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Scalable and Efficient Sampling for Product-Line Testing

Mustafa Al-Hajjaji
University of Magdeburg
Magdeburg, Germany

ABSTRACT

A software product line (SPL) is a family of software prod-
ucts that share a set of common features. Exhaustively test-
ing every product of an SPL is a difficult task due to the
combinatorial explosion of the number of products. Several
sampling approaches have been proposed to select a set of
products that can be used to test SPL. However, these ap-
proaches do not scale very well, especially for large SPLs
such as the Linux Kernel. In addition, it is typically up-to
testers in which order these products are tested. The testers
may wish to order these products to detect faults as soon
as possible. The products have been prioritized based on
domain knowledge or feature model criteria, but not much
attention has been paid to criteria at code-based level. We
plan to use evolutionary testing approaches with different in-
puts to fitness functions to explore the configuration space of
SPL feature models. Using the criteria from feature-model
and code as inputs to evolutionary testing approaches, we
want to investigate whether we can increase the efficiency
of SPL testing w.r.t. finding more faults. Furthermore, we
want to investigate code-based metrics which can be used
to enhance SPL testing. In this proposal, we present re-
search questions, research methods and a concrete working
plan to investigate how we can employ evolutionary testing
approaches to increase the efficiency of SPL testing.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Testing—Reusable Soft-
ware; D.2.13 [Software Engineering]: Reusable Software—
domain engineering

General Terms

Reliability, Verification

Keywords

Software product-line testing, software testing, sampling,
evolutionary testing

1. INTRODUCTION
SPL engineering is an approach reusing a common set

of features across a very large number of similar products
systematically. Recently, SPLs are gaining acceptance and
several companies such as Boeing, Bosch, Hewlett Packard,
Toshiba, and General Motors adopt their software develop-
ment process to SPLs [2]. SPL engineering addresses well-
known needs of software engineering, such as reducing the

cost of development and maintenance, increasing the quality,
and decreasing the time to market [30].

The commonality among the products in SPLs represents
very large portion of the functionality of those products, it
gives opportunity to reduce the resources required in all de-
velopment phases including testing. The variation of SPLs
adds new dimensions of complexity to traditional testing.
Testing an SPL is a difficult task due to the amount of pos-
sible combinations between features which lead to explosion
of possible products that need to be tested. The main con-
cern is that it is not possible to test all the possible prod-
ucts because the resources for testing are usually limited.
To tackle this problem, several approaches have been pro-
posed to reduce the number of products to test [7], such as
combinatorial interaction testing (CIT).

CIT is a promising approach that can perform the interac-
tion testing between features in an SPL [11]. CIT has been
proposed to sample a set of configurations to find interac-
tions faults [10]. This approach is based on the observation
that most of the faults are a result of an interaction of few
features. Pairwise interaction testing is one of the techniques
that has been used to achieve CIT [32] [31]. Pairwise testing
is used to detect faults that are caused by the interaction be-
tween two features. Recently, T-wise testing has been gener-
alized from pairwise testing to cover all t-wise combinations
between features in SPL testing [22].

The challenge is that computing all the t-wise interaction
from a feature model with the presence of all the constraints
is still a problem, since the existing sampling approaches do
not scale well, especially for a large feature model such as
Linux kernel (over 11,000 features [13]) [22] [26].

Although CIT is a technique to reduce the number of
products to test, the number of the products can be too
large to test especially if the time budget is limited. For
example, 480 products are required to be tested for part
of Linux kernel (only 6888 features) with 2-wise coverage
interaction [22]. Hence, some approaches are required to
prioritize the products to start testing with the most rele-
vant products. The idea of prioritizing products is to find
faults as soon as possible by starting testing the products
that are most likely to contain faults.

The existing prioritization approaches consider only the
domain knowledge [4] [15] and feature model [1] [34]. To the
best of our knowledge, there is no any approach considers
code-based criteria in SPL testing.

Throughout this paper, we will use the term efficiency to
represent the following: finding more faults and increasing
the rate of fault detection (i.e. a measure of how quickly
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Figure 1: Feature Diagram of Mobile Phone SPL

faults are detected). It is better for testers to detect the first
fault after half an hour of testing than waiting five hours.

