
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.:

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.:

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_ eports.html
Technical eport (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Feature-Model Interfaces for Compositional Analyses

Reimar Schröter
∗
, Sebastian Krieter

∗
, Thomas Thüm

†
, Fabian Benduhn

∗
, Gunter Saake

∗
∗

University of Magdeburg,
†
Technische Universität Braunschweig
Germany

ABSTRACT
Feature models are often used to describe the commonal-
ity and variability in a software product line. A feature
model describes the possible combinations of features for
generation of products. To ensure the correctness of fea-
ture models, several authors propose automated analyses
(e.g., to guarantee that at least one product can be gener-
ated). However, industrial product lines contain thousands
of features and, thus, the specification of a feature model as
well as the product configuration becomes challenging. We
uncover that existing modularization techniques for feature
models are not sufficient for compositional analyses. In this
paper, we present the concept of feature-model interfaces to
close this gap. We prove that feature-model interfaces can
be used to modularize feature models in a way that supports
compositional analyses.

Keywords
Software Product Lines, Variability Modeling, Feature Mod-
els, Modularity, Compositional Analysis

1. INTRODUCTION
Feature models are often used to describe the common-

ality and variability in a software product line [5]. The
common and variable artifacts are represented by features,
which are arranged in a tree structure with additional cross-
tree constraints to describe all valid feature combinations
of the product line [6, 13]. Since cross-tree constraints can
be arbitrary propositional formulas, a feature model may be
inconsistent (e.g., the feature model involves dead features
that do not exist in any product). Therefore, developers
have to check a feature model for existing inconsistencies
and unintentional dependencies. Automated analyses were
proposed to efficiently detect such problems in feature mod-
els [7].

Feature models can be very large; our industrial partners
face the challenge of feature models with more than 10 000
features. However, the general concept of feature-model
analyses does not scale for large feature models regarding
all analysis types (e.g., SAT-based analysis to determine the
number of products). Therefore, large feature models lead to
problems regarding manual comprehension and automated
analyses. Several approaches were proposed that divide fea-
ture models into smaller parts to improve comprehensibility
and to reduce the complexity. Furthermore, current tech-
niques allow us to combine these parts in a flexible manner
to build new feature models [1, 4, 20]. However, these com-

Figure 1: Feature model MIndex = (FIndex,PIndex).

position techniques do not support compositional analyses,
i.e., they still rely on analyses of the composed model that
includes all information of all involved submodels.
We propose to use feature-model interfaces to compose

feature models in a way that supports compositional anal-
yses. Feature-model interfaces are a special kind of feature
models to supports the concept of information hiding in the
feature-modeling process [14]. Thus, the feature-model in-
terface only consists of features that a developer is intended
to use in a specific composition scenario, whereas all other
features are hidden to the developer. Therefore, feature-
model interfaces reduce the complexity of the composed
model and we will show that feature-model interfaces can
also be used to apply compositional analyses.
In particular, we make the following contributions:

• We formally define feature-model interfaces based on
a definition of feature models.

• We discuss how to benefit from feature-model inter-
faces in feature-model compositions.

• We prove the correctness of using feature-model inter-
faces for compositional feature-model analyses.

2. FEATURE-MODEL ANALYSES
In this section, we give a brief introduction on feature

models and their automated analyses. A feature model con-
sists of a set of features that are arranged in a tree structure
with additional cross-tree constraints to describe all valid
feature combinations [6, 13]. According to the tree struc-
ture, it is forced that in each product in which a child feature
is included, the parent is also included. Besides this depen-
dency, several kinds of child features exist: grouped features,
mandatory, and optional features. Mandatory features are
included in each product in which their parent is included,
whereas the inclusion of an optional feature is not required.

Grouped features can be arranged in an alternative-group
as well as in an or-group. While the alternative-group forces
the existence of exactly one grouped feature if their parent
is included, the or-group forces the existence of at least one
feature. Beside the tree structure, it is possible to add cross-
tree constraints (i.e., propositional formulas over the set of
features) to reduce the represented set of products.

In Figure 1, we present the feature model Index, which
represents a set of index structures to optimally support
direct access of data items in a database. An index can
only support one data-type at a time. Thus, the features
Int , Double, and Float are arranged in an alternative-group.
Furthermore, the developer can choose the query algorithms
Knn, and Range to search for data items. The query al-
gorithms are independent of each other and are therefore
represented by an or-group. Furthermore, it is optional to
force unique keys in an index structure for which we include
an optional feature UniqueKeys. Since it is only possible
to support unique keys for integer values, the model con-
tains the additional cross-tree constraint UniqueKeys ⇒ Int
as propositional formula.

For our proofs, we define feature models as follows:

Definition 1. A feature model Mx is a tuple (Fx ,Px),
where:

• Fx is a set of features, and
• Px is a set of products with Px ⊆ 2Fx .

A feature model is specified by a set of features and all com-
binations of features that lead to valid products.

Let us take a look at our example of feature model Index .
Formally, we can define this feature model as MIndex =
(FIndex ,PIndex). In Figure 1, we exemplify the sets FIndex

and PIndex on the right side using the highlighted characters
of the graphical representation as feature diagram.

Automated Analyses of Feature Models
In industry, feature models may consist of thousands of fea-
tures (e.g., Linux kernel with more than 11 000 features [25]),
which affects the comprehensibility of feature dependencies
in a negative manner. Thus, automated consistency checks
for large-scale feature models are of high importance. Bena-
vides et al. present an overview of automated analyses and
consider them as an information extraction process that is
executed in two steps [7]. In the first step, an analysis tool
translates the feature model into a specific representation
(e.g., propositional logic). In the second step, a correspond-
ing solver or algorithm is used to perform the analysis and to
determine the analysis result. In the following, we present
an excerpt of possible analyses that we investigate in the
remainder of this paper and present a formal definition.

