8:260; ID2:5980 ID4:5980;

ID10:65;ID11:65;ID12:65;ID13:845 ID5:260
Non-vector based join ID3:1300;ID9:1040 ID3:6240
Tuple Reconstruction ID2:5980
Sort ID2:65
Count ID1:65
Sum ID1:5980 ID1:65
Projection ID0:65 ID0:65 ID0:65

Table 4: Accessed Kbytes by query operations of TPC-H query Q2, Q6, and Q14.

mation can be analyzed and aggregated in decision models with any necessary granularity.
In our example, we only sum up all values of the data access pattern for each query to
compute I/O cost per query in Kbytes. For the three selected queries, all results and inter-
mediate results are smaller than the available main memory, thus no data has to be reread
subsequently. We suppose, the DBMS with minimal I/O cost performs best (as we men-
tioned before, I/O cost is a good cost metric). Oracle reads 1452.133 Kbytes for query Q2
and takes 8.14 seconds. ICE needs 41 seconds and accesses 2340 Kbytes. The results for
Q2 fulfill our assumption. Our assumption is also confirmed for query Q14. Oracle ac-
cesses 7020.894 Kbytes and computes the query in 22.55 seconds whereas ICE computes
it in 3 seconds and reads 6240 Kbytes. Nevertheless, we cannot prove our assumption
for query Q6. Oracle (3118 Kbytes) accesses less data than ICE (5980) Kbytes but ICE
(2 seconds) computes this query ten times faster than Oracle (22.64 seconds). Hence, we
cannot figure out a definite correlation for our sample workload.

We have previously shown that I/O cost alone is not a sufficient metric to estimate the
behavior of database operations and further, we suggest that each single cost metric is not
sufficient. However, I/O cost is one important metric to describe performance behavior on
different storage architectures because one of the crucial achievements of column stores
is the reduction of data size (i.e., I/O cost) by aggressive compression. The I/O cost also
gives an insight into necessary main memory for database operations or if operations have
to access the secondary memory. Hence, we can estimate that database operations are
completely computed in main memory or data have to be (re-)read stepwise13. We as-
sume that sets of cost metrics are needed to sufficiently evaluate the behavior of database
operations. Therefore, one needs tool support as we propose in this paper.

13We remind of the performance gap (circa 105) between main memory and HDDs.
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Workload

Min / Max
 

Cube
 

Avg
 

St. Dev.
 

Sort / Order
   ICE        Oracle
 ID  Cost  ID    Cost     
 2.2  65    2.3  33.180
                2.5  45.346

Non-vector-based
    ICE        Oracle

  ID KBytes  ID       KBytes
   2.3 1300  2.6     202.760
   2.9 1040  2.8   1440.000 
 14.2 6240  2.9       88.016
                   2.10     17.000
                   2.11     11.229
                 14.2   7020.894

Tupel Reconstruction / Data Access
       ICE              Oracle                   
  ID  KBytes      ID  KBytes
  2.4     65        2.7          0.800
  2.5     65        2.12        0.029
  2.6   845        2.13      11.200
  2.7     65        2.15        0.104
  2.8   260        2.16  1440.000
  2.10   65        6.2    3118.000
  2.11   65      14.3    1620.894
  2.12   65      14.4    5400.000
  2.13 845
  6.2 5980
14.2 5980
14.4 5980                      
14.5   260

Projection
    ICE          Oracle
  ID Kbytes ID  KBytes
  2.0  65     2.0   19.800
  6.0  65     2.2   33.180 
14.0  65     2.4   45.346
                14.0     0.049

Filtering
(Having, Selection)

Vector-based
 

Tuple Operation
Aggregation & 

Grouping
Join

 
Group by

Count
   ICE        Oracle
 ID  KBytes  ID   Kbytes
 2.1  65      2.1  31.284

Sum
   ICE            Oracle

 ID KBytes   ID     KBytes
  6.1 5980   6.1  3118.000
 14.1    65 14.1  3610.173

Figure 4: Workload graph with mapped I/O cost of TPC-H query Q2, Q6, and Q14.