There are a few approaches have proposed to combine
sampling and prioritization [19] [16]. Ensan et al. [16] and
Henard et al. [19] use genetic algorithms to generate prod-
ucts based on certain objectives. In their approaches, they
focus only on a few criteria based on feature models.

We plan to propose evolutionary algorithms to explore the
configuration space of feature models in order to generate
the optimal products based on different objectives. We want
to investigate whether the cuckoo search (CS) algorithm [40]
can be used to solve the identified problems. Yang and
Deb [40] have shown that CS is superior to existing evolu-
tionary algorithms (genetic algorithms and particle swarm
optimization) for multimodal objective functions. In addi-
tion, we want to investigate whether the code-based criteria
can be used as input to the fitness functions of CS to enhance
the efficiency of SPL testing. In addition, we plan to include
the domain knowledge, when it is available, specifications,
and implementation as inputs to the fitness functions of evo-
lutionary algorithms.

2. FEATURE MODELING
A configuration is a valid combination of features in an

SPL with respect to the feature model [24]. Each configu-
ration can be used to generate a product. A feature model
is used to define the valid combination of features [24]. A
feature model can be represented graphically by feature di-
agram structured as a tree.

In a feature diagram, several types of connections between
the features and the subfeatures can be represented as il-
lustrated in Figure 1. These connections are distinguished
as: or and alternative groups [5]. Subfeatures can be op-
tional, such as GPS and Media, or mandatory, such as Calls
and Screen. In an or -group, at least one subfeature has to
be selected, when its parent is selected. In an alternative-
group, exactly one subfeature must be selected [36], when
its parent is selected. For instance, a mobile phone can in-
clude only one of the following features: Basic, Colour, or
High resolution. In addition, the selection of a feature im-
plies the selection of its parent feature and its mandatory
subfeatures.

The features are either abstract or concrete: it is con-
crete, if implementation artifacts are mapped to that fea-
ture; otherwise, it is abstract [37]. Furthermore, features
can have additional dependencies that cannot be described

using only the hierarchical structure; cross-tree constraints
are used to define such dependencies. Cross-tree constraints
are propositional formulas usually shown below the feature
diagram [2]. As illustrated in Figure 1, the feature model
of the Mobile Phone SPL contains cross-tree constraints re-
quires and excludes. An example of a requires constraint
is, if feature camerais selected to be included in a mobile
phone, the feature High resolution of the screen must be
selected. An example of an excludes constraint is that a
mobile phone cannot support the features GPS and Basic
at the same time.

3. STATE OF THE ART
We divide this section into three parts. In the first part,

we present prioritization techniques in SPL testing. We
present the sampling techniques that use constraint-based
approaches in the second part. In the third part, we dis-
cuss the search-based approaches that are used to sample
the configurations.

Product Prioritization.
Concerning prioritizing the products, a few approaches

have been proposed to prioritize them based on different
criteria. Baller et al. propose a framework to select ad-
equate test suites for sets of software variants under test
with regard to cost of test cases and profit of covering test
requirements [4]. They do not sample the products; the
products are given as input to their approach. Devroey et
al. [12] propose an approach to prioritize products based on
the behavior of SPL. They use statistical testing to extract
products with high probability to be executed. Ensan et al.
propose a goal-oriented approach by giving a high priority to
the products that contain the most desirable features [15].
Ensan et al. [15] prioritize these products depend on the
expectations of the domain stakeholders. The approaches
of Devroey et al. [12] and Ensan et al. [15] need domain
knowledge to prioritize the products.

Constraint-Based Sampling.
Several approaches have been proposed to reduce the num-

ber of products under test. Combinatorial interaction test-
ing (CIT) is a strategy used to select a subset of products in
which interaction faults are most probably to occur. Several
approaches use t-wise sampling to achieve the combination
interaction between features [9, 10, 32]. Oster et al. [31] in-
troduce a methodology to apply pairwise testing approach
to a feature model by combining graph transformation and
forward checking. Oster et al. [31] ensure that preselected
products are part of products that are generated from pair-
wise coverage. Perrouin et al. [33] transform the feature
model into Alloy to select configurations, then they use a
SAT solver to check the validity of these configurations. This
approach faces scalability issues due to the additionally step
of transforming the Alloy model to conjunctive normal form
(CNF) before it can be checked by a SAT solver [20]. The
approaches of Oster et al. [31] and Perrouin et al. [33] do not
consider any type of prioritization for the generated config-
urations. Johansen et al. combine the sampling and priori-
tization [23]. In their approach, they use domain knowledge
about which feature interactions are prevalent in the mar-
ket to assign weights to sub-product lines. Uzuncaova et al.
propose an approach by generating test cases from software



product line specifications [38]. The challenge in these ap-
proaches is that it is not easy to have the domain knowledge
of the SPL.