Void Feature Models. A feature model is void if and only
if it represents no products [6, 7, 13]. Based on our defini-
tion of feature models, we can formalize the analysis of void
feature models as follows. A feature model Mx is part of
the set of all void feature models if and only if the set of
products Px is equal to the empty set.

void = {Mx ∈ M | Px = ∅}

Core Features. A core feature is a feature that is included
in each product of the product line [7, 26]. Similar to the
analysis of void feature models, we use our feature-model

Features Valid

I U Q T K R n D F

1 FS FD FS FS FS FD FS FD FD �
2 FS FD FS FS �
3 FS FD FD �
4 FS FS FS �

Table 1: Example partial configurations of feature
model MIndex (using highlighted characters of Fig-
ure 1 as abbreviations).

definition to formalize when a feature is a core feature. A
feature is core if and only if it is an element of the set re-
turned by the function core, which takes a feature model
Mx as input.

core(Mx) =
⋂

p∈Px

p

Dead Features. A feature of a feature model is a dead fea-
ture iff it is not part of any valid product of the product
line [7, 13]. We use our feature-model definition to formal-
ize the analysis of dead features. A feature is dead if and
only if it is an element of the set returned by the function
dead , which takes a feature model Mx as input.

dead(Mx) = Fx \
⋃

p∈Px

p

Validity of Partial Configurations. A partial configura-
tion is a tuple consisting of a set of selected features FS

and a set of deselected features FD . The validity analysis of
partial configurations investigates whether a partial config-
uration contains a contradiction regarding the dependencies
of a feature model [6, 7, 13]. Based on our feature-model
definition, we define a function vConf that takes a feature
model Mx as input and returns all existing valid partial
configurations.

vConf (Mx) = {(FS ,FD) |
∃p ∈ Px : FS ⊆ p ∧ FD ⊆ Fx \ p}

Example. Let us take a look at our feature model MIndex

(see Figure 1). For the analysis of void feature models, we
get the result that feature model MIndex is not in the set of
all void feature models (i.e., MIndex /∈ void). If we analyze
the core features, we get the set core(MIndex) = {Index ,
Queries,Types}. By contrast, the application of function
dead(MIndex) results in an empty set and, thus, the fea-
ture model does not contain any dead features. In Table 1,
we present four examples for partial configurations of fea-
ture model MIndex . The partial configurations #1 and #2
are valid partial configurations. In addition, we call config-
uration #1 a complete configuration because each feature
of FIndex is contained in either FS or FD . By contrast,
configurations #3 and #4 are invalid because they contain
contradictions. In detail, the set FD of configuration #3
contains two features of an alternative-group (Int , Double).
In configuration #4 the features UniqueKeys and Double
are selected at the same time, which is not possible due to

Figure 2: Aggregation of feature model MDBMS and
feature model MIndex with two additional cross-tree
constraints.

the cross-tree constraint and alternative-group in the feature
model.

3. FEATURE-MODEL COMPOSITION
To reduce the complexity of feature models and to improve

their manageability, it is possible to divide feature models
into smaller parts and describe the dependencies between
them. For this, several composition mechanisms exist that
allow us to combine feature models [4, 20]. In this paper,
we consider the composition of feature models by means of
aggregation, i.e., by inclusion of one feature model as an
instance in another feature model [20].

Let us consider our initial example of the feature model
MIndex . We want to reuse an instance of the feature model
MIndex in a database feature model (MDBMS). SinceMIndex

contains functionality that can be used to access items in
the storage system of a database, it should be a child of
the feature Access of MDBMS . We depict the intended re-
sult of this aggregation in Figure 2 as a new feature model
MDBMS/Index in which the root of MIndex (Index) is now a
child of feature Access. Additionally, two other constraints
are specified by domain experts and are added to the result-
ing feature model (see Figure 2).

In the remaining paper, we use aggregation to combine
feature models and to perform automated analysis based on
this composition. Therefore, we have to define the feature-
model aggregation in a formal manner:

Definition 2. Let Mx = (Fx ,Px) and My = (Fy ,Py)
and MC = (FC ,PC) be feature models with FC ⊆ Fx ∪
Fy , we can describe the infix operator aggregation ◦MC of
Mx ,My as follows:

◦MC : M ×M → M
Mx ◦MC My = (Mx • R(My)) •MC (1.1)

R : M → M
R((Fy ,Py)) = (Fy ,Py ∪ {∅}) (1.2)

• : M×M → M
(Fx ,Px) • (Fy ,Py) = (Fz ,Pz) (1.3)

= (Fx ∪ Fy ,Pz) (1.4)

= (Fz , {p ∪ q | p ∈ Px , q ∈ Py ,

p ∩ Fy = q ∩ Fx}) (1.5)

The definition of the aggregation function ◦MC is based
on two other functions • and R. Let us take a closer look at
each of them.
Function R takes one feature model as input and converts

it to a new feature model in which the empty product is a
valid product. Thus, the feature set is identical to the input
feature model and the set of products is extended by the
empty set. R is used in function ◦MC to ensure that the
root feature of My is not a core feature in the aggregated
feature model.
Function • takes two feature models as input and returns

a new combined feature model, which is a merge of all input
information (i.e., features and products).1 The resulting
feature model consists of a set of features which is the union
of all features from the input feature models. To combine the
product sets of both input models, we use an operation that
is similar to a join as known from the domain of databases.
This operation combines the products of one feature model
with the products of the other feature model. Like the join,
we only combine two products if the additional condition
p ∩ Fy = q ∩ Fx is fulfilled.2