We also want to evaluate our approach with the column-store solutions that use cost-based
optimizer, thus we are able to receive more expressive results. We requested the permission
to use such systems for our evaluation but until now the decision is pending. Meanwhile,
we change our system setup (from MySQL 5.1.37 to Oracle 11gR2 and ICE 3.2.2 to ICE
3.3.1) due to two issues. First, we want to show that our results are not only valid for
MySQL but also for DBMSs (in our case Oracle) that are capable for DWHs in practice.
Second, ICE 3.2.2 had some issues while processing subqueries and/or nested queries
which are referable to the underlying MySQL-kernel14. These issues are fixed in ICE
3.3.1 which is the current version as we redo our experiments.

6 Related Work

Several column stores are proposed for OLAP applications [Aba08, LLR06, SWES08,
ZBNH05]. However, all systems are pure column stores and do not support any row
store functionality. Thus, a storage-architecture decision between row and column store
is necessary. Abadi et al. [AMH08] compare row and column store with respect to per-
formance on the star-schema benchmark. They simulate the column-store architecture by
indexing every single column or vertical partitioning of the schema. They show that using
column-store architecture in a row store is possible but the performance is poor. Thereby,
Abadi et al. use a classical DWH benchmark that does not consider new requirements in
this domain like dimension updates or real-time DWH. In this paper, we do not directly
compare optimization techniques of row and column stores. Instead, we propose a frame-

14This is another argument for not using MySQL because no information was available in which version fixes
will be implemented
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work to detect strengths and weaknesses of row and column-oriented architecture with
respect to the performance for given workloads. We do not discuss earlier approaches like
DSM [CK85], hybrid NSM/DSM schemes [CY90], or PAX [ADHS01] because the dif-
ferences to state-of-the-art column stores have been already discussed (e.g., Harizopoulus
et al. [HLAM06]).

There are systems available which attempt to fill the gap between column and row stores.
C-Store [Aba08] uses two distinct storage areas to overcome update problems of column
stores. A related approach brings together a column store approach and the typical row-
store domain of OLTP data [SBKZ08]. However, we do not develop hybrid solutions that
attempt to fill this gap for now. Our approach recommends the optimal architecture for a
certain application.

There exist a number of design advisors which are related to our work (e.g., IBM DB2
Configuration Advisor [KLS+03]). The IBM Configuration Advisor recommends pre-
configurations for databases. Zilio et al. [ZRL+04, ZZL+04] introduce an approach that
collects statistics like our approach directly from DBMSs. The statistics are used to ad-
vise index and materialized view configurations. Similarly, Bruno and Chaudhuri [BC06,
BC07] present two approaches which illustrate the whole tuning process using constraints
such as space threshold. However, these approaches operate on single systems instead
of comparing two or more systems according to their architecture. Additionally, our ap-
proach aims at architectural decisions contrary to the mentioned approaches which tune
configurations, indexes, etc.

Another approach for OLAP applications is Ingres/Vectorwise which applies the Vector-
wise (formerly MonetDB/X100) architecture into the Ingres product family [Ing09]. In
cooperation with Vectorwise, Ingres is developing a new storage manager ColumnBM
for the new Ingres/Vectorwise. However, the integration of the new architecture into the
existing environment remains unclear [Ing09].

7 Conclusion

In recent years, column stores have shown good results for DWH applications and often
outperformed row stores. However, new requirements (cf. Section 1) arise in the DWH
domain that cannot be satisfied only by column stores. The new requirements also demand
for row-store functionality (e.g., real-time DWHs need (sufficient) quick update process-
ing). Thereby, the complexity of design process increases because we have to choose the
optimal architecture for given applications. We show with an experiment that workload
analyses based on query structure and syntax are not sufficient to select the optimal stor-
age architecture. Consequently, we propose a new approach based on database operations.
We introduce workload patterns which contain all workload information beyond the ar-
chitectures (e.g., statistics and operation cost). We also present a workload decomposition
approach based on existing database functionality that maps operations of a given work-
load to our workload patterns. We illustrate the methodology of our decomposition ap-
proach using an example workload. Subsequently, we state that a separate decomposition
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algorithm for column stores is not needed. We state that our presented approach is trans-
parent to any workload and any storage architecture based on the relational data model. In
our evaluation, we prove the usability of our approach. Additionally, we demonstrate the
comparability of different systems using different architectures even if systems provide
different information with respect to their query execution. We also state that the rich-
ness of detail of system optimizer in closed source systems is higher than in open source
systems. Decision processes can be periodically repeated to monitor if workload changes
(e.g., new sample workloads or new applications) effect the previous design decision, thus
the storage architecture selection is not static. We see two practical implications for our
approach. First, we use our approach to select the most suitable relational storage archi-
tecture during system design as we use sample workloads for the prediction. Second, we
implement our approach to work on existing systems as alerter (or monitor) that analyzes
system workload continuously to inform the (database) administrator if the current work-
load is better supported by another storage architecture. Moreover, our approach can be
used for optimizer (decisions) in hybrid relational DBMS that has to select the storage
method for parts of data.