Selecting which test cases need to be run is another strat-
egy used to reduce the test space. Kim et al. use static
analysis to reduce the number of configurations by consider-
ing features as combinatorial parameters [25]. They use the
static analysis of test cases and source code to reduce the
number of variant that need to be tested. Shi et al. present
a compositional symbolic execution technique to analyze an
SPL [35]. They use the interactions between features to re-
duce the number of products that need to be tested. Both
approaches of Kim et al. [25] and Shi et al. [35] reduce the
test space of an SPL by generating a subset of all the possi-
ble configurations, but they do not prioritize these configu-
rations to increase the efficiency of SPL testing.

Search-Based Sampling.
To the best of our knowledge, there are only two search-

based approaches to generate a subset of all possible con-
figurations in SPL testing. Ensan et al. [16] use genetic al-
gorithms to generate these configurations with a high fault-
detection capability. Henard et al. [19] use genetic algo-
rithms to generate the subset configurations using t-wise
covering and prioritize them based similarity heuristics. In
addition, they use different criteria and they represent the
gene in genetic algorithm in a different way. Ensan et al. [16]
consider each product is a gene and each feature is a chro-
mosome, while Henard et al. [19] consider the set of products
as a gene and each product is a chromosome. Both of these
approaches have been proposed to generate and select the
configurations to be tested, but the input parameters to the
fitness function of their approaches are defined only at the
feature-model level and they do neither incorporate source
code nor test cases.

4. PROBLEM STATEMENT
The high number of possible combinations of features

which often leads to a combinatorial explosion of possible
products makes testing an SPL a difficult task. Since the
resources in testing are usually limited, it is not possible
to test all the possible products. Until now, there is no
consensus on how to efficiently test SPLs [14]. Most of cur-
rent sampling algorithms apply t-wise testing for t<=3 [22].
Kuhn et al. mention that 70 % and 95 %, of faults are found
for 2-wise and 3-wise coverage respectively [27]. They men-
tioned that the larger interaction coverage between features
achieved, the higher percentage of faults are found. They
indicate that approximately 100 %, of faults are found for
6-wise coverage. Thus, to detect almost all faults, we need
to apply 6-wise interaction testing. The challenge of apply-
ing 6-wise testing is that the number of products is still high
especially for large feature models. For example, 480 prod-
ucts are required to be tested for Linux kernel( with 6888
features) with only 2-wise coverage interaction [22]. Apply-
ing 6-wise testing will increase the number of products sig-
nificantly. Several sampling approaches have been proposed
to select a set of configurations to be tested as represen-
tative of an SPL [31] [33] [21]. Although these approaches
have been improved recently [22], but they still have a scal-
ability problem of handling large feature models and high
interaction coverage between features [26]. In addition, the-
ses sampling approaches focus only on how to generate the

minimum number of products for a given coverage. How-
ever, there are other parameters that may involved in the
SPL testing process, such as time, profit, and cost [4, 4, 19].

The time budget of testing is usually limited. Hence, in
which order products are tested is important in this context.
The testers wish to order the products in a way to help them
to detect the faults as soon as possible. The tester can save
time by starting testing the products that are most likely
contain faults. The main goal of prioritizing products is to
increase the efficiency of SPL testing w.r.t. increasing the
rate of fault detection.

Several criteria are investigated whether they can enhance
the process of selecting and prioritizing products. The ex-
isting approaches have focused on domain knowledge and
feature-model criteria. To the best of our knowledge, there
is no work consider code-based criteria in prioritizing prod-
ucts.