Function ◦MC represents our aggregation mechanism. The
function uses two feature models as input and creates a new
feature model by an application of the previously defined
functions R and •. The application of function • with Mx

and R(My) does not necessarily create a connected feature
diagram. In fact, this is the expected result, since in most
cases the combined feature models do not share features
(Fx ∩ Fy = ∅). Thus, we need to describe the constraints
between the two input feature models in a separate feature
model MC which can represent parent-child relationships
that connects both feature models.
Let us consider the details of the aggregation regarding

MDBMS and MIndex . In Figure 3, we aim to instantiate
feature model MIndex in feature model MDBMS below fea-
ture Access as an optional feature. Therefore, we have
to transform feature model MIndex using the function R.
Then, it is possible to combine both feature models using
the function •. We depict the result of this combination
in Figure 3. Because of the desired parent-child depen-
dency (i.e., Index ⇒ Access), we need to create a feature
model MC with a set of products that represents this de-
pendency. Using the knowledge of the parent-child depen-
dency, we create a feature model MC with three products
PC = {∅, {Access}, {Access, Index}}. Additionally, we add
two other constraints to further restrict the resulting prod-
ucts. Using the constraints

• Index ⇒ Paged
• Multimedia ⇒ Knn,

we create an extended version of feature model MC , which
we depict in Figure 3 (in the left bottom corner). Now, we
can use function • to eliminate all products of MDBMS •

1If both feature sets are disjunct it is not possible to
represent the result in an ordinary feature diagram because
there is no connection between these models.

2Note that, if both feature set are disjunct, the condi-
tion p ∩ Fy = q ∩ Fx = ∅ is always true and, thus, the
function works like a kind of “cross product” and creates all
combinations of products.

Figure 3: Aggregation of the feature models MDBMS and MIndex using the feature model MC , which describes
dependencies between both aggregated feature models.

R(MIndex) that do not comply with the parent-child rela-
tionship and the other dependencies given in feature model
MC . The result is a new feature model MDBMS/Index , which
is also depicted in Figure 3.

4. PROBLEM STATEMENT
In the last sections, we gave an overview about automated

analyses of feature models and the composition of feature
models using the aggregation function. Both research do-
mains present a set of approaches but their combination is
rarely analyzed. In previous work, we and others proposed
strategies in which feature models are combined to one sin-
gle feature model so that we can reuse existing analyses [2,
24]. However, the necessity to combine feature models for
automated analyses leads to several disadvantages and prob-
lems. In the following, we give some examples to illustrate
them.

Scalability. Decomposition is one possibility to handle large
feature models. As described before, we need to combine
the separated feature models to analyze them. The result is
again a large feature model that can be difficult to analyze.
This depends not only on the analyses themselves but also
on the strategy to apply them. For instance, we can use
different solvers to apply a specific analysis, such as binary
decision diagrams (BDDs) or satisfiability solvers. Let us
take a look at the analysis number of products. If we use
BDDs to determine the number of products, we typically
have a scalability problem regarding the memory consump-
tion. By contrast, if we use a satisfiability solver for the
same analysis, we get a scalability problem regarding the
time that is needed to determine the number.

Unused Feature Model Details. If we use feature-model
composition to reuse existing functionality of one product
line in another one (e.g., feature model MIndex in feature
model MDBMS) it is possible that only some functionality
is needed instead of the complete product line. This means,
it is possible that features exist in the composed feature
model that are not of the developer’s interest (c.f. informa-
tion hiding [14]). If we use such a composed feature model

as input, the analyses are more complicated than needed,
which, again, contributes to the problem of scalability.

Reusability of Analysis Results. Assume a scenario of our
running example MIndex and MDBMS , in which both fea-
ture models are designed by completely independent devel-
opment groups. If changes occur in the reused feature model
MIndex , the development group of feature model MDBMS

has to react on these changes to ensure a further usage. This
also means that the new version of MIndex has to be recom-
posed with the feature model MDBMS to apply the different
analyses. With current techniques, it is not possible to reuse
existing analyses of the first feature-model composition.

To conclude, it is necessary to find a way that allows us
to modularize feature models such that compositional anal-
yses are possible. A suitable modularization mechanism of
feature models reduces the described problems above and
facilitates the reuse of analysis results. To support com-
positional analyses, we introduce feature-model interfaces
and prove a set of dependencies of analysis results based on
feature-model interfaces to other feature models.

5. FEATURE-MODEL INTERFACES
In this section, we introduce feature-model interfaces -

a mean to compositional analysis of feature models. Af-
terwards, we present a function that allows us to create
feature-model interfaces based on existing feature models.
We present and prove some algebraic properties regarding
feature-model interfaces that we need for our proofs for com-
positional analyses. We define a feature-model interface as
follows:

Definition 3. A feature model MInt = (FInt , PInt) is
an interface of feature model Mx = (Fx ,Px) denoted as
MInt � Mx , if and only if

FInt ⊆ Fxand

PInt = {p ∩ FInt | p ∈ Px}.
The definition of feature-model interfaces is based on the

definition of feature models (see Section 2) because it is a fea-

ture model itself, which is related to another feature model
Mx . In detail, the feature-model interface MInt has a pos-
sibly reduced set of features compared to feature model Mx

and each product of MInt is similar to a product of Mx

but with a set of features compatible to FInt . Therefore, we
can conclude that for each product in a feature model Mx

a product in the feature-model interface MInt exists and
vice-versa.

Corollary 1.

∀ q ∈ Px∃p ∈ PInt : p = q ∩ FInt

∀ p ∈ PInt∃q ∈ Px : p = q ∩ FInt

Furthermore, we can conclude that for one feature model
Mx and a set of features FInt there exists exactly one feature-
model interface.

5.1 Interface Generation
For our further investigation and proofs regarding auto-

mated analyses, we define a function S that allows us to
generate a feature-model interface based on an existing fea-
ture model.

