
Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Nr.:

Martin Schäler, Sandro Schulze, and Gunter Saake

Arbeitsgruppe Datenbanken

FIN-01-2012

A Hierarchical Framework for Provenance Based on Fragmentation

and Uncertainty

Fakultät für Informatik

Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-01-2012

A Hierarchical Framework for Provenance Based on Fragmentation

and Uncertainty

Martin Schäler, Sandro Schulze, and Gunter Saake

Arbeitsgruppe Datenbanken

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Martin Schäler

schaeler@iti.cs.uni-magdeburg.de

17.02.2012

A Hierarchical Framework for Provenance Based on Fragmentation

and Uncertainty

Martin Schäler, Sandro Schulze, Gunter Saake
School of Computer Science

University of Magdeburg, Germany
{schaeler, sanschul, saake}@iti.cs.uni-magdeburg.de

Categories and Subject Descriptors
H.0 [Information Systems]: General

Keywords
Provenance Framework, Result Verification, Uncertainty

Abstract
In the recent past, provenance – a research field that can be
used to determine the origin and derivation history of data
– has gained much attention [12]. Additionally, provenance
is an important field for validating computation results. It
covers coarse grained data as well as very fine grained infor-
mation showing details of the implementation. Moreover, it
is highly related to different topics such as causality [25]. Un-
fortunately, there is currently no global framework covering
existing approaches and addressing the versatile characteris-
tics of provenance. In this paper, we suggest a hierarchical
framework for provenance based on its most general and
common characteristics w.r.t. to the current state of the art.
In fact, the framework contains different layers of abstraction.
We discuss the use and limitations of all layers by means of
existing models and formalisms that lay the foundation for
each layer. Additionally, we explain the relationship between
these layers and analyze how existing approaches interact
with our framework.

1. INTRODUCTION
What is provenance? As this term is used in many commu-
nities, such as relational databases [9, 14, 18], (scientific)
workflows [27, 28, 30], and even to determine source code
ownership [15], we cannot give an overall definition sufficient
for all of these communities. Moreover, we even cannot give
a clear definition to one of these communities as pointed out
in [12], because of the diversity of provenance systems. But
what we can say is what provenance is useful for: (1) Under-
standing (and possibly recomputation) of foreign results to
validate or explain them and (2) Computation (and subse-
quent validation) of own results based on the provenance of

previous results, which are used as input [12]. Moreover, sev-
eral authors in the field of provenance have identified certain
characteristics that seem to hold for provenance generally:

Unchangeability. Provenance describes what actually hap-
pened in the past and does not describe future alternatives.
Therefore, it is unchangeable [12].

Fragmentation. Every provenance system has some start-
ing point. As Braun argues in a provoking manner, to be
complete, we have to be able to track back the history of any
data item to the Big Bang [8]. Additionally, coarse grained
provenance notions (e.g., for workflows) omit possibly impor-
tant details of the derivation process [11]. In contrast, other
forms of provenance contain a lot of very fine granular infor-
mation, which might be hard to understand because the big
picture is missing and there is simply to much information [1].
Thus, this is about the availability of (complete) provenance
information at a certain level of granularity (fragmentation).

Uncertainty. Provenance always contains uncertainty to
some extent. Thus, in most cases no provenance is better
than wrong provenance [24]. This problem also becomes
visible in several papers dealing with secure provenance, such
as [22, 23, 24] showing the necessity for reliable provenance.

Recently, provenance gained much attention [9, 12, 18, 25].
Unfortunately, it is very difficult to assign single research
results to challenges in provenance, relate them to different
aspects of provenance, alternative solutions or evaluate ad-
vantages and (possibly not obvious) drawbacks of a certain
approach, because there is no general provenance framework
covering this topic. To address this problem, we suggest such
a general framework for provenance. To ensure generality,
our framework is based on the previously introduced general
characteristics. In fact, we use differences regarding fragmen-
tation and uncertainty to describe abstraction layers that
can be used for different purposes and contain several open
research challenges. Knowing that our framework might be
incomplete and furthermore there might be use cases that
are not covered within, we explicitly encourage the reader to
question and extend the results of this paper. Particularly,
we make the following contributions:

• We suggest a general hierarchical framework for prove-
nance addressing fragmentation and uncertainty,

• show how existing formalisms and notations can be used
for different layers of abstraction in the framework,

• discuss the applicability and limitations of equivalent
formal approaches in different data models,

• present extensions of existing approaches to link the
single layers of our framework,

• explain the use and limitations of granularity refine-
ments within the layers.

2. BACKGROUND AND NOTATION
Subsequently, we introduce the notation of the Open Prove-
nance Model (OPM) for coarse grained provenance and exist-
ing formalisms for fine grained provenance which are relevant
for the remainder of this paper.

2.1 The Open Provenance Model
The OPM [27] is an example for coarse grained workflow
provenance. According to the OPM, the causal dependencies
of a particular data item within a provenance system are
modeled as an acyclic graph (V, E). The vertices of this graph
represent: (1) Artifacts naming physical objects or their
digital representation, (2) Processes taking input artifacts to
create new artifacts, or (3) Agents that have certain effects
on processes. The edges of the provenance graph show the
relationships between the vertices. For instance, Process
P1 takes two input Artifacts of certain roles to create an
Artifact Result and is controlled by Agent A1 (Figure 1). As
a result, Figure 1 shows the past derivation history of the
Result Artifact, but not possible future usage of the artifacts
or alternatives in the past in the OPM. Furthermore, we
extended the OPM with additional semantics information.
As depicted in Figure 1, we distinguish between three different
artifact types: Initial data items, intermediate results, and
final results1. This differentiation is important, because we
do not produce initial data items in a provenance system and
thus have to rely on (provenance) information tagged to this
object (fragmentation). In contrast, we produce and consume
intermediate results in our system. Moreover, final results
may be initial data items for following (future) processes.

����������

	
��
���
��

	
��
���
��
��������������

����

����

�����

�����
���
����

�	
��
���

���

��

�	
��
���

������
���

���������

��
����
�

	

�� ����
�
�����

������

�������

!��"��
�� �������
�������

���

������

��
����
�

	
�
������
�
�
�

������

��
����
�
#�
��
�����

������

Figure 1: Provenance Graph

2.2 The Relationship between Lineage, Why,

How, and Where Provenance
As already mentioned, we will build our provenance frame-
work based on existing formalisms. Hence, we briefly intro-
duce Lineage [14], Why [9], How [18] and Where [9] prove-
nance formalisms and their relationships between each other
according to the formalization of Cheney et al. for the re-
lational data model [11]. To explain the relationships of
these terms, we use the example in Figure 2. The example
contains a database instance I with two binary relations
R(a, b) and S(c, d). Furthermore, the SPJU2 queries q(x)

1Note, artifacts are not restricted digital items, but can also
represent physical objects.
2Contains Selections, Projections, Joins, and Unions only.

and r(x, y) create the views T and U respectively. Note that
we annotated all tuples in I such as t1 for the first tuple in
R. In this example, we are interested in how t8 was created.
To do so, we track back the derivation history of t8 to tuples
in I. Particularly, we found two intentions of provenance:

(A) Existence. Lineage, Why-, and How provenance ex-
plain why a tuple is part of the result of a query (sequence).
Therefore, these terms are important for recomputation and
validation of query results.
(B) Value origin. However, the terms Where and (par-
tially) How provenance show where attribute values stem
from, respectively how are they computed if the tuple exists.
Note that How provenance can explain why a tuple exists
and in some cases this approach also denotes how values are
computed as we will see shortly.
In the sequel, we will explain the basic principles and for-
malisms of Lineage, Why, How and Where provenance with
the help of the example in Figure 2 and how the approaches
relate to these two intentions.

Lineage. Formally, Lineage Lin(Q, I, tn) for a SPJU query
Q, a DB I and a tuple tn is a subset of I which is used to
create tn according to Q. For simplicity, we write Lin(tn)
because we refer to the example DB instance and queries.
Note that there might be several paths to compute tn because
of the set semantics of the relational model. Thus, a tuple tk
occurs only once in Lin although it might be used in several
paths (e.g., as join partner). In the example, Lin(t8) =
{t4, t6} expresses that these tuples are somehow used to
create t8 without showing any details such as join partners.