We plan to use an evolutionary testing approach to ex-
plore the test space of SPL and select a subset of the pos-
sible configurations. In addition, we are going to prioritize
the selected configurations based on different criteria from
feature-model level and code-based level. In addition, we
will consider specification and the domain knowledge, when
it is available, during the prioritization process. In particu-
lar, we address the following research questions:

• RQ1: How to increase the rate of fault detection for
SPLs testing by prioritizing products?

• RQ2: How to achieve efficient sampling (i.e. handling
multiple parameters)?

• RQ3: What are code-based metrics that enhance the
efficiency of SPL testing?

5. RESEARCH APPROACH
To answer RQ1, we propose a similarity-based prioritiza-

tion approach to prioritize the configurations [1]. Our initial
results indicate that the order of our approach is better than
the random orders and is often better than the default order
of sampling algorithms which are used to sample configura-
tions from feature models.

To answer RQ2, we plan to employee metaheuristic search
algorithms, which are general algorithmic frameworks de-
signed to solve complex optimization problems [6], to search
the possible configuration space of feature models (see Sec-
tion 5.1). The key to answer QR2 is the fitness function. It
is used to guide Metaheuristic algorithms. The main role of
the fitness function is to capture SPL testing parameters (ob-
jectives). The Metaheuristic algorithms seek inputs to the
fitness function that maximize the efficiency of SPL testing.
Metaheuristic algorithms are very generic, because different
fitness functions can be defined to achieve different goals.
Hence, we can apply the same Metaheuristic algorithm to
very different SPL testing scenarios. In Section 5.2, we in-
vestigate how we can address RQ3.

5.1 Metaheuristic Search
The test case generation process in the industrial sector

is often part of test engineer responsibility. This process
takes a long time and consumes a plenty of effort, espe-
cially for large applications. Hence, many test engineers fa-
vor metaheuristic search techniques to generate appropriate
tests automatically. If an optimal solution is required for



Algorithm 1: Pseudocode of cuckoo search [40]

1: Objective function f(x), x=(x1, x2, ..., xd);
2: Generate initial population of

n host nests xi(i=1,2,...,n);
3: while ((t <MaxGeneration) or stop criterion)
4: Get a Cuckoo randomly by Levy flights;
5: Evaluate its quality/ Fitness Fi;
6: Choose a nest among n (say j) randomly;
7: if Fi ě Fj

8: replace j by the new solution;
9: end

10: Abandon a fraction (pa) of worse nests
[and build new ones via Levy flights]

11: Keep the best solutions
(or nest with quality solutions);

12: Rank the solution and find the current best;
13: end while

14: Post process results and visualization;

combinatorial problems at reasonable computational cost,
metaheuristic search techniques can be used to achieve this
task [29].

Several metaheuristic techniques, such as hill climbing,
simulated annealing, and evolutionary algorithms have been
used in the software test generation [8] [41] [39]. Hill climb-
ing is a local search algorithm used to improve one solution.
This solution is randomly chosen from the search space at
starting point, then attempts to find a better solution by
incrementally changing a single solution at a time. If a bet-
ter solution is found, then this replaces the current solution.
The previous step will be repeated until no improved solu-
tions can be found for the current solution [29]. Hill climb-
ing is simple and gives a fast result. Simulated annealing is
similar to hill climbing, but it allows more freedom move-
ment around the search space. Evolutionary algorithms use
simulated evolution as a search strategy to evolve candidate
solutions [29]. Evolutionary testing refers to the process of
using evolutionary algorithms to generate test cases [29]. In
our project, at first, we plan to exploit the evolutionary algo-
rithms using cuckoo search (CS) algorithm [40] to generate
products for software product line. Then, we will compare
CS against well-known evolutionary algorithm (e.g., genetic
algorithm) [16] [19].

Cuckoo Search Algorithm.
The cuckoo search (CS) optimization algorithm is a re-

cently proposed metaheuristic, based on the brood para-
sitism behavior of certain species of the cuckoo birds such
as the guira and the ani, combined with the displacement
mode of many animals and insects such as the sharks and
the some bird species. This movement pattern has been de-
scribed as a heavy-tailed probability distribution and called
the Lévy Flight pattern [40].