Definition 4. Let Mx = (Fx ,Px) be a feature model
and FR a set of features, we define a function S that takes
Mx and FR as input and returns a feature model MInt with
MInt � Mx and FInt = Fx \ FR.

S : M × 2F → M
MInt = S(Mx ,FR) = (Fx \ FR, {p \ FR | p ∈ Px})

Function S takes as input a feature model Mx and a set
of features FR that are not of interest for a specific target
domain and creates a new feature modelMInt as an interface
of Mx . In detail, the function S subtracts feature set FR

from Fx (i.e., feature set of feature model Mx) and from all
products in Px and, by this, creates the one feature-model
interface corresponding to Mx and the set of feature FInt

which is defined by Fx \ FR.

Example. Let us consider our running example of the fea-
ture models MDBMS and MIndex . Again, the developers
want to reuse an existing index structure for the enhance-
ment of a database management system. However, some
features are not of the developers’ interest and, thus, they
plan to reuse only parts of this product line. Therefore, they
can use our feature-model interface (i.e., applying the func-
tion S) to reduce the set of features of the feature model
MIndex . In Figure 4, we illustrate the application of func-
tion S with feature model MIndex and a set of features
FR = {Range,UniqueKeys,Float} as input.3 The result
is a new feature model MInt with a reduced set of features
and products that is tailored to the developers’ needs.

5.2 Algebraic Properties of Interfaces
Next, we take a look at certain properties of the function

S that we need for our proofs of compositional analyses. In
detail, we investigate the right identity for certain feature
sets and distributivity of function S with the functions •
and R.

3We assume the set FR to be given. In practice, it de-
pends on the specific reuse scenario and should be defined
in cooperation with domain experts.

Figure 4: Application of function S with feature
model MIndex and FR as input. The highlighted
products are part of the resulting feature-model in-
terface MInt.

Right Identity. First, we prove that FR is a right identity
element to S if Fx does not contain any feature from FR.
Therefore, we prove that function S has no effect on a feature
model that does not contain a feature of the feature set FR.

Lemma 1. Let Mx = (Fx ,Px) be a feature model and FR

a set of features with Fx ∩ FR = ∅, then
S(Mx ,FR) = Mx .

Proof. As the intersection of Fx and FR is the empty
set, there will be no feature that is removed from the set
of features Fx . The result is the identical feature set Fx .
Similarly, the intersection between each product and the set
of features FR is also empty and, thus, each product will be
the same as before.

S((Fx ,Px),FR) = ((Fx \ FR), {p \ FR | p ∈ Px}) (4.1)

= (Fx ,Px) (4.2)

= Mx (4.3)

Distributivity of • and S . Next, we prove that the order
in which we apply the functions • and S is not relevant for
the result.

Lemma 2. Let Mx = (Fx ,Px), My = (Fy ,Py) be feature
models and FR a set of features

S(Mx •My ,FR) = S(Mx ,FR) • S(My ,FR).

Proof. In general, we separate the application of the
function S on each part of the composed feature model so
that we can apply function • later on. We start with the set
of composed features and transform it accordingly.

S((Fx ,Px) • (Fy ,Py),FR) (5.1)

= (Fz ,Pz) (5.2)

= ((Fx ∪ Fy) \ FR,Pz) (5.3)

= ((Fx \ FR) ∪ (Fy \ FR),Pz) (5.4)

Next, we transform the definition of the product sets in
a way that the feature sets r and s represent the trans-
formation of function S which are used as input for func-
tion •. Thus, r and s are in accordance to the Definition 3
and Eq. (5.8) is the application of Definition 2.

= (Fz , {(p ∪ q) \ FR |
p ∈ Px , q ∈ Py , p ∩ Fy = q ∩ Fx}) (5.5)

= (Fz , {(p \ FR) ∪ (q \ FR) |
p ∈ Px , q ∈ Py , p ∩ Fy = q ∩ Fx}) (5.6)

= (Fz , {r ∪ s | r ∈ {p \ FR | p ∈ Px},
s ∈ {q \ FR | q ∈ Py},
r ∩ Fy = s ∩ Fx}) (5.7)

= S(Mx ,FR) • S(My ,FR) (5.8)

Distributivity of R and S . Finally, we prove that the order
in which we apply the functions R and S is not relevant.

Lemma 3. Let Mx = (Fx ,Px) be a feature model and FR

a set of features, then

S(R(Mx),FR) = R(S(Mx ,FR)).

Proof. Function R is used to add the empty set to the
set of products of a given feature model. To prove the in-
teraction, it is necessary to extract this empty set from the
input feature model that is used for function S .

S(R(Mx),FR)

= (Fx \ FR, {p \ FR | p ∈ (Px ∪ {∅})}) (6.1)

= (Fx \ FR, {p \ FR | p ∈ Px} ∪ {∅}}) (6.2)

= R((Fx \ FR, {p \ FR | p ∈ Px})) (6.3)

= R(S(Mx ,FR)) (6.4)

6. COMPOSITIONAL FEATURE-MODEL
ANALYSES

In this section, we clarify how to support compositional
analyses of feature models using feature-model interfaces.
First, we present the general idea and illustrate how to
combine aggregation (i.e., function ◦) and our concept of
feature-model interfaces (i.e., function S). Second, we in-
vestigate whether it is possible to use the presented anal-
ysis operations of Section 2 in combination with feature-
model interfaces for compositional analyses. In particular,
we prove that the application of the analyses in combination
with feature-model interface presents the intended results.

6.1 General Concept
In Section 3, we introduced the aggregation mechanism

that we can use to instantiate one feature model within an-
other. Afterwards, in Section 4, we presented an overview
of existing problems regarding automated analysis based on
combined feature models. Using a combination of a feature-
model interface and our aggregation function, we show that
it is possible to achieve compositional analyses for feature
models.