Why Provenance. In contrast to Lineage, Why provenance
Why(tn) contains a set of sets denoting the paths (similar to
the routes in [13]) that indicate why a tuple in the output was
created, which is not shown in Lineage. For t6 in the example,
we see that are two possible paths to create t6: Joining t1 and
t4, or joining t2 and t5, because of the set semantics. With
bag semantics, every Why(t6n) would contain exactly one
path. Furthermore, Cheney et al. have shown that Lineage
is an instance of Why provenance [11].

How Provenance. As in Why provenance, How provenance
How(tn) denotes the paths that indicate how a tuple was
created in the notion of polynomials, containing the opera-
tions + and ×. Theses operations are defined for a set K in a
commutative semiring (K, 0, 1,+,×). Thus, this approach is
also known as semiring model. Independent of the semantics
of the operations, the polynomial shows the paths creating
an output tuple such as How(t6) = (t1 × t4) + (t2 × t5).
Dependent on the semantics of the semiring, it can be used
to compute annotation values or even attribute values. For
example, it is possible to compute the uncertainty value
of tuples. Therefore, annotations such as t8 contain the
probability of this tuple in a probabilistic database and
the polynomial is mapped to a probability semiring using a
semiring homorphism [11, 18]. Recent work extended How
provenance for set minuses [17] and aggregate queries [5].
Moreover, Cheney et al. have shown that Why provenance
is an instance of How provenance [11].

Where Provenance. In contrast to the previous defini-
tions, Where provenance is defined on attribute level (not

2

�� � � �� � � �� 	
� � �

 �

 � ��
 ��
 � ��

 � �� � � �� � �� ������������������������

� � ��
�����������������������

������

�
���� ������

��

 !"	��	 #$� %&' #$	�	

�� (�����) ((�����))

�� (�����) ((�����))

�� (�
���������) ((�
���)��(�����))

�� ((���((�
���)��(�����))))

������� ��
����*�����*	 �������*�

������� 	������*�

��
�������+���������� 	�
���
������

�	�!"!"��&��,��"�	�&�����!"���

(�
���������) ��������
�������+����������� ��
����*����
������ �������*�

��

-��$.��&���

��

Figure 2: Relationship Between Provenance Terms

on tuple level). By definition, Where provenance indicates
where an attribute value of an output result was copied from.
For instance, the Where provenance of attribute f in tuple t8:
Where(t8.f) = {t4.c, t6.e} denotes that the attribute in t8.f
was copied from t4.c or t6.e (both containing the same value).
Unfortunately, it is not possible to use Where provenance
for non copy operations (e.g., aggregate functions), which is
sometimes possible in How provenance. But it is possible to
use Where provenance for operations performing manipula-
tions of the table structure at attribute level (i.e., projection).
This is currently not possible in How provenance. Therefore,
unifying both approaches is desired. However, Cheney et
al. proofed with a counterexample that, according to the
currently used formal models, How and Where provenance
cannot be unified in one formal model [11]. On the other
hand, they emphasized the similarities between the two no-
tions. For example, the tuples of all attributes in Where(tn)
are present in How(tn) (but not vice versa).

3. A HIERARCHICAL PROVENANCE

FRAMEWORK
In this section, we motivate the necessity of abstraction layers
forming our hierarchical provenance framework. Therefore,
we introduce a running example that is used for illustrative
purposes in the remainder of this paper.

3.1 Provenance Systems
At a very abstract level, systems capturing and evaluating
provenance work as depicted in Figure 3. Initially, require-
ments for the whole system such as granularity, time when
data is captured, or availability have to be defined (prepa-
ration). Afterwards, the system captures and stores the
provenance data (also known as annotations), which have
to fulfill the previously defined requirements. Depending on
how the data is stored, the system has to provide a possibility
to query the provenance data (e.g., by the use of a query
language), taking additional issues such as privacy aspects
into account [8].

Moreover, the provenance data are evaluated with respect to
their validity. For instance, developers can use this informa-
tion to understand how some artifacts have been computed,
e.g., how a query result evolved. Beyond that, the system can
even reintroduce these results into subsequent computation
steps such as computing new query results. However, to
validate such results we may face the problem that the nec-

essary provenance information is fragmentary or unreliable.
Thus, missing information has to be somehow estimated or
validation is simply impossible. In this paper, we address the
fragmentation and reliability of existing provenance informa-
tion. In particular, we show that we can use different layers of
abstraction for different purposes based on the fragmentation
of the available provenance information. Furthermore, we
show that reliability affects all of these layers and thus, can
be considered as cross-cutting characteristic of provenance.

����������	

������	�

��������

����������������	

�
	
��	

�
�
����	

�����	���
���������	��

����	�����	�����

����	�������

������	�������	����� �
���������	��������
�	����������	�

����������	��������	

Figure 3: Provenance System

3.2 Necessity for Abstraction Layers
Due to the versatile characteristics of provenance systems, we
build our framework on differences regarding uncertainty and
fragmentation represented by layers of abstraction. We will
motivate the necessity for every layer shortly. Particularly,
the single layers form a hierarchical granularity framework
for provenance where each layer complements the preceding
one in the case that additional, more fine-grained information
is available.

For motivating such a hierarchical framework as well as
clarifying our intention we introduce a running example.
In a current research project3, we evaluate digital pattern
recognition techniques for latent fingerprints based on high-
dimensional sensor data. Additionally, we are interested
into testing different contactless sensor devices at different
materials as well as determining environmental influences. To
ensure validity of the evaluation, we have to gather detailed
knowledge about the derivation history of all data items
originally produced by the sensor(s) and subsequent quality
enhancement steps.

3Anonymised reference, because of the double blind review.

3

��������	
����
���
�����������	
���

	�����
�
��
���
�
������������������
�
��
���
������
����������	�������
������	��
��
�

����������������
���
���
�����������
��������������
�
��
���
����������������������

�������

�����������
���
�� ��!
���������
��	������
���������	���"
����	�����	���

��
�	

�
�

��

�
��
��
��
��
	�
��
��
�
��
�
�
��
	�
�
�

�
��
��
�
� ���

�����	
���

�
���

�����

���������

�
���

������

�

���������

�
���

���
�

�
�������

����
���
�
�
�

�
�����

��� ��

�	

�
�

�
��
�
�
�
�
��
�
��
�
��
�

���������������������
�
��
�����
���
���
��������!
���������
��	������
��#
������������	��
������	�����	�
��#
���������
$
�����������
$�

Figure 4: Hierarchical Provenance Framework

For this scenario, we want to be able to use the fingerprints
in law enforcement proceedings. To this end, we have to
provide detailed and reliable information about the whole
processes from scanning the fingerprint to the final results
presented at court. However, we have to take into account
that the people in court do not have detailed technical back-
ground. Consequently, (1) we need a layer that abstracts
from execution and implementation details. As a result, we
can show the complete causal dependencies from input data
(the original finger print scan) to the results presented in
court and, beyond that, the (possibly certified) processes
that created the respective results/data. In contrast, (2) fin-
gerprint experts and software designers require more detailed
knowledge about the particular processing steps. Specifically,
they have to be able to recompute and therefore validate
foreign results (e.g., when a lawyer doubts evidences). But
these people still do not need to know how exactly the sin-
gle results were computed. However, (3) this is important
for software engineers implementing the single computation
steps. For instance, for quality enhancement of latent fin-
gerprints, we use different filter implementations such as
Gabor filter banks. These filters modify the single pixels of
the original images (scan data), which, in turn, represent
the lowest level of granularity. Consequently, a developer
has to know how exactly the filter modifies the pixel values
to implement, improve, or choose the right filter. Finally,
(4) there are additional factors which we have to take into
account. These factors are beyond mathematical descrip-
tions containing details of hardware architecture, storage,
and transport. Hence, they complement the information of
the previous layers to improve the reliability of both, the
data itself and the respective provenance information of all
preceding layers. We will discuss whether this is a real layer
or a different dimension in Section 4.4.

Granularity Layers in the Real World. To avoid over-
fitting of our hierarchical framework regarding the finger-
print example, we searched the literature for concepts and
approaches addressing and generalizing the single layers. Ad-
ditionally, we took existing approaches as base for each layer
and describe the relationships among them. Then, we as-
sembled the results in a hierarchical framework depicted in
Figure 4, which is based on the current state of the art.