In future work, we will investigate two strategies to implement our workload patterns
in a prototype. First, we implement a new DBMS to export periodically statistics and
operation cost which map to our workload patterns. This way, we will not affect per-
formance of analyzed systems by prediction computation. Second, we adapt existing ap-
proaches [BC06, LGB09] to automatically collect and map statistics to workload patterns
which we can directly transfer into a graph structure (query graph model). With both
strategies, we are able to store the necessary statistics for storage architecture decision
without running systems. Additionally, we will present studies for storage architecture de-
cision based on aggregated or estimated values (i.e., not directly from DBMS/optimizer).
To develop our decision model based on our workload patterns, we will perform detailed
studies on OLAP, OTLP, and mixed workloads. We will use existing systems to gather
expressive values for predictions. Finally, we will derive physical design heuristics and
rules from our gathered values to extend our decision model.
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[LGB09] Andreas Lübcke, Ingolf Geist, and Ronny Bubke. Dynamic Construction and Ad-
ministration of the Workload Graph for Materialized Views Selection. Int. Journal of
Information Studies, 1(3):172–181, 2009.

[LLR06] Thomas Legler, Wolfgang Lehner, and Andrew Ross. Data mining with the SAP
NetWeaver BI Accelerator. In VLDB ’06, pages 1059–1068. VLDB Endowment, 2006.
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A TPC-H: Query-wise Summary

In the following tables (Table 5 to 26), we present our results for the complete TPC-H
benchmark [Tra10] (2.8.0, scale factor 1). We present our results query-wise for both
systems (Oracle vs. ICE). The value for each pattern is the summation of operation cost
(cf. Section 3).

Query Q1
Workload Pattern Oracle (22.82sec) ICE (25sec)

Rows I/O Cost Rows I/O Cost
Data Access 5789.7K 156321.522 6012.7K 5980
Group By 5789.7K 156321.5K 5916.6K 5980
Projection 5 0.135 4 65

Table 5: Accessed data of tpc-h query Q1 - Number of rows and I/O cost in Kbytes.
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Query Q2
Workload Pattern Oracle (8.14) ICE (41sec)

Rows I/O Cost Rows I/O Cost
Data Access 10.2K 1452.133 1048.6K 1040
Non-vector 12K 1759.005 4521.9K 4455
Tuple Reconstruction 162.3K 195
Sort 316 78.526 460 65
Count 158 31.284 460 65
Projection 416 98.326 100 65

Table 6: Accessed data of tpc-h query Q2 - Number of rows and I/O cost in Kbytes.

Query Q3
Workload Pattern Oracle (30.97sec) ICE (3sec)

Rows I/O Cost Rows I/O Cost
Data Access 3984.7K 89977.195 7712K 7670
Non-vector 4204.7K 98117.269 9240.6K 9165
Tuple Reconstruction 177.6K 195
Group By 501.7K 30102.72 30.5K 65
Sort 501.7K 30102.72 11.6K 65
Count 501.7K 24082.172 11.6K 65
Projection 10 0.48 10 65

Table 7: Accessed data of tpc-h query Q3 - Number of rows and I/O cost in Kbytes.

Query Q4
Workload Pattern Oracle (27.29sec) ICE (2min 33sec)

Rows I/O Cost Rows I/O Cost
Data Access 3100.9K 68386.986 7515.9K 7475
Non-vector 3100.9K 68386.986
Filtering 9019.1K 8970
Group By 58K 3016.028 52.5K 1495
Projection 5 260 5 65

Table 8: Accessed data of tpc-h query Q4 - Number of rows and I/O cost in Kbytes.
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Query Q5
Workload Pattern Oracle (32.66sec) ICE (4sec)

Rows I/O Cost Rows I/O Cost
Data Access 6389.5K 119631.12 7908.1K 7865
Non-vector 7777.1K 243824.536 14378.3K 14300
Tuple Reconstruction 1392.5K 1430
Group By 7.4K 844.854 7243 5980
Sort 50 3.65 5 65
Projection 25 2.85 5 65

Table 9: Accessed data of tpc-h query Q5 - Number of rows and I/O cost in Kbytes.