To introduce our general concept of compositional anal-
yses, we assume that two feature models Mx and My are

composed to Mx/y = Mx ◦MC My . Typically, not all fea-
tures of feature modelMy are of interest for the composition
with feature model Mx . Given the knowledge about those
features, it is possible to create a feature-model interface
MInt based on My with all features of interest (MInt �
My). Since feature model MInt consists of all “important”
features, the question arise whether it is possible to use
feature model MInt instead of feature model My for the
feature-model composition with Mx (i.e., Mx ◦MC MInt =
Mx/Int). In detail, our goal is to prove specific dependen-
cies between analysis results for automated analyses based
on feature model Mx/Int and feature model Mx/y . One de-
pendency could be that we achieve exactly the same results
for an analysis based on a feature-model interface Mx/Int

compared to the same analysis based on feature modelMx/y

with MInt � My .
For our proofs regarding the analysis-result dependencies

of feature modelMx/Int andMx/y , we investigate and prove
the dependencies between the analysis results of feature-
model interface MInt and feature model My (MInt � My).
For this, we prove that a feature-model composition based
on a feature-model interface MInt is also an interface re-
garding a composition based on My (i.e., Mx/Int � Mx/y).
Based on that knowledge, we know the dependencies of the
composed feature models Mx/Int and Mx/y , because fea-
ture model Mx/Int can be considered as an ordinary feature-
model interface of Mx/y .
For each analysis that we discussed in Section 2, we iden-

tify a specific relation between the analysis results regarding
the feature model My and its feature-model interface MInt

(e.g., MInt is a void feature model if and only if My is
void). The particular dependency of the analysis results re-
garding the feature models My and MInt depends on the
given analysis.

6.2 Feature-Model Interfaces in Compositions
Before we can start with the investigation of each analysis

regarding the support of compositionality, we prove that a
composed feature model Mx/Int using a feature-model inter-
face MInt (MInt � My) is also a feature-model interface of
the Mx/y (Mx/Int � Mx/y). In other words, we prove that
the function S applied on a composed feature model Mx/y

is identical to the application of function S on feature model
My and a subsequent aggregation.

Lemma 4. Let Mx/y = Mx ◦MC My , Mx/Int = Mx ◦MC

MInt be composed feature models based on the feature models
Mx = (Fx ,Px), My = (Fy ,Py), MC = (FC ,PC), MInt =
S(My ,FR) with FR ∩ Fx = FR ∩ FC = ∅, then:

Mx/Int � Mx/y

Proof. Given the algebraic properties of the function S
and the definition of our aggregation function ◦MC , the fol-
lowing relations hold:

Mx/y � S(Mx/y ,FR) (7.1)

= S(Mx ◦MC My ,FR) (7.2)

(Eq. (1 .1)) = S((Mx • R(My)) •MC ,FR) (7.3)

(Lemma 2) = (S(Mx ,FR) • S(R(My),FR))

• S(MC ,FR) (7.4)

(Lemma 1) = (Mx • S(R(My),FR)) •MC (7.5)

(Lemma 3) = (Mx • R(S(My ,FR))) •MC (7.6)

(Definition 4) = (Mx • R(MInt))) •MC (7.7)

(Eq. (1 .1)) = Mx ◦MC MInt (7.8)

= Mx/Int (7.9)

6.3 Relation of Analysis Results
In this section, we investigate each analysis that we for-

malized in Section 2. In detail, we investigate the dependen-
cies of the analysis results for the analyses of void feature
model, core features, dead features, and valid partial configu-
rations. For each analysis, we start with an investigation of
the analysis-result dependencies between feature model My

and MInt using the following premise:

Premise 1. Let My = (Fy ,Py) and MInt = S(My ,FR)
= (FInt ,PInt) be feature models. Thus, the feature model
MInt is a feature-model interface of My (MInt � My).

Afterwards, we use the knowledge of Lemma4 in which
the same dependency holds for composed feature models.
Therefore, we use a second premise:

Premise 2. Let Mx/y = Mx◦MCMy , Mx/Int = Mx◦MC

MInt be composed feature models based on the feature mod-
els Mx = (Fx ,Px), My = (Fy ,Py), MC = (FC ,PC),
MInt = S(My ,FR) with FR ∩ Fx = FR ∩ FC = ∅.
6.3.1 Void Feature Models
A feature-model interface MInt with MInt � My is a void

feature model if and only if the feature model My is a void
feature model.

Theorem 1.

My ∈ void ⇔ MInt ∈ void .

Proof.
Because of Corollary 1, the following equations hold:

My ∈ void ⇔ Py = ∅ (8.1)

(Corollary 1) ⇔ PInt = ∅ (8.2)

⇔ MInt ∈ void (8.3)

Based on this knowledge, we take a closer look into the
analysis of void feature models regarding composed feature
models. Here, a feature model Mx/Int is a void feature
model if Mx/y is a void feature model. Utilizing Premise 2,
the following theorem holds:

Theorem 2.

Mx/y ∈ void ⇔ Mx/Int ∈ void .

Proof. From Lemma4 and Theorem1, we infer that the
same analysis-result dependency is also valid for Mx/Int and
Mx/y .

6.3.2 Core Features
With respect to Premise 1, a feature f ∈ FInt is a core

feature of feature modelMInt if and only if f is a core feature
of feature model My . Here, we use our function core and
the resulting set of core features to prove the dependency.

Theorem 3.

core(My) ∩ FInt = core(MInt).