The top most level contains the Workflow Provenance. Sev-
eral approaches, such as the OPM [27], basically rely on
conceptual abstraction and thus describe only causal depen-
dencies independent of the implementation. In contrast to
the first layer, the second requires functional dependencies
to recompute and validate results. For this layer we found
Lineage [14], Why provenance [9], How provenance [9, 18]
and causality [25] as existing approaches. For the third layer,
Buneman suggested a model explaining for copy operation,
where the single attribute values of an existing tuple stem
from [9]. Next, the semirings in How provenance can be used
for computing attribute and annotation values for different
subsets of database operations. Consequently, this lays the
foundation for the third layer of our framework. For the last
layer, the basic idea is about increasing (and securing) the
reliability of the provenance data of the previous layers such
as proposed by Braun et al. [8].
We give a detailed and comprehensive overview for all layers
and their relation to each other in the next section.

4. THE FOUR LAYERS
In this section, we introduce the four abstraction layers and
their relationships to each other. Additionally, we point out
their usage and possible refinements for each layer.

4.1 Workflow Layer
This layer is a conceptual abstraction, repre-
senting what happens at coarse grained level
totally independent of implementation (if there
is one). Hence, this layer shows causal dependen-

cies while hiding details about functionality. Moreover, this
is a starting point for validating, comparing, or discussing
results. Finally, this layer can be used for automatically
validation of derivation histories which might be produced
in distributed systems not having access to each other.

4.1.1 Extended Open Provenance Model
In the workflow layer, we rely on the OPM [27], that was
developed to be a pure conceptual abstraction of provenance
information. We rely on the OPM, because it is a consensus
explicitly designed for workflow provenance. Moreover, most
of literature addressing workflow provenance such as [1, 28,
30] refers to a directed acyclic graph and is therefore similar to

4

the OPM. To bridge the gap between coarse grained workflow
provenance and fine grained forms of provenance [12], we
present an extension of the OPM in this section. Finally, we
explain usage and limitations of this layer.

As already mentioned in Section 2.1, we use additional arti-
fact types to have more semantics in the model. Within our
extended OPM, an artifact has (1) a name, a (2) role, (3) a
type showing whether this is a complex or a simple artifact
and furthermore a unique id as well as a mark denoting if
this is an initial or result artifact (cf. Figure 5). For initial
artifacts, we have no knowledge about previous causal de-
pendencies, but about subsequent ones. Hence, backtracking
of one of these artifacts is impossible. In contrast, for result
artifacts we have knowledge about previous causal dependen-
cies, but not about subsequent ones due to the fragmentation
of provenance. Thus, these are the last artifacts for which we
can form the dependency graph. Similar to artifacts, each
process has (1) a name, (2) a hierarchy label, and (3) a type.

�����

����	

����������
�

�

�������

��������

��������

����������

������

����������

	�������!�

��������	
"#��	���

���������

#�

��	�

��������

����$������%�

#&

'������

�!	������!

����������

������

����������

	�����

#�"� �

#�"�

#�"�

�����

#����	�

��������	
"#����

���������

��������	
"�����	

���������	�

��������	
"�����

���������

����(����� �����)���	 ����(����� ������		�	

*�

Figure 5: Complex Artifacts and Processes

4.1.2 Stepwise Refinement
Regarding our extended OPM, the most important extension
is the introduction of complex artifacts and complex processes
allowing stepwise refinement of granularity. We argue that
this is the key issue to bridge the semantic gap between
coarse grained workflow provenance and different fine grained
provenance models (accumulated in the subsequent layers).
In fact, it is possible to refine the processes of the workflow
layer until reaching the connection points to the existence
layer. In the following, we will introduce our extension of
the OPM and how this allows for stepwise refinement.

Complex Artifacts. In Figure 5 a, we depict the concept
of stepwise refinement used for complex artifacts. A complex
artifact such as the Material DB contains a certain num-
ber of either complex or simple artifacts. This forms a tree
structure, where the root of the tree is the top most complex
artifact (in this case the Material DB), inner nodes are again
complex artifacts and the leafs are simple artifacts, directly
linked to a primitive value (e.g., an integer). The position
in the tree is inherited in the name of node. For instance,
the number of tuples in the Material DB is referenced as
Materials.tuples. This is similar to object-oriented program-
ming where this notion is used to reference fields or methods.
A complex artifact inherits its data such as tuples of a DB

table or members of an object. Furthermore, such artifacts
inherit additional annotations that contain meta data about
the artifact itself. Note that due to the fragmentation of
provenance or due to privacy issues [8] not all data may be
available (i.e., several nodes might be missing).

Complex Processes. Analogously to complex artifacts,
we also introduce complex processes for stepwise refinement
(cf. Figure 5 b). The refinement of a process is an acyclic
graph showing the causal dependencies of the parent process
in more detail. To reference the parent process, the process
contains a hierarchy label. For instance, process P1.1 is
within the refinement graph of P1. Basically, the process has
to collect provenance data on its own or may use integrated
monitors [23]. Moreover, this data is always collected at the
lowest level of granularity, that is, the leaf level of the tree
structure. Consequently, all upper levels are aggregations of
this most detailed level.

Implicit Dependencies. To allow processes the usage of
artifacts with different levels of granularity in one graph (i.e.,
only some artifacts are refined), we introduce the concept of
implicit dependencies. For instance in Figure 6 a, Process 1.2
uses artifact a.2.2. As a result of this explicit dependency,
there are additional implicit use dependencies from P1.2 to
every ancestor node in the Artifact Tree of a. Hence, P1.2
has implicit a use dependency with a.2 and a. Moreover, we
add additional use dependencies from a.2.2 to every parent
process of P1.2. Thus, a.2.2 has a use dependency with P1.
Finally, this is repeated for every pair of parent artifact and
parent process recursively, up to the lowest granularity level.
Therefore, a and P1 have a use dependency too.

�

��� ���

����� �����

����

�����	

��

��	

���
�����

���������
�	�	

���	�������������

������

���
�
��� ���������		��
������� �����������		
����
	���
!�

��	

���

��� ���

�

��

����

����

�����	

�����

Figure 6: Visualization of Implicit Dependencies

4.1.3 Usage and Limitations
To explain the usage and limitations of this layer, we refer
to the motivating example from Section 3.2. In Figure 74,
we depict the causal graph for two result artifacts, namely
quality assessment and age interval of a fingerprint. Both
artifacts are final results, and thus we have no knowledge
about any subsequent causal dependencies. Hence, we cannot
build any graph using these artifacts as input. However, the
graph reveals where the initial finger print was taken from and
how the results have been created at a very coarse-grained
level hiding lots of possibly important details.

4Note that we omitted labeling the causal dependencies
for clarity reasons. To avoid ambiguous dependencies, we
use only use (from Process to Artifact), wasProducedBy
(Artifact to Process), and wasTriggeredBy (Process or Agent
to Process) in this example.

5

�������

�	��
�����

��
���

��
����
����������
�

����
���
����������
��
�����

�
���

���
����
��������
������

�����

��
�����
��
����
��������

����
�
�
�
��

���������

��� !

��"!
���

�#�������
���

��$
%

&

���
����
�����

�'�()����*

�+���
�
�
��

��
����

�,��+�-)����*�����
�

��
�+-�

 ���*

�����*���

�.
()����*
����
�����

�����

�/���
��������

�
���

01$2�
������

�()����*�

 34

��
�����

 �
 ��
�

�����*�

�$
����

	��
�
�����

�	��
��������

����

��
�������
������

Figure 7: Provenance Graph containing Complex
Artifacts and Processes

Backtracking. In the example, the provenance graph ex-
hibits its maximum level of backtracking. This means that
we tracked back all dependencies to initial artifacts, where
backtracking is defined as follows: First, the level of back-
tracking for each vertex in the graph used as starting point
is defined as Level 0. When increasing the backtracking level,
we expand the graph for each causal dependency until we
reach some process. At the same time, we add all artifacts
and agents having a direct dependency with this process to
the backtracking level. In Figure 8, we depict the first three
backtracking levels for the quality artifact of the example.
We argue that stepwise backtracking is important to simplify
understanding of these graphs because provenance graphs
can be very large and therefore hard to understand.