In order to simulate the behavior of the cuckoo birds, the
original authors adopted three idealizing rules which are as
follows:

• Each cuckoo lays one egg at a time. The cuckoo chose
a random nest to dumb its egg.

• The next generations will be carried by the best nest
with high quality of eggs.

• The number of available host nests is fixed and a host
can discover an alien egg with a probability [0; 1].

If the host discovers an alien egg, the host bird can either
throw the egg away or abandon the nests and build a new
nest in a new location via lévy flight algorithm. Lévy flight
algorithm helps to efficiently explore the neighborhood of
the current best obtained a set of configurations in terms of
measures (related to the inputs of fitness function) without
getting trapped in local minima [40].

Algorithm 1 summarizes the main functioning scheme of
the CS. The algorithm starts by initializing a random popu-
lation of size n from the search space, sometimes also called
the belief space. This initial population is sorted and ranked
based on a fitness function, and a new candidate solution is
generated starting from the best so far obtained solution in
the initial population. This new candidate is generated by
performing a Lévy Flight around the previous best solution.
Later, a randomly chosen solution from the initial popula-
tion is compared to the newly generated Lévy candidate in
terms of their fitness function. If the new element is of a
better quality, the randomly chosen element is substituted.
The discovery probability process described in Algorithm 1
is represented by a substation process in the initial popula-
tion. This means, a portion of the worst nests from the so
far obtained population is replaced by randomly generated
one with a probability pa. The last obtained population is
ranked and the best element is evaluated against the stop
criteria. This process describes the basic operations of each
iteration, and the algorithm performs as many iterations as
necessary until one of the stop criteria is met (e.g., time).

In order to properly project this algorithm on the SPL
problems, each solution would represent a configuration.
Figure 2 shows one of the many possible applicable diagrams
to solve our problem using the CS algorithm.

Genetic Algorithm.
Genetic algorithms are inspired by the processes of Dar-

winian evolution. Genetic algorithm is one of the evolution-
ary algorithms which are used to select superior candidate
solutions. The first step in genetic algorithms is similar to
the one in CS which is generating a set of configurations ran-
domly. These configurations serve as the initial population
for genetic algorithm. In the second step, each configuration
is evaluated using fitness function. The weaker configura-
tions w.r.t. fitness function are discarded in the third step.
In the fourth step, the rest of the configurations are used as
seeds for crossover and mutation operators to generate the
next generation of configurations. The new configurations
are evaluated (step 2). The process will continue until the
condition (e.g., time) has been satisfied [16].

Genetic algorithms already have been proposed to sample
configurations in an SPL [16] [19]. The major difference
between both approaches is the way they represent the gene
in genetic algorithm. To evaluate our approaches, we plan
to conduct comparisons between CS with each one of these
approaches.

5.2 Prioritization Criteria for SPLs
Regarding RQ3, we will present examples of feature model

and code-based criteria. We plan to investigate whether
these criteria and others can increase the efficiency of SPL
testing. We will use the following criteria as inputs to the
fitness function to prioritize the configurations:
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Figure 2: The overview of multi-objective sampling approach

The similarity between configurations.
This criterion measures the similarity between configura-

tions [1]. At first, we select a configuration, then we cal-
culate the similarity between configurations. We hope that
the configuration that has the minimum similarity with all
previous tested configurations is the best configuration. The
motivation of using the similarity between configurations is
that similar products are likely to contain the same faults.
Hemmati et al. [18] observe that dissimilar test cases are
likely to detect more faults than the similar ones. The simi-
larity values between configurations are between 0 and 1. If
the value is 1, it indicates that the configurations are iden-
tical. If the value is 0, it means that the configurations are
completely different from each other.

We evaluate the similarity between configurations using
the Hamming distance [17]. Hamming distance is mathe-
matically given by the following formula, where ci and cj
are configurations and F is the set of all features in a SPL.

d(ci, cj ,F) = 1−
|ci ∩ cj |+|(F\ci) ∩ (F\cj)|

|F |
(1)

As it is illustrated in Equation 1, we consider not only the
selected features when we calculate the distance between
configurations, but also the deselected ones. In the first
step, we select the first the configuration with the maximum
number of selected features because it covers most faults in
individual features and enables selection of the next config-
uration with large distance. It is common in the Linux com-
munity to test the configuration with the maximum number
of selected features (a.k.a. allyesconfig) [13]. The second
step is to calculate the distance between this configuration
and the other configurations and we select the one with the
maximum distance. We continue the process until all the
configurations are ordered.