Proof. Based on Definition 3, the following equations
hold:

core(MInt) =
⋂

p∈PInt

p (10.1)

(Definition 3) =
⋂

p∈Py

(p ∩ FInt) (10.2)

= (
⋂

p∈Py

p) ∩ FInt (10.3)

= core(My) ∩ FInt (10.4)

Therefore, we can conclude that if a feature f is a core
feature in feature model MInt it is also a core feature in
feature modelMy . In addition, if we determine core features
of feature model My that are also part of feature model
MInt , it is also a core feature of feature model MInt .

f ∈ core(MInt) ⇒ f ∈ core(My)

f ∈ core(My) ∩ FInt ⇒ f ∈ core(MInt)

Using Theorem3, we can take a closer look into composed
feature models. With respect to Premise 2, a feature f ∈
Fx/Int is a core feature of Mx/Int if and only if f is a core
feature in Mx/y .

Theorem 4.

core(Mx/y) ∩ Fx/Int = core(Mx/Int).

Proof. From Lemma4 and Theorem3, we infer that the
same analysis-result dependency is also valid for Mx/Int and
Mx/y .

6.3.3 Dead Features
In compliance with Premise 1, a feature f ∈ FInt is a dead

feature of feature model MInt if and only if f is a dead
feature of feature model My . Similar to Theorem3, we use
our formalization of function dead and the resulting set of
dead features to prove this dependency.

Theorem 5.

dead(My) ∩ FInt = dead(MInt)

Proof. Based on Definition 3, the following equation hold:

dead(MInt) = FInt \
⋃

p∈PInt

p (12.1)

(Definition 3) = (Fy ∩ FInt) \ (
⋃

p∈Py

(p ∩ FInt)) (12.2)

= (Fy ∩ FInt) \ ((
⋃

p∈Py

p) ∩ FInt) (12.3)

= (Fy \
⋃

p∈Py

p) ∩ FInt (12.4)

= dead(My) ∩ FInt (12.5)

Therefore, a feature f that is a dead feature in the feature-
model interface MInt is also a dead feature in My . Further-
more, if a feature f is a dead feature in feature model My

and f is also part of the feature-model interface MInt , it is
also a dead feature in feature-model interface MInt .

f ∈ dead(MInt) ⇒ f ∈ dead(My)

f ∈ dead(My) ∩ FInt ⇒ f ∈ dead(MInt)

Again, we take a look into the dependencies of analysis re-
sults regarding feature-model compositions. Using Premise 2,
a feature f ∈ Fx/Int is a dead feature of feature model
Mx/Int if and only if f is a dead feature of feature model
Mx/y .

Theorem 6.

dead(Mx/y) ∩ Fx/Int = dead(Mx/Int)

Proof. From Lemma4 and Theorem5, we infer that the
same analysis-result dependency is also valid for Mx/Int and
Mx/y .

6.3.4 Valid Partial Configuration
Using Premise 1, a partial configuration C = (FS ,FD)

with FS ⊆ FInt and FD ⊆ FInt is a valid partial configura-
tion of feature model MInt if and only if C is a valid partial
configuration of feature model My . We use our formaliza-
tion of function vConf and the resulting set of configurations
to prove this dependency.

Theorem 7.

vConf (MInt) =

{(FS ∩ FInt ,FD ∩ FInt) | (FS ,FD) ∈ vConf (My)}

Proof. Based on Definition 3, the following equations
hold:

vConf (MInt)
(Definition) = {(FS ,FD) | ∃p ∈ PInt :

FS ⊆ p ∧ FD ⊆ FInt \ p} (14.1)

(Corollary 1) = {(FS ,FD) | ∃q ∈ Py :

FS ⊆ q ∩ FInt ∧
FD ⊆ FInt \ (q ∩ FInt)} (14.2)

(FInt⊆Fy) = {(FS ,FD) | ∃q ∈ Py :

FS ⊆ q ∩ FInt ∧
FD ⊆ (Fy ∩ FInt) \ (q ∩ FInt)} (14.3)

= {(FS ,FD) | ∃q ∈ Py :

FS ⊆ q ∩ FInt ∧
FD ⊆ (Fy \ q) ∩ FInt} (14.4)

= {(FS ∩ FInt ,FD ∩ FInt) | ∃q ∈ Py :

FS ⊆ q ∧ FD ⊆ Fy \ q} (14.5)

(Definition) = {(FS ∩ FInt ,FD ∩ FInt) |
(FS ,FD) ∈ vConf (My)} (14.6)

As result, we know that each valid partial configuration
of MInt is also a valid partial configuration of My . Fur-
thermore, valid partial configurations of My are also valid
partial configurations of MInt , if FS and FD are intersected
with feature set FInt .

(FS ,FD) ∈ vConf(MInt) ⇒ (FS ,FD) ∈ vConf(My)

(FS ,FD) ∈ vConf(My) ⇒
(FS ∩ FInt,FD ∩ FInt) ∈ vConf(MInt)

Based on Theorem7 and Premise 2, we consider the re-
lationship of analysis results of composed feature models.
Therefore, a partial configuration with FS ⊆ Fx/Int and
FD ⊆ Fx/Int is a valid partial configuration if and only if
(FS ,FD) is a valid partial configuration for feature model
Mx/y .

Theorem 8.

vConf (Mx/Int) =

{(FS ∩ Fx/Int ,FD ∩ Fx/Int) | (FS ,FD) ∈ vConf (Mx/y)}

Proof. From Lemma4 and Theorem7, we infer that the
same analysis-result dependency is also valid for Mx/Int and
Mx/y .