�������

�	��
�����

�

�����
��
����
��������

����������

�����
�

�
��

��������������
����
�

���
����

�����

� �������

�!
�������
����
���"�

#�$��

�%���
��������
��
���

&'()�
�"����

���������

**+�,
*-.,
���

���
����

�/�$��"��
���

0
$
��) 0
$
��(0
$
��*

Figure 8: Exemplary Backtracking Levels

Graph Merging. Unfortunately, by simple backtracking
it is impossible to create the graph in Figure 7. This is the
case because both result artifacts (quality and age interval)
use the separated fingerprint artifact as input. Consequently,
there is no path connecting both result artifacts in one graph.
As a result, by backtracking both artifacts of our example,
we obtain two provenance graphs that can be merged when
backtracking reaches Level 2 for the quality artifact and the
age interval artifact. Thus, merging graphs is important to
a) show whether some artifacts share a common derivation
history (i.e., share a subgraph) and b) reconstruct graphs
based on the derivation history of artifacts.

Granularity Refinement. Except for process P5 Quality
Inspection, all processes in our example in Figure 7 are of type
complex and thus can be refined. For instance, in Figure 9 P1
Scan is refined, that is, the complex process from Figure 7 is

replaced by its corresponding subgraph. Due to the concept
of implicit dependencies, we can have both, complex and
refined processes, in one provenance graph and thus show
details that are not available on the coarse-grained level of
granularity. For instance, our refined process in Figure 9
reveals that the whole scanning process performs two scans.
First, Scanner Operator Adam triggered a coarse scan (P1.1)
that was used to find regions of interest possibly containing a
fingerprint pattern. Second, the Scanner Operator triggered
a detailed scan (P1.4) using the information obtained from
the coarse scan (P1.1). Moreover, the graph depicts that
P1.1 triggers P1.2 and P1.3 automatically.

����
�����	
��
	���

�
�

��
�	���

��
���
�

��		���

���
����

�����	
�	�������
�

����
�
����
��������

� !

��
��������!��
�
	�����"
���		���
���
����

�����
�
�

�����������	�

���#
�
����
$
	���

�$��

���
�$	

��
�	���
��
������

���	���

�%��
�������
����
$�	�������
�

�%��
����
��&�

%��
'
����	

�������

Figure 9: Refinement of the Scan Process P1

Automatic Validation. The provenance graph can be used
for automatic validation. To this end, we have to specify for
each process a list for certain valid combinations of input roles
and resulting output roles (or a negative list respectively).
Moreover, it is possible to define certain constraints such
as the number of output artifacts has be greater than the
number of input artifacts etc. Consequently, a monitoring
program having access to the provenance data and to these
constraints can detect anomalies.

Limitations. In contrast to the next layer, we do not re-
strict processes to functions. This means that providing
the same input does not necessarily have to result in the
same output5. Reasons therefore are missing input param-
eters such as configuration parameters or class members.
For instance, in P5 Quality Inspection a fingerprint expert
evaluates the quality of the fingerprint image. Although we
assume that he is an expert, different environmental factors
such as different light settings in different laboratories might
change the quality estimation result especially for borderline
images. Consequently, to reproduce results we have to as-
sume functional dependencies that we cannot express with
processes as conceptual abstraction. Furthermore, in some
cases, such as manual quality inspection, it may be impossi-
ble to guarantee functional dependencies. Consequently, we
argue that approximating the functional dependency with
refinements is practical and sufficient and better than having
no provenance at all. To determine the similarity of artifacts
of the same role we suggest the use of distance metrics as
applied in [15].

5Here, identical artifacts means that the artifacts trees have
the same structure and the primitive value(s) within an
artifact contain the same value(s), excluding annotations.

6

Related Approaches. Biton et al. use a similar concept
to create user views for arbitrary scientific workflows. First
proposed in [6] and then improved to avoid to induce loops
in the workflow [7], it allows to merge composite modules
(similar to our complex processes) to reduce the amount of
provenance data presented to a user. As this model was devel-
oped to visualize and query previously captured provenance
data, not to determine what provenance data to capture, the
focus is slightly different. However, the similarity is in the
way how to link different levels of granularity. In contrast
to our approach, Biton et al. only refine processes (not arti-
facts) resulting in a complex merge procedure, which possibly
forbids merging several processes. A solution therefore are
our implicit dependencies allowing us to more flexibly refine
processes if only parts of an artifact (e.g., a tuple in a table)
is used. Moreover, to build the provenance graph, we use an
inverse temporal order (from output to input, not vice versa),
which is a tribute to the fragmentary nature of provenance
and the application scenario in that we want to determine
the past derivation history and not the future use. In fact, a
result cannot know what it is used for in future, but it may
know which artifacts (or respective subsets) where used to
create the artifact itself. As a result our approach is more
flexible, as we do not assume that in the graph there is one
(complete) input node, but for instance also accepts hidden
inputs such as state variables from a previous run having a
certain impact on the current result building process. Finally
our artifact trees may also contain the primitive values (if
known) and are thus not restricted to simple id’s written in
the log files used to create the graph in [7].

4.2 Existence Layer
While the previous layer addressed causal depen-
dencies, this layer focuses on result validation.
Therefore, we only consider artifacts a compu-
tation step created and thus exist. In turn, we

do not consider artifacts that could have been created po-
tentially, relevant for instance for query non answers. To
allow result verification, we assume a functional dependency
for artifact creation: (f : an → am). Consequently, we can
recompute and thus validate results. Moreover, depending on
the available information regarding the behavior of the single
functions, we split the existence layer into three sub levels.
In the following we explain the three sub levels, point out
how refinement takes place in this layer and its limitations.

��������	
��
����

������
�����
������
�����
����
��

�����
��������	��
����
����
�����
���

Figure 10: Sub Levels of the Existence Layer

4.2.1 Sub Levels of the Existence Layer
Subsequently, we explain the purpose, use and relationship
between the three sub levels of this layer.

(1) Recomputation. The first sub level allows recompu-
tation and thus validation of results. To recompute the
result(s), we have to ensure that the input of the single func-
tions in this layer is identical, which is not always a trivial

task. Currently, most authors assume that we know the in-
put. For example, in DB formal approaches such as How [18]
and Why provenance [9], the authors implicitly assume that
all input (relations) are known. In the relational model,
knowing the query also means knowing the input, because all
input relations are part of the FROM clause(s). But in different
data models or programming paradigms this is not as simple.
While in functional programming the input are the argu-
ments in the function call, in object-oriented programming
we additionally have to take into account class members and
different static variables. Consequently, knowing the input
is the minimum requirement for recomputation.

(2) Classifying the Input. Splitting the input into possi-
bly necessary (endogenous) input and never necessary (exoge-
nous) tuples can improve the understanding of what actually
happened during computation. Again, we start with DB for-
malisms and explain which of these definitions can be adapted
to different data models and programming paradigms. Ac-
cording to Meliou et al. [25, 26], a set of input tuples I for
some query R = q(I) producing an output tuple ti consists of
endogenous tuples Ie (tuples used in at least one path) and
exogenous tuples Ix (not used in any of the paths). Both,
Ie and Ix are subsets of I, their intersection Ie ∩ Ix = ∅ is
empty, and their union restores I = Ie ∪ Ix. Moreover, the
authors differentiate endogenous tuples into counterfactual
and actual tuples due to the set semantics that can lead to
multiple paths producing one output tuple.

Consider the following example: {a} = q(x) = R(x), S(x, z)
over an instance (I): R{a, b}, S{(a, b), (a, c)}. Obviously,
the tuple R(b) forms Ix because there is no join partner
in S. But there are two ways to compute the query result:
(A) Join R(a) with S(a, b) or (B) join R(a) with S(a, c).
Therefore, R(a) is a counterfactual tuple t ∈ Iec because
removing R(a) from I would remove {a} from the query
result. Generally, Meliou et al. define a counterfactual
tuple t for some result tuple r w.r.t. to some query q as
r /∈ q(Ie − {t}) if r ∈ q(Ie), t ∈ Iec holds. In contrast, we
can remove either S(a, b) or S(a, c) from Ie because there is
still one path creating the same result. Consequently, these
tuples are actual tuples because they can be part of a certain
subset (Γ ⊆ Ie) which can be removed from the input still
producing the tuple r w.r.t to query q. Note, that Meliou et
al. relate causality based on the definition of Halpern and
Pearl [19] to How provenance. We stick to their results. But
according to our framework, causality is finding all possible
inputs which might have produced tn w.r.t. q. Therefore,
causality is important if we know only parts of the input and
want to compute (all) possible inputs or query non-answers.
By contrast, in linage we assume we know the input and
want to validate what happened. Consequently, ∀ti ∈ q(I)
Ie is equivalent to Lin(q, I, ti) and Ix = I − Lin(q, I, ti).