Cross-Tree-Constraints Ratio (CTCR).
This metric measures the degree of involvement of features

in the integrity constraints. The input to this metric is a
feature model and the output is the ratio of the number of
features in the cross-tree constraints to the total number of
features in the model [3]. Since we are interested in CTCR

for a specific product, CTCR can be defined as follows:

CTCR (p,fm) =
#constraintsfeatures(p, fm)

#features(p)
(2)

Where #constraintsfeatures(p,fm) is the number of features
in p involved in constraints and #features(p) is the total
number of features in product p. The previous metrics are
feature-model-based level, the following metric is an example
of code-based level metrics that can be used as input in the
fitness function. We assume that this criterion can reduce
testing effort by starting testing the more complex products
in terms of constraints.

Number of Features Constants (NOFC).
The NOFC metric provides perceptions into the variabil-

ity and complexity of the SPL, since it represents the con-
figuration dimension of an SPL. NOFC metric is measured
by calculating how many times each feature occurs in the
expressions and summing them per product [28]. Accord-
ing to this criterion, the products that have the maximum
number of features will be given priority to be tested.

Lines of Feature Code (LOF).
LOC metric is a code-based metric. This metric repre-

sents the size of a feature. LOC metric can be measured
by counting the number lines of feature code that are linked
to a feature expressions. LOC metric gives us indication
whether a small or a large fraction of the code base is vari-
able [28]. We assume that this metric can reduce testing
effort by starting testing products that have features with a
large fraction of code.

Scattering Degree (SD) and Tangling Degree (TD).
The SD metric is the number of the occurrences of a fea-

ture in different feature’s expressions. This metric is mea-
sured by extracting feature names from feature expressions
and calculate the average and standard deviation per prod-
uct of all occurring feature. SD metric tells us about the
complexity of feature implementations [28].

TD metric is the number of different features that occur
in a feature expression. A lower TD is better, because high
TD of features in feature expressions may impair program
comprehension [28]. The goal of measuring these metrics



is to measure the complexity of products and give higher
priority to the products with higher complexity.

Average Nesting Depth of features (AND).
The AND metric represent the average nesting depth.

AND metric can be measured by calculating the average
and the standard deviation of all features and computing,
based on these values, the average and standard deviation
for product. Since nested features form feature expressions,
this metric is useful for discussions on program comprehen-
sion [28]. This metric may give indication that the products
with high average nesting depth is more complex than oth-
ers. We will start testing the product with higher complexity
hoping that it is most likely to contain faults.

5.3 Research Methodology
This thesis will rely on the combination of a systematic

review, simulation-based controlled experiments, and indus-
trial case studies, which will be applied at different stages
of the thesis. We use systematic reviews to synthesize the
research results, to summarize the existing evidence for SPL
testing, and to aid in the identification of gaps in the current
research. A main portion of this research proposal is on the
use of search-based techniques on SPL testing.

This thesis will be approached through experimental re-
search methods. We will implement and evaluate our ap-
proaches in FeatureIDE [36]. FeatureIDE is an open-source
framework based on Eclipse, which covers the whole develop-
ment process of feature-oriented software and incorporates
with tools for the implementation of SPLs. We will compare
our work with state-of-the-art tools and algorithms that are
used in SPL testing and with random generations. We will
apply our approaches in a real case study to evaluate our ap-
proaches in the real world. Since our working group is the
main one that design, implement, and maintain FeatureIDE,
we hope to be able to perform a case study with the indus-
trial use of FeatureIDE.

6. WORKING PLAN
In this section, we present: an outline of thesis structure,

the progress status at the moment of writing this proposal,
the remaining work that needs to be done to answer our
research questions, and finally the publication plan of our
PhD project.