Query Q6
Workload Pattern Oracle (22.24sec) ICE (2sec)

Rows I/O Cost Rows I/O Cost
Data Access 155.9K 3118 18087.9K 5980
Sum 155.9K 3118 114.2K 5980
Projection 1 0.02 1 65

Table 10: Accessed data of tpc-h query Q6 - Number of rows and I/O cost in Kbytes.

Query Q7
Workload Pattern Oracle (29.48sec) ICE (4sec)

Rows I/O Cost Rows I/O Cost
Data Access 3249.8K 63543.499 7908.1K 7865
Non-vector 3678.7K 102714.005 15685.4K 15600
Tuple Reconstruction 443.8K 455
Filtering 220.8K 260
Group By 5.6k 617.493 5.9K 65
Projection 1.5K 152.504 4 65

Table 11: Accessed data of tpc-h query Q7 - Number of rows and I/O cost in Kbytes.

Query Q8
Workload Pattern Oracle (29.95sec) ICE (3sec)

Rows I/O Cost Rows I/O Cost
Data Access 6619.1K 154010.467 8234.9K 8190
Non-vector 6700.3K 159438.031 22090.3K 21970
Tuple Reconstruction 494K 520
Group By 2446 364.454 2603 65
Projection 732 109.068 2 65

Table 12: Accessed data of tpc-h query Q8 - Number of rows and I/O cost in Kbytes.
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Query Q9
Workload Pattern Oracle (37.05sec) ICE (7sec)

Rows I/O Cost Rows I/O Cost
Data Access 7511.2K 183432.882 8757.7K 8710
Non-vector 9212.7K 277307.627 33723.7K 33540
Tuple Reconstruction 1743.8K 1755
Group By 297.1K 38924.947 348.8K 390
Projection 42.5K 5571.823 175 65

Table 13: Accessed data of tpc-h query Q9 - Number of rows and I/O cost in Kbytes.

Query Q10
Workload Pattern Oracle (29.18sec) ICE (10sec)

Rows I/O Cost Rows I/O Cost
Data Access 2305.6K 75690.021 7973.4K 7930
Non-vector 2402.9K 79190.306 9476.6K 9425
Group By 97.21K 20900.15 114.7K 130
Sort 97.21K 20900.15 37.9K 65
Count 97.21K 17400.59 37.9K 65
Projection 97.23K 20903.73 20 65

Table 14: Accessed data of tpc-h query Q10 - Number of rows and I/O cost in Kbytes.

Query Q11
Workload Pattern Oracle (5.06sec) ICE (1sec)

Rows I/O Cost Rows I/O Cost
Data Access 810K 14470.029 1960.7K 1950
Non-vector 1610K 52070.029 2091.4K 2080
Tuple Reconstruction 64.2K 65
Group By 32K 1728 31.7K 65
Sort 832K 15648 29.8K 65
Projection 64K 2496 752 65

Table 15: Accessed data of tpc-h query Q11 - Number of rows and I/O cost in Kbytes.
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Query Q12
Workload Pattern Oracle (26.85sec) ICE(6sec)

Rows I/O Cost Rows I/O Cost
Data Access 1511.7K 33479.167 7515.9K 7475
Non-vector 1511.7K 33479.167 7515.9K 7475
Tuple Reconstruction 30.9K 65
Group By 11.7K 726.281 30.9K 65
Projection 2 0.126 2 65

Table 16: Accessed data of tpc-h query Q12 - Number of rows and I/O cost in Kbytes.

Query Q13
Workload Pattern Oracle (5.24sec) ICE (22sec)

Rows I/O Cost Rows I/O Cost
Data Access 1575K 87625 1699.3K 1690
Non-vector 1575K 87625 1699.3K 1690
Tuple Reconstruction 1483.9K 1495
Group By 201.4K 7956.248 1533.9K 195
Sort 100.7K 1309.256 150k 195
Projection 201.4K 2618.512 42 65

Table 17: Accessed data of tpc-h query Q13 - Number of rows and I/O cost in Kbytes.