6.4 Discussion and Application
Using the investigated relations between the analysis re-

sults, we are able to address the problems given in Sec-
tion 4. For instance, we can use feature-model interface
MInt instead of a feature model My with MInt � My for
a feature-model aggregation with feature model Mx . This
leads to several advantages. First, if a developer is only in-
terested in a subset of features of an existing feature model,
it is possible to create a feature-model interface that is tai-
lored to the developer’s needs. We can use the feature model
for a feature-model aggregation. Second, if we use a feature
model that is subject to evolution (e.g., developed by an-
other company), it is possible that changes and updates can
affect one of our existing feature-model compositions. In
case that feature model My evolves to M′

y , we only have
to reanalyze our composed feature models that are based on
My if the dependency to the feature-model interface MInt

is broken. By contrast, if the dependency between feature
model My and feature-model interface MInt is still confirm
to MInt � M′

y , all existing analysis results of the composed
feature models are still valid.

7. RELATED WORK
Here, we discuss different kinds of related work that ex-

ist in the domain of feature-model interfaces and feature-
model composition, automated analysis of feature models,
and multi software product lines.

Interface Definition

The interface definition that is used in this paper is based on
the work of Acher et al. who introduce an operator to slice
a feature model and, thus, to reduce the set of contained
features [3]. In detail, the proposed slice operator uses a
feature model as input to create a new feature model that
only consists of a subset of features but with unchanged fea-
ture dependencies. However, Acher et al. do not investigate
this operator for compositional analyses.
We already presented the main idea of feature-model in-

terfaces and their feasibility to ease the process of automated
analyses in our previous work [22]. In this overview, we
present the feature-model interface as one part of an overall
concept based on a set of interfaces for each development
step of a software product line, such as the syntactical (vari-

able application programming interface) and the behavioral
product-line interface (behavior of methods). By contrast
to the previous representation in which we also discuss the
combination of the feature-model interface with other in-
terfaces (e.g., a syntactical product-line interface [22, 23]),
we formalize and prove the dependencies of analysis results
between a specific feature-model interface and the related
feature model.

The most related concept to feature-model interface are
feature-model views [11, 16, 21], which also consist of a sub-
set of features based on a master feature model. In general,
feature-model views can be used to ease the manageability
of large scale feature models and allow domain experts to fo-
cus on relevant features during feature-model configuration.
Thus, different views regarding one master feature model are
combined to get a valid configuration based on the partial
configurations of each view. By contrast, a feature-model
interface can be an interface of a set of different feature mod-
els. For compositional analyses it is only important that the
dependency between the interface and the feature model is
confirm to our definition of a feature-model interface (�).

Feature-Model Analysis

In general, there exists a bunch of research in the area of
automated analysis of feature models. Here, we only want
to give a small reference two a few papers that are able to
give more insights to the topic.

The necessity for automated analyses of feature models
was introduced together with the feature models themselves.
Kang et al. already recognize that tool support is essential
for the success of the feature-model concept to ensure their
correctness [13]. The first tool support was based on Prolog
using a fact base and composition rules [13]. By contrast,
Batory describes the transformation of feature models into
propositional formulas [6], which allows us to use satisfia-
bility solvers for analyses. While the check for satisfiabil-
ity of a proportional formula is an NP-complete problem,
Mendonca et al. show that the satisfiability check in the do-
main of feature models scales well [17]. Nevertheless, it is an
open question whether different kinds of product-line anal-
yses (e.g, family-based analysis of product lines) can profit
by the speed up of a specific analysis using feature-model
interface.

Benavides et al. present a survey about existing analy-
ses of feature models with several information regarding the
analysis concept, tool support, and references to work on
particular analyses [7]. However, the presented techniques
do not support compositional analyses, which we introduce
in this paper.

Feature-Model Composition

Hubaux et al. present an overview of separation of concerns
in feature diagram languages [12]. This topic is closely re-
lated to the feature-model composition. Furthermore, Acher
et al. present and compare a set of composition operators,
such as a merge operator based on union and intersection
of features [4]. The authors compare different possibilities
for the implementation of these operators and compare their
advantages and drawbacks [1].

Beside the consideration of composition operators in iso-
lation, different modeling languages were proposed that al-
low us to combine feature models. Eichelberger and Schmid
give an overview about textual-modeling languages that can

be used for large scale variability modeling [9]. The au-
thors identify six languages (among them, VELVET [19],
TVL [8]) that support variability-model composition and
compare the languages regarding their facility to support
composition, modularity, and evolution. It is also possible to
integrate the functionality of feature-model interface in these
languages and, thus, to benefit from the support of compo-
sitional analyses. For instance, we prototypically integrated
our feature-model interface in VELVET and we want to use
this integration for evaluation purposes in future.

Multi Software Product Lines

In this paper, we only consider examples in which the com-
position of two feature models is needed. Nevertheless, it
is possible to use the composition mechanisms in a broader
way in several application scenarios. One scenario are multi
software product lines, which are product lines consisting of
multiple product lines [15, 18]. Holl et al. present a more
detailed definition of a multi software product line - “a set of
several self-contained but still interdependent product lines
that together represent a large-scale or ultra-large-scale sys-
tem” [10]. Furthermore, the authors summarize different
capabilities of a multi software product line and present ex-
isting support of them [10]. In the domain of multi software
product lines, we can use the composition of feature models
based on feature-model interfaces to decouple the close de-
pendency of involved feature models [22]. In addition, using
the results of this paper, we know that the decoupling also
affects the feature-model analyses.

8. CONCLUSION
Feature models are often used to describe the common-

ality and variability in product lines, but applying them in
real-world scenarios scalability problems. Decomposition of
feature models is used to reduce this drawback. However,
this kind of divide and conquer strategy does not include
feature-model analyses that are necessary to ensure the cor-
rectness of the feature models. In general, the automated
analyses for feature-model compositions are based on com-
posed feature models and must be reapplied if one part of
the composed feature models changes.
In this paper, we present an analyses concept based on

feature-model interfaces that allows us to support composi-
tional analyses. In particular, feature-model interfaces only
represent features that are of the developer’s interest, which
results in a reduced set of features and products that must
be considered during feature-model composition. We prove
that an analysis process based on feature-model interfaces
let us conclude on the results of the original feature model
with all original features. The concept of feature-model com-
position based on feature-model interfaces offers a better
encapsulation of feature models and supports evolutionary
changes.