6.1 Thesis Structure
As it illustrated in Figure 3, the thesis structure will be

as follows. In Chapter 1, we plan to introduce a motivation
to our work. Then, we will present a brief summary of our
contributions and outline of the thesis structure. In Chap-
ter 2, at first, we plan to present a background about SPL
fundamental. Second, we will describe the properties of fea-
ture model and its constraints. Third, we will present the
challenges of SPL testing and to discuss the state of the art
of sampling algorithms and tools which use to sample the
configurations from feature models. Finally, we are going
to study the pros and cons of each algorithm and investi-
gate how we can enhance their efficiency w.r.t. increasing
their scalability to handle large feature models as well as
increasing the early rate of fault detection.

In previous works [16,19,34], a limited number of feature
model criteria are used to select and/or prioritize products.
However, we think there is a lack of research about other
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Figure 3: Outline of the Thesis Structure

criteria that may enhance SPL testing. Hence, we plan to
investigate this issue further in Chapter 3. We plan to find
out what metrics at code-based can help to prioritize or even
select a set of products to test, since to our knowledge, no
empirical research exists addressing the question of what and
how code-based metrics can enhance the efficiency of SPL
testing. At the end of Chapter 3, we plan to investigate
other information that may help in testing such as, domain
knowledge and specifications.

In Chapter 4, we plan to present search-based testing ap-
proaches to use them in selecting and prioritizing the prod-
ucts based on on the inputs to the fitness function. Then,
we will describe the implementation and evaluation of each
approach. In the last chapter, we summarize the overall ap-
proach and answers to all the listed research questions. At
the end of Chapter 5, we present some open questions and
outlook for further research on SPL testing.

6.2 Progress status
At the moment, we have addressed RQ1 from our research

questions [1]. We have proposed similarity-based prioritiza-
tion to prioritize the configurations. The input to similarity-
based prioritization can be all the valid configurations if the
feature models are small; if not, the input to our approach
can be a set of sampled configuration created by sampling
algorithms or a set of configurations created by domain ex-
perts. We selected well known sampling algorithms and in-
tegrated them to FeatureIDE. We combined our approach to
these sampling algorithms. We implemented and evaluated
our approach in FeatureIDE. We compared our approach to



the defaults outcomes of these sampling algorithms as well
as to the random orders.

The results indicate that the default order of sampling al-
gorithms can be improved by combining our approaches to
prioritize their outcomes. In addition, our approach outper-
forms the random orders with respect to the early rate of
faults detection.

6.3 Remaining Work
As stated in Section 6.2, we have addressed RQ1 from

research questions. Although our previous experiment [1]
suffers from a threat to validity since we simulate the faults
and we assumed that the faults are equally distributed over
the features and their interactions in an SPL. Hence, we plan
to evaluate our previous work by using real test cases and
real SPL or generate faults into real source code of existing
SPLs using techniques from mutation testing.

We are currently starting work on RQ2. After that, we
are going to address RQ3. The plan is to complete the dis-
sertation during 2016-2017.

6.4 Publication Plan
Since the remaining work is the large part of our research,

we plan to submit to several conferences, and journals re-
lated to the thesis topic in the following two years. At first,
we plan to extend our work from a previous work [1], to
include other approach and improve the evaluation part es-
pecially the part of fault generator. We will submit the
paper to a journal specialized in software testing or SPL.
Second, we plan for another conference submission about
feature-model and code-based metrics. We want to investi-
gate whether this criteria can enhance the efficiency of SPL
testing. Third, we plan for a conference submission to in-
vestigate using the code-based and feature-model criteria to
help in selecting and prioritizing products. Finally, we are
going to submit a paper to a journal where we can show the
results of applying and evaluating our approach to a real
case study.

7. CONCLUSION
It is a difficult task to test every product of an SPL be-

cause the combinatorial explosion of the number of prod-
ucts. Combinatorial interaction testing (CIT) is used to
reduce the number of products under test and to detect the
faults are caused by the interaction between a few features.
The challenge in CIT is that it does not scale well for large
feature models.

In this proposal, we suggest using metaheuristic search
techniques to generate the products to test. Using meta-
heuristic search techniques, we can generate and prioritize
these products. We think that using metaheuristic search
techniques can increase the efficiency of SPL testing. Fur-
thermore, we believe that there is a lack of research using
code-based criteria to prioritize products, hence, we want to
investigate what are code-based metrics that may increase
the efficiency of SPL testing
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