When adopting these definitions to different data models with-
out set semantics, we can omit the differentiation between
actual and counterfactual input artifacts, because all actual
inputs are also counterfactual. This simplifies the classifica-
tion of input determined at the previous sub level, because
we can simply omit this differentiation. Unfortunately, cur-
rently there are no formalisms automatically computing the
input classification for different data models, such as they
exist for the relational data model. Consequently, we have

7

to manually collect these annotations in the program itself.

Nevertheless, this sub level improves understanding the re-
lation between input data and result computation (query
equivalence) as follows:

• Every input artifact in Iec cannot be removed without
changing the result of the operation.

• Every input artifact in Ix can be removed without
changing the result of the operation.

• (Only with set semantics) An input artifact ∈ Ie but
/∈ Iec can be removed from I without changing the
result, because there is at least one path not using this
tuple to produce the same result.

(3) Determining Paths. As we stated in Section 2.2, a
path is an acyclic graph showing the sequence of operation
(vertices) and respective connections (edges) to input ar-
tifacts. In set semantics, multiple paths may lead to one
result and thus paths are highly related to minimal witness
bases [9, 25]. Furthermore, formalisms such as Why and
How provenance denote the computation paths. The main
difference to the previous sub level is, that an artifact may
occur at different nodes in the graph (see Figure 2).

In summary, the former two sub levels are approximation of
the path determination level. We need these approximations
because of fragmentary knowledge about implementation
details. For example, in API programming or for aggregate
functions in databases, we only know the function name and
the arguments to supply. Therefore, we have to assume that
all of the input artifacts are counterfactual (I = Iec) and
consequently no exogenous artifacts exist. This allows to
recompute and consequently validate results. In the second
sublevel, we classify the input (if possible due to our knowl-
edge) to know which input artifacts (Ix) can be omitted
without changing the result. Furthermore, we determine
the existence of multiple paths (Ie − Iec 6= {∅}), artifacts
contained in every path (Iec) and artifacts which might be
part of a certain contingency (Ie − Iec). However, in the
third sublevel, we determine paths itselves. Each path p
in the set of paths P (p ∈ P) w.r.t. a specific operation
(e.g., query) o and Input I creating result r contains all
counterfactual artifacts in Iec and (a possibly empty) subset
of non-counterfactual artifacts Ie

c−1 = Ie − Iec . Consequently,
the following equations hold: The union of all artifact sets of
all paths is equivalent to the set of endogenous input artifacts⋃

∀a∈p∈P
= Ie. Moreover, the intersection of all artifact sets

of a path is equivalent to the set of counterfactual artifacts⋂
∀a∈p∈P

= Iec . Finally, the set minus of all non counter-
factual artifacts Ie

c−1 and a specific path produces a certain
contingency Γ = Ie

c−1 − p. Obviously, a contingency is a set
of endogenous artifacts that we can remove from Ie so that
exactly one path remains for creating the result r.

4.2.2 Refinements
At the existence layer, there are two possible refinements at
each sub level showing different results: (A) Backtracking of
artifacts and (B) Implementation refinement. The limitations
of both refinements are highly related to the fragmentation
of our knowledge as we will explain in the following.

From Results to Initial Artifacts. For each of the sub

levels it is possible to backtrack artifact occurrences in the
same way as with the previous layer (cf. Section 4.1.2). The
backtracking stops when reaching an initial artifact, which
is the first element we have provenance information for. In
a nutshell, backtracking operations can be summarized as
follows: Union of the whole input sets for sub level one, union
of endogenous input sets Ie in sub level two, and merging
of directed acyclic graphs producing a new directed acyclic
graph in the third sub level.

Table 1: Refinement with Fragmentary Knowledge

� ��������	�
���

���������	

��
��
�
�
��

����������

� ����������	�
����

�

�

�

�����������	�

�����

����������
�

��
��
�
�
�� �
��
��
�
��

� ����������	�
����

�

�

�

����������	�

�����

����������
�

��
��
�
�
�� �
��
��
��

�
��
��
��

�
��
���

�
��
��
������

�
��
��
��

����������

��
��
�
�
��

���������������������

�

�
�
�
�

�

���
��

�
�

�

���
�����

�

�

���
��

�
���

�

���
��

�

���
����

���

��

�

���

�

�

Refining Implementation Details. This kind of refine-
ment is showing more implementation details such as addi-
tional knowledge of the internal structure of functions. For
instance, a function can call several function (e.g., foo2 and
min() in Table 1) and operations such as +,-, etc. To explain
this refinement and the influence of fragmentary knowledge,
we refer to the example depicted in Table 1. In this example,
there is a function foo() taking four arguments as Input
I (for simplicity we omit argument types) and returning
one (result) artifact. In the first part of the example, we
assume that we do not have detailed knowledge about this
function. Hence, we cannot classify the input leading to one
path, assuming that all of the input is counterfactual. In the
second part of the example, we assume that we have addi-
tional knowledge about the internal structure of foo(). Note
that we still have fragmentary knowledge, because we do not
know what foo2() in Line 2 calculates. Hence, it is possible
to refine implementation details by revealing the sequence of
functions and inputs in the example. To keep the reference
to the containing functions such as foo(), (sub) paths (i.e.,
the vertices) are annotated with the function they belong
to. The refinement stops when reaching operations only or
because of fragmentary knowledge about functions. In the
example, we do not know what foo2() actually does and
thus we have to approximate Ie from I = {a, b} (i.e., we do
not know whether this function actually uses the arguments).
This introduces uncertainty into our provenance information.
However, with additional knowledge about foo2, we can
calculate Ie. For instance, if it works like a min function
(i.e., is equivalent to an operation), we cannot further refine
the implementation, but it is possible to determine the path
according to the input I.
The advantage in databases is that, for monotone queries,
we have formalisms that automatically and therefore without
uncertainty compute:

8

• For sub level 2, the set of necessary input tuples Ie:
Lineage, Why provenance and How provenance,

• For sub level 3, the set of all paths: Why provenance
and How provenance.

Link to Parent Layer. As recently introduced, a function
that is called within the body of another function such as
foo2() from foo() has an annotation to keep the reference
to the calling function. In contrast, the function foo() in
Table 1 is the top most function and thus does not contain a
link to a calling function. However, such functions have a link
to the abstract process in the preceding layer showing the
respective part of its computation for a particular artifact.
Moreover, these functions may also consume artifacts from
the workflow layer.

The combination of both, refinements and the link to the
workflow layer, allows us to increase our understanding of
what actually happens. Note that especially the refinements
require proper tool support to visualize certain excerpts from
the derivation history.

Limitation of this Layer. In the example in Table 1, we
did not consider whether the arguments supplied to foo()

are primitive numeric values or complex objects. However,
at this layer we do not care how the primitive values within
an artifact or its annotations (if it is complex) are calcu-
lated. This is restricted to the semantics of the functions
and operations denoting to what extent the primitive values
of artifacts contributed to a result. This is in the scope of
the next layer.

4.3 Value Origin Layer
With the previous layer, we focused on the deter-
mination of paths responsible for the existence
of artifacts. In contrast, this layer is about the
origin of the primitive values within existing ar-

tifacts such as attribute values in the relational data model.
In the following, we explain how the origin of values can be
addressed by existing approaches and application for different
data models and the relationship to the existence layer.