Query Q14
Workload Pattern Oracle (22.55sec) ICE (3sec)

Rows I/O Cost Rows I/O Cost
Data Access 273.7K 7020.894 6274.1K 6240
Non-vector 273.7K 7020.894 6274.1K 6240
Tuple Reconstruction 75.9K 5980
Sum 73.7K 3610.173 75.9K 5980
Projection 1 0.049 1 65

Table 18: Accessed data of tpc-h query Q14 - Number of rows and I/O cost in Kbytes.
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Query Q15
Workload Pattern Oracle (2.18sec) ICE (2sec + 1sec

for View creation)
Rows I/O Cost Rows I/O Cost

Data Access 228.7K 5311.797 6078.1K 6045
Non-vector 20K 1020 130.7K 130
Tuple Reconstruction 1 65
Group By 218.7K 4591.797 451.9K 520
Sort 20K 1020
Projection 20K 1320 1 65

Table 19: Accessed data of tpc-h query Q15 - Number of rows and I/O cost in Kbytes. Note, ICE
needs committed view creation before querying this one.

Query Q16
Workload Pattern Oracle (3.93sec) ICE (1sec)

Rows I/O Cost Rows I/O Cost
Data Access 800.5K 7234 1111.1K 1105
Non-vector 951.9K 14528.665 1111.1K 1105
Tuple Reconstruction 118.3K 65
Filtering 118.3K 130
Group By 129.8K 14284.704 118.3K 130
Sort 15K 735 18.3K 65
Projection 129.8K 14284.704 18.3K 65

Table 20: Accessed data of tpc-h query Q16 - Number of rows and I/O cost in Kbytes.

Query Q17
Workload Pattern Oracle (24.06sec) ICE (1sec)

Rows I/O Cost Rows I/O Cost
Data Access 6001.4K 84022.41 6274.2K 6240
Non-vector 6001.4K 84022.41 6274.2K 6240
Tuple Reconstruction 587 65
Sort 5.9K 243.663
Sum 5.9K 77.259 587 65
Projection 5.9K 243.676 1 65

Table 21: Accessed data of tpc-h query Q17 - Number of rows and I/O cost in Kbytes.
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Query Q18
Workload Pattern Oracle (31.56sec) ICE (9sec)

Rows I/O Cost Rows I/O Cost
Data Access 6001.2K 54011.02 7712K 7670
Non-vector 32 0.425 9215.2K 9165
Tuple Reconstruction 798 65
Group By 6001.2K 54010.935 399 65
Sort 5 0.265 57 65
Count 4 0.3 57 65
Projection 9 0.562 57 65

Table 22: Accessed data of tpc-h query Q18 - Number of rows and I/O cost in Kbytes.

Query Q19
Workload Pattern Oracle (33.27sec) ICE (11sec)

Rows I/O Cost Rows I/O Cost
Data Access 239.1K 12899.256 18822.5K 18720
Non-vector 239.1K 12899.256 6274.2K 6240
Tuple Reconstruction 121 65
Filtering 96 130
Sum 357 29.988 121 65
Projection 1 0.084 1 65

Table 23: Accessed data of tpc-h query Q19 - Number of rows and I/O cost in Kbytes.

Query Q20
Workload Pattern Oracle (31.56sec) ICE (9min 43sec)

Rows I/O Cost Rows I/O Cost
Data Access 869.9K 17397.8 7123.8K 7085
Non-vector 869.9K 17398.274 130.7K 130
Group By 4 0.388
Sort 1 0.092 204 65
Projection 2 0.096 204 65

Table 24: Accessed data of tpc-h query Q20 - Number of rows and I/O cost in Kbytes.
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Query Q21
Workload Pattern Oracle (1min 2.48sec) ICE (6h 3min 58sec)

Rows I/O Cost Rows I/O Cost
Data Access 6511.2K 166481.649 13659.4K 13585
Non-vector 13218.7K 547594.066 15162.6K 15080
Tuple Reconstruction 12.9K 65
Group By 177.1K 32685.07 4141 65
Sort 3043K 115632.914 411 65
Count 100 4 411 65
Projection 300 23.6 100 65

Table 25: Accessed data of tpc-h query Q21 - Number of rows and I/O cost in Kbytes.

Query Q22
Workload Pattern Oracle (5.34sec) ICE (1sec)

Rows I/O Cost Rows I/O Cost
Data Access 1509.8K 7717.578 392.1K 390
Non-vector 1500.5K 7513.77
Filtering 588.2K 585
Group By 5 0.160 6384 65
Count 9.3K 203.808 7 65
Projection 1 0.032 7 65

Table 26: Accessed data of tpc-h query Q22 - Number of rows and I/O cost in Kbytes.
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