ACKNOWLEDGMENTS This work is partially funded
by BMBF grant 01IS14017B.

9. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. France.

Comparing Approaches to Implement Feature Model
Composition. In Proceedings of the European
Conference on Modelling Foundations and
Applications (ECMFA), pages 3–19. Springer, 2010.

[2] M. Acher, P. Collet, P. Lahire, and R. B. France. A
Domain-Specific Language for Managing Feature
Models. In Proceedings of the ACM Symposium
Applied Computing (SAC), pages 1333–1340. ACM,
2011.

[3] M. Acher, P. Collet, P. Lahire, and R. B. France.
Slicing Feature Models. In Proceedings of the
International Conference on Automated Software
Engineering (ASE), pages 424–427. IEEE Computer
Science, 2011.

[4] M. Acher, B. Combemale, P. Collet, O. Barais,
P. Lahire, and R. B. France. Composing Your
Compositions of Variability Models. In Proceedings of
the International Conference on Model Driven
Engineering Languages and Systems (MODELS),
pages 352–369. Springer, 2013.

[5] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-Oriented Software Product Lines: Concepts
and Implementation. Springer, 2013.

[6] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proceedings of the
International Software Product Line Conference
(SPLC), pages 7–20. Springer, 2005.

[7] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems,
35(6):615–708, 2010.

[8] A. Classen, Q. Boucher, and P. Heymans. A
Text-based Approach to Feature Modelling: Syntax
and Semantics of TVL. Science of Computer
Programming (SCP), 76(12):1130–1143, 2011.

[9] H. Eichelberger and K. Schmid. A Systematic
Analysis of Textual Variability Modeling Languages.
In Proceedings of the International Software Product
Line Conference (SPLC), pages 12–21. ACM, 2013.

[10] G. Holl, P. Grünbacher, and R. Rabiser. A Systematic
Review and an Expert Survey on Capabilities
Supporting Multi Product Lines. J. Information and
Software Technology (IST), 54(8):828–852, 2012.

[11] A. Hubaux, P. Heymans, P.-Y. Schobbens, and
D. Deridder. Towards Multi-view Feature-Based
Configuration. In Proceedings of the International
Working Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ), pages
106–112. Springer, 2010.

[12] A. Hubaux, T. T. Tun, and P. Heymans. Separation of
Concerns in Feature Diagram Languages: A
Systematic Survey. ACM Computing Surveys,
45(4):51:1–51:23, 2013.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

[14] C. Kästner, S. Apel, and K. Ostermann. The Road to
Feature Modularity? In Proceedings of the
International SPLC Workshop Feature-Oriented
Software Development (FOSD), pages 5:1–5:8. ACM,
2011.

[15] C. W. Krueger. New Methods in Software Product

Line Development. In Proceedings of the International
Software Product Line Conference (SPLC), pages
95–102. IEEE Computer Science, 2006.

[16] M. Mannion, J. Savolainen, and T. Asikainen.
Viewpoint-Oriented Variability Modeling. In
Proceedings of the Computer Software and
Applications Conference (COMPSAC), pages 67–72.
IEEE Computer Science, 2009.

[17] M. Mendonça, A. W ↪asowski, and K. Czarnecki.
SAT-Based Analysis of Feature Models is Easy. In
Proceedings of the International Software Product Line
Conference (SPLC), pages 231–240. Software
Engineering Institute, 2009.

[18] M. Rosenmüller and N. Siegmund. Automating the
Configuration of Multi Software Product Lines. In
Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages
123–130. Universität Duisburg-Essen, 2010.

[19] M. Rosenmüller, N. Siegmund, T. Thüm, and
G. Saake. Multi-Dimensional Variability Modeling. In
Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 11–22.
ACM, 2011.

[20] M. Rosenmüller, N. Siegmund, S. S. ur Rahman, and
C. Kästner. Modeling Dependent Software Product
Lines. In Proceedings of the GPCE Workshop on
Modularization, Composition and Generative
Techniques for Product Line Engineering (McGPLE),
pages 13–18. Department of Informatics and
Mathematics, University of Passau, 2008.

[21] J. Schroeter, M. Lochau, and T. Winkelmann.
Multi-Perspectives on Feature Models. In Proceedings
of the International Conference on Model Driven
Engineering Languages and Systems (MODELS),
pages 252–268. Springer, 2012.

[22] R. Schröter, N. Siegmund, and T. Thüm. Towards
Modular Analysis of Multi Product Lines. In
Proceedings of the International Software Product Line
Conference co-located Workshops, pages 96–99. ACM,
2013.

[23] R. Schröter, N. Siegmund, T. Thüm, and G. Saake.
Feature-Context Interfaces: Tailored Programming
Interfaces for Software Product Lines. In Proceedings
of the International Software Product Line Conference
(SPLC), pages 102–111. ACM, 2014.

[24] R. Schröter, T. Thüm, N. Siegmund, and G. Saake.
Automated Analysis of Dependent Feature Models. In
Proceedings of the Workshop on Variability Modelling
of Software-intensive Systems (VaMoS), pages 9:1–9:5.
ACM, 2013.

[25] R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and
J. Sincero. Configuration Coverage in the Analysis of
Large-Scale System Software. ACM SIGOPS
Operating Systems Review, 45(3):10–14, 2012.

[26] P. Trinidad and A. Ruiz-Cortés. Abductive Reasoning
and Automated Analysis of Feature Models: How are
They Connected? In Proceedings of the Workshop on
Variability Modelling of Software-intensive Systems
(VaMoS), pages 145–153. Universität Duisburg-Essen,
2009.