4.3.1 Structure of Artifacts
As mentioned in Section 4.1.2, we differentiate between com-
plex and simple artifacts. Simple artifacts are directly related
to one primitive value such as an int or char type. In con-
trast, complex artifacts may contain several complex and
simple artifacts forming a tree structure, where the leaf nodes
are always simple artifacts. Consequently, each artifact is a
container for primitive values at the lowest level of granular-
ity. For instance, consider a relation containing regions of
interest (ROI) from our fingerprint example. By our means,
a ROI is a rectangular part of a coarse scan probably con-
taining a fingerprint. This ROI is input for the detailed scan
process. It is used to scan the physical object again with
higher resolution showing details such as sweat pores that
are not available in the coarse scan. To increase productivity
in our illustrative example, we want to scan in detail those
physical objects first carrying the greatest amount of finger-
prints. Therefore, we store additional annotations.
In Table 2, we show the relation storing the ROIs perma-
nently. Each tuple has a surrogate primary key from some
sequence within the DBMS, two points denoting the left

upper and right lower bounds of the rectangle, and a foreign
key referencing the coarse scan file of the physical object.
Moreover, there are general additional annotations for every
artifact containing the unique artifact ID, name, role, type,
and mark (Section 4.1.2). Finally, for each role there are role
specific annotations (cf. Table 2 and Figure 11).

Table 2: ROI Relation
��� �����	
 ��
�����	
 ��������	
 �����	
 ���������������		�
�
��	�

����	
 ���	
 ����	
 ����	
 ���������
� ��������
��

� � �� �� � ! ��" # $ %& # '&%&!&"�

� � ��#�" !"(��! � �%#� # $ %&�� '&%&!&"�

4.3.2 Value Origin with Existing Approaches
Based on the structure of artifacts, we are now interested
how we can determine the value origin of certain artifacts.
The value origin of some simple artifact A w.r.t. an oper-
ation O for a path P shows how a particular subset of the
primitive values within the artifacts contribute to A. For
instance, consider the query Q to get all ROIs in Figure 11.
Furthermore, assume for simplicity that there are only two
ROIs for scan five. For normal computation, the result would
look as follows: t3 : {(5, 2)} = Q(ROI)). In contrast, when
including provenance in this scenario, the results looks as
depicted in Figure 11. Meanwhile, recapitulate that we want
to scan those objects first carrying the greatest amount of
fingerprints to increase productivity. Thus, we additionally
store the probability that there is at least one finger print on
the physical object and the ROI Locator Version. Now, we
are interested into approaches explaining the value origin of
the query result of Q including the respective annotations.

��

�� ���� 	
�� �
�� ����

��������������

�� �	� �	� �
����� �
��

��
��� � �
 	!��"
���
��#��$
�

%�&'&' (�%�)�������	!��"
���
������	!��"
���
�

�����*
��+,��
�-.�������������
,��/01

���	�	!��
����
�����

2������
���
���
�$

344 �
����
�
���$��� * �
���
���
�$

5
6
���7$

�
,��/01

�

�
,�� ��
��� � �

5
6/��18��9�� /��%���9��1 /:%���;�%��������1

Figure 11: Computation with provenance

Where provenance. In databases, the Where provenance
formalism is able to determine the origin for pure copy oper-
ations only [9]. By definition, this works for the data such as
the attribute FK, because this is what it was designed for. In
contrast, when using Where provenance for annotations we
face the problem that there may be competitive annotations.
For instance, imagine that the first ROI was computed with
ROI Locator Version v.0.7.3a while the second was deter-
mined by v.0.6.8. In this case, we currently add the symbol a
showing that the version is ambiguous (which must not hap-
pen). Because this is a domain-specific solution, we consider
different solutions allowing annotations to collect sets (both
versions) or rules to determine the dominant annotations
(e.g., the later version if there are no functional changes, but
only an increase of performance).

Semiring Model and Extensions. In contrast to Where
provenance, we can use the semiring model to calculate the

9

results of queries (e.g., for attribute or annotation values). In
the original version this works for SPJU queries [18] and has
been extended for set minuses [17]. Finally, Amsterdamer
et al. extended the model for aggregation support including
optional group by operations with some limitations [5]. The
general challenge in this model is finding the semiring with
the right semantics as in the probability example [11]. More-
over, it is currently not possible to determine the origin of
the PK in our example, because it is linked to a sequence.
To determine the origin, the model has to have access either
to the sequence or to the previously created tuple (requiring
an order). Finally, to the best of our knowledge it is not
possible to use constants.

Usage for Different Data Models. While Where prove-
nance and the original semiring model are limited to databases,
Amsterdamer et al. emphasize that the extension for aggre-
gate queries is independent of the data model and therefore
might be used to capture automatically provenance informa-
tion for aggregate functions. However, the concepts behind
Where and How provenance, are also suitable for different
data models. But for now, the respective capturing of value
origin in different data models has to be done manually or is
not performed at all.

4.3.3 Relationship to the Previous Layer
Independent of the way how we determine the value origin,
there are several relationships to the previous layer. First, for
each primitive artifact in every path there is one mathemati-
cal description. In Where provenance these are the locations
the primitive values are copied from. In the semiring model
this is a series of operations w.r.t. to a particular semir-
ing. Second, all simple artifacts used in one mathematical
description are part of the corresponding path [11].

Backtracking Refinement. In contrast to all previous
layers, there is only one possibility for refinements, because
the value origin is always defined on the lowest level of
granularity. Consequently, there is no granularity refinement.
However, backtracking is still possible by means of replacing a
simple artifact in the mathematical description. For instance,
in the initial example in Figure 2, in Where provenance
of attribute t8.f Where(t8.f) are the locations t4.c, t6.e.
Now we can replace the location t6.e with Where(t6.e) =
{t1.a, t2.a} (i.e., remove t6.e and add the result {t1.a, t2.a}).
Limitations of backtracking are related to fragmentation. In
contrast to the previous layer, we require detailed knowledge
about how exactly the simple artifacts contribute to the result
of the computation and cannot estimate this information.
Consequently, further backtracking is not possible if we do
not have this knowledge for an operation in the path.

Limitations of this Layer. As this layer works on math-
ematical description, it reaches its limitations for instance
when details of the (hardware) dependent execution context
(e.g., for timing experiments) are required or even when
trying to prevent or detect possible attacks.

4.4 Cross Cutting Reliability Layer
As all previous layers are dealing with granu-
larity and fragmentation, this layer addresses
the reliability of artifacts itself and respective
provenance data. Therefore, this layer decreases

the degree of uncertainty. Because this is possible for all
previous abstraction layers, we call this layer cross cutting.
Particularly, this looks like a different dimension to us. But
this dimension is not totally orthogonal, as fragmentation
may cause uncertainty as well (see Section 4.2.2). Hence, we
keep calling this dimension of provenance a layer.
The purpose of all preceding layers was to improve our un-
derstanding of what happened (e.g., for validating results)
and are restricted to our fragmentary knowledge. Unfortu-
nately, this information can be wrong for arbitrary reasons.
For instance, a malicious attacker could have changed the
data itself or corresponding annotations. Moreover, there
can simply be errors when collecting the information. This
is especially the case when there is no possibility of cap-
turing the information automatically (e.g., by a formalism).
Consequently, this layer addresses reliability and trust in
provenance information [22, 23, 24].

4.4.1 Challenge: Increasing Amount of Data
Consider the example from Table 2. To be really sure that all
ROIs are calculated with the same ROI Locator version, we
furthermore annotate the version annotation with a security
hash sum of the version binary. Moreover, to ensure that this
artifact remains unchanged, we have to add an additional
signature computed over the the whole artifact (including
annotations).

The Crosscutting Characteristic. In the recent example,
we included a signature to ensure that a specific artifact
remains unchanged. Actually, we want to do that for all
provenance data collected in the preceding layers such as
the graphs in the Workflow Layer or the paths in Existence
Layer. Moreover, we may want to propagate that we secured
the execution context for instance with TPM modules as
suggested in [23]. But this is not only related to security
issues. For instance, for some application scenarios we need
a result within a certain amount of time. Therefore, we
perform several timing experiments using different algorithms
for computation of ROIs. To compare these results, we
need to know about the hardware environment in case that
the tests are not performed on the same computer. As a
result, the amount of data to store increases rapidly, which
is also denoted by area of the pyramid slice in the framework
visualization (Figure 4).

Annotating Annotations. An interesting problem is that
annotating annotations furthermore increases the amount of
data. As mentioned previously, we want to include additional
annotation to increase the reliability of annotations or values.
Suppose we want also know which hashing algorithm was
used, in which implementation, and how these additional
annotations have been collected. The problem is to determine
when to stop annotating, because when doing this for every
piece of data (i.e., every artifact, annotation) the amount
of annotation data is multiplicity of the values within the
simple artifacts (e.g., in Figure 11) [11].

4.4.2 Current Research on Reliable Provenance
Although reliability is an increasingly interesting topic, only
minor work exists that addresses this layer. For instance,
McDaniel et al. tackle the problem where to place the soft-
ware that collects provenance information (monitors). For
non-formal approaches, they emphasize the need for securely

10

deploying provenance especially in distributed systems [24].
Similarly, Tan and Lu argue that there are special problems
in SOA [31] or cloud [22] environments. Consequently, the
required mechanisms for reliable provenance depend on archi-
tecture and use case. For instance, Lyle et al. point out that
it is applicable to protect the computation environment (i.e.,
processes or functions) and monitors with hardware-based
methods, such as TPMs, when malicious effects (e.g., from
the user) have to be considered [23]. Moreover, Schäler et al.
suggested to save reliable provenance data within multimedia
data itself using invertible watermarks [29].

Basically, we identified two important points to take care
of: (1) The execution context of processes or functions (e.g.,
usage of TPMs, hardware architecture, etc.) and monitors
as well as (2) details about storing and transportation of
artifacts including the detection of (malicious) modifications.

5. CLASSIFICATION OF APPROACHES
According to our literature research, there are three differ-
ent approaches for collecting provenance. First, there are
domain-specific approaches with a restricted set of functions.
Second, formalisms capture the desired information automat-
ically and totally transparent on the operator level. Finally,
when there are no formalism and a limited function set is
not sufficient, the desired information has to be collected
manually. Indeed, this is the state of the art for many data
models and programming paradigms. In the following, we
give examples for each approach and explain how these con-
cepts or approaches interact with our hierarchical framework.
Furthermore, we point out how the single approaches are
related to uncertainty and fragmentation.

5.1 Domain-Specific Approaches
Provenance applications such as Kepler [3, 28], Karma2 [30],
or Panda [21] represent a domain-specific all-in-one solution
for designing the workflow as well as organizing the collection
and storage of provenance data. Although these solutions
are theoretically able to collect data of the first three layers
and capture provenance automatically, they face two major
problems. First, the granularity of the collected provenance
data is limited according to the granularity of usable func-
tions. In fact, step-wise refinement is not possible, which
is a key issue to link coarse grained forms of provenance to
more fine grained ones (see Section 4.1). Second, because
of limited available functions and their composability, these
solutions are limited w.r.t. to generality and explicitly de-
signed for their domain-specific use case. To overcome this
limitation, these approaches may offer a possibility to extend
their function set with user-defined functions. In this case,
the solution cannot automatically determine the endogenous
input of theses functions (Layer 2, sublevel 2) which seems to
be a vicious circle. Finally, to the best of our knowledge the
treatment of secure storage and transport of (provenance)
data is currently not in the scope of theses solutions.

Interestingly, API-calls and spreadsheet programs are very
similar to the previously mentioned solutions, because they
use a limited set of function hiding the specific implemen-
tation. Consequently, we cannot determine the endogenous
input or use refinements. Moreover, there is no link to an
abstract process of the workflow layer. Hence, these concepts
are limited to the input determination of the existence layer.

5.2 Formalisms for Provenance Capturing
Formal approaches, mainly for databases, capture fine-grained
provenance and thus are restricted to the Existence (e.g., Lin-
eage [14] and Why Provenance [9]) and Value Origin Layer
(e.g., How Provenance [18]). Because these formalism directly
work on the operations (e.g., projection in databases), their
results are very reliable (Layer 4 execution context). Hence,
domain-specific solutions can increase their reliability when
(partly) sticking to these formalisms (e.g., the TRIO Sys-
tem [2] captures a form of Why and Where Provenance [11] as
well as ORCHESTRA [16]). This is important when extend-
ing domain-specific solutions with own functions breaking
the vicious circle.

Recent approaches such as the extension of the semiring
model for aggregate queries seem promising in this area [5].
In fact, in a very recent publication [4] Amsterdamer et
al. use a variant of the semiring model to link coarse and
fine-grained forms of provenance in a framework highly re-
lated to the fragmentation dimension of this work. They
map all expressions of the Pig Latin language (except up-
dates) to bag-semantic nested relational algebra operations,
to make them applicable for a variant of the semiring model.
As a result, their approach has a strong formal foundation,
allowing for instance deletion propagation (What if?). Fur-
thermore, they are also able to zoom in and out for processes
(modules), but not for artifacts as we can and they as well
differentiate between initial and final artifacts. However,
their framework is designed to work in a closed system and
is therefore less flexible as it is limited to the operations of
that language and has preconditions that we argue cannot be
ensured generally. For example their workflow provenance is
equivalent to our Recomputation Entry (Layer 2 Sub-level 1),
that means that non-functional dependencies, for instance
for non-computation steps are not considered at all, as they
presume to have knowledge about all input artifacts (in-
cluding artifacts describing the current state of a process).
As a result, their framework only addresses Layer 2 and 3.
Additionally, they presume complete control of the whole
provenance system, which is possible as they rely on their
closed system (allowing for instance to use globally unique
identifiers). Hence, they do not consider system border cross-
ings of an heterogeneous IT landscape. Finally, they do not
use our fine-grained levels in the Existence Layer, allowing us
to react more flexible because of missing fragments caused for
example by fragmentary knowledge or privacy requirements.

5.3 Manual Collection
Manual collection of provenance data is always required
if there is no domain-specific solution or formal approach.
For instance, when manually annotating data or writing
program code, this currently is the only possibility to capture
provenance. Consequently, this way is the most flexible
one. Hence, it is possible to collect data for all levels of
our provenance framework. Unfortunately, for the same
reason this approach is the most unreliable one. As the
collection is manual, we have to consider collection errors
(e.g., wrong manual annotation or programming errors within
the monitor) as well as possibly (malicious) modification of
the collected provenance data.

11

Table 3: Possibility of Approaches to Address the Fragmentation and Reliability Layer
���������		
���
����������
�

��������	 �������		
�
�

��
�������		����
��
�

������������
���

	�

������� ������������
	
���� ������ ������!������
��
�

� ��
���

	�

"�#�
 ��
�	 $�������
�
�

��������	
������
		�

��%������ &' & &' &' &' &' � & &

����
��	
��	 � & � � � � � & &

����"�(�)#����	���
 � & � � � � � & &

�������������

���
����� � & & � � & � & &

��*������+, � & & & � & � & &

��-�.����+, � & & & & & � & &

��*���� � � � � & & � & &

�����������
����� & & & & & & & � �

*��/0��.	 ���������	

�#�

�����

��
���
��

)
�������
1���	#��

"������
����
��
�

�
�0���#
�����#��+,

��
���

�
��#
��
��

������2�&�3��&�	4���3�5�4�'�*��
���
��
	���
��������#
�������#���	����
���
�#�����
�

��,

5.4 Qualitative Evaluation
In Table 3, we summarize the information presented in this
section. In part (a) of this table, we present to what extent
an approach is able to capture the data that correspond to
layers of our hierarchical framework. Note that this does not
mean it captures all of the data in this layer. For instance,
domain-specific solutions have a limited function set and
database formalisms are mostly restricted to the relational
model (i.e., operations like projection). However, recent
work concerning provenance for aggregate queries may be
able to overcome this limitation [5]. In Table 3 b, we denote
whether an approach addresses layer four of our framework
and whether this approach captures the provenance infor-
mation automatically. For all formalisms, Layer 4 storage
and transport is out of scope. Hence, they only address the
execution context aspect of this layer. Similarly, the address-
ing of this layer in domain-specific solutions highly depends
on its implementation. Assuming the implementation of the
solution, API, etc. is correct, there is also an inherent relia-
bility for the execution context. Note that inherent reliability
is not able to prevent malicious modification of a (skilled)
attacker. By contrast to all preceding approaches, manual
collection is able to explicitly address layer four (e.g., by
signatures, usage of TPMs etc.). But we have to consider
the collection of provenance data during the implementation
(or manually annotating the data). Therefore, there is no
inherent reliability, but it is possible to reach high reliability
using methods known from IT Security explicitly.

6. CONCLUSION AND FUTURE WORK
In this paper, we presented a hierarchical framework for
provenance based on the fragmentation of provenance infor-
mation and their reliability. We introduced different layers
that complement each other if additional information is avail-
able. For instance, the top-most layer shows causal depen-
dencies describing the overall process but we do not premise
functional dependency, because of fragmentary knowledge.
By contrast, functional dependency is the premise for the
second layer. Moreover, we pointed out how existing models
and formalisms fit into our framework or address different
topics such as causality. Finally, we pointed out limitations
of current approaches based on the state of the art.

For future work, we want to consider different aspects of
provenance and related topics. For instance, query non-
answers [10, 20] are an emerging topic not considered in our
framework. From our point of view this is related to causal-

ity [25], because non-existing results have no provenance.
In this paper, the dominant dimensions for the framework
are fragmentation and uncertainty (reliability). However,
in future we want to evaluate the interaction of other as-
pects with our approach and present possible extensions.
Additionally, we developed this framework to categorize the
most prominent provenance approaches and their limitations
regarding the mentioned aspects and encourage the commu-
nity to address these challenges. Finally, we want to use
our framework for designing tailor-made provenance systems
based on the requirements of the system.

7. REFERENCES
[1] Acar, U., et al. A graph model of data and workflow

provenance. In Proc. Workshop on Theory and Practice
of Provenance (TaPP) (2010), USENIX, pp. 8/1–8/10.

[2] Agrawal, P., Benjelloun, O., Sarma, A. D.,
Hayworth, C., Nabar, S., Sugihara, T., and
Widom, J. Trio: a system for data, uncertainty, and
lineage. In Demonstration at Proc. Int’l Conf. on Very
large data bases (VLDB) (2006), VLDB Endow.,
pp. 1151–1154.

[3] Altintas, I., Barney, O., and Jaeger-Frank, E.
Provenance collection support in the kepler scientific
workflow system. In Provenance and Annotation of
Data, vol. 4145 of LNCS. Springer, 2006, pp. 118–132.

[4] Amsterdamer, Y., Davidson, S. B., Deutch, D.,
Milo, T., Stoyanovich, J., and Tannen, V. Putting
lipstick on pig: Enabling database-style workflow
provenance. Proc. VLDB Endow. 5, 4 (2011), 346–357.

[5] Amsterdamer, Y., Deutch, D., and Tannen, V.
Provenance for aggregate queries. In Proc. Symposium
on Principles of Database Systems (PODS) (2011),
ACM, pp. 153–164.

[6] Biton, O., Cohen-Boulakia, S., and Davidson,
S. B. Querying and managing provenance through user
views in scientific workflows. Tech. Rep. MS-CIS-07-13,
University of Pennsylvania, 2007.

[7] Biton, O., Cohen-Boulakia, S., Davidson, S. B.,
and Hara, C. S. Querying and managing provenance
through user views in scientific workflows. In Proc. Int’l
Conf. on Data Engineering (ICDE) (2008), IEEE,
pp. 1072–1081.

[8] Braun, U., Shinnar, A., and Seltzer, M. Securing
provenance. In Proc. Workshop on Hot Topics in
Security (2008), USENIX, pp. 4:1–4:5.

[9] Buneman, P., Khanna, S., and Tan, W.-C. Why
and where: A characterization of data provenance. In
Proc. Int’l Conf. on Database Theory (ICDT) (2001),
vol. 1973 of LNCS, Springer, pp. 316–330.

[10] Chapman, A., and Jagadish, H. V. Why not? In
Proc. Int’l Conf. on Management of Data (SIGMOD)

12

(2009), ACM, pp. 523–534.
[11] Cheney, J., Chiticariu, L., and Tan, W. C.

Provenance in databases: Why, how, and where.
Foundations and Trends in Databases 1, 4 (2009),
379–474.

[12] Cheney, J., Chong, S., Foster, N., Seltzer, M.,
and Vansummeren, S. Provenance: A future history.
In Proc. Int’l Conf. on Object Oriented Programming
Systems Languages and Applications (OOPSLA)
(2009), ACM, pp. 957–964.

[13] Chiticariu, L., and Tan, W.-C. Debugging schema
mappings with routes. In Proc. Int’l Conf. on Very
Large Data Bases (VLDB) (2006), VLDB Endow.,
pp. 79–90.

[14] Cui, Y., and Widom, J. Lineage tracing in a data
warehousing system. In Proc. Int’l Conf. on Data
Engineering (ICDE) (2000), IEEE, pp. 683–684.

[15] Davies, J., German, D. M., Godfrey, M. W., and
Hindle, A. Software bertillonage: Finding the
provenance of an entity. In Proc. Conf. on Mining
Software Repositories (MSR) (2011), ACM,
pp. 183–192.

[16] Green, T. J., et al. Orchestra: Facilitating
collaborative data sharing. In Demonstration at Proc.
Int’l Conf. on Management of Data (SIGMOD) (2007),
ACM, pp. 1131–1133.

[17] Green, T. J., Ives, Z. G., and Tannen, V.
Reconcilable differences. In Proc. Int’l Conf. on
Database Theory (ICDT) (2009), ACM, pp. 212–224.

[18] Green, T. J., Karvounarakis, G., and Tannen, V.
Provenance semirings. In Proc. Symposium on
Principles of Database Systems (PODS) (2007), ACM,
pp. 31–40.

[19] Halpern, J. Y., and Pearl, J. Causes and
explanations: A structural-model approach. part i:
Causes. Brit. J. Phil. Sci. 56 (2005), 843–887.

[20] Huang, J., Chen, T., Doan, A., and Naughton,
J. F. On the provenance of non-answers to queries over
extracted data. Proc. VLDB Endow. 1 (2008), 736–747.

[21] Ikeda, R., and Widom, J. Panda: A system for
provenance and data. IEEE Data Eng. Bull. 33, 3
(2010), 42–49.

[22] Lu, R., Lin, X., Liang, X., and Shen, X. Secure
provenance: The essential of bread and butter of data
forensics in cloud computing. In Proc. Symposium on
Information, Computer and Communications Security
(ASIACCS) (2010), ACM, pp. 282–292.

[23] Lyle, J., and Martin, A. Trusted computing and
provenance: Better together. In Proc. Workshop on
Theory and Practice of Provenance (TaPP) (2010),
USENIX, pp. 1/1–1/10.

[24] McDaniel, P., Butler, K., McLaughlin, S., Sion,
R., Zadok, E., and Winslett, M. Towards a secure
and efficient system for end-to-end provenance. In Proc.
Workshop on Theory and Practice of Provenance
(TaPP) (2010), USENIX, pp. 2/1–2/5.

[25] Meliou, A., Gatterbauer, W., Halpern, J., Koch,
C., Moore, K., and Suciu, D. Causality in databases.
IEEE Data Eng. Bull 33, 3 (2010), 59–67.

[26] Meliou, A., Gatterbauer, W., Moore, K. F., and
Suciu, D. The complexity of causality and
responsibility for query answers and non-answers. Proc.
VLDB Endow. 4, 1 (2010), 34–45.

[27] Moreau, L. and Freire, J. and Futrelle, J. and
McGrath, R. and Myers, J. and Paulson, P. Open
Provenance Model, 1997.

[28] Mouallem, P., Barreto, R., Klasky, S.,
Podhorszki, N., and Vouk, M. Tracking files in the
kepler provenance framework. In Scientific and
Statistical Database Management, vol. 5566 of LNCS.
Springer, 2009, pp. 273–282.

[29] Schäler, M., Schulze, S., Merkel, R., Saake, G.,
and Dittmann, J. Reliable provenance information for
multimedia data using invertible fragile watermarks. In
Proc. Brit. Nat. Conf. on Databases (BNCOD) (2011),
vol. 7051 of LNCS, Springer, pp. 3–17.

[30] Simmhan, Y. L., Plale, B., and Gannon, D.
Karma2: Provenance management for data-driven
workflows. Int’l J. Web Service Res. 5, 2 (2008), 1–22.

[31] Tan, V., Groth, P., Miles, S., Jiang, S., Munroe,
S., Tsasakou, S., and Moreau, L. Security issues in
a soa-based provenance system. In Provenance and
Annotation of Data, vol. 4145 of LNCS. Springer, 2006,
pp. 203–211.

13

