Nr.: FIN-01-2016

An Efficient Algorithm for Feature-Model Slicing

Sebastian Krieter, Reimar Schréter, Thomas Thim, Gunter
Saake

Arbeitsgruppe Datenbanken und Software Engineering

Fakultat fir Informatik
Otto-von-Guericke-Universitdt Magdeburg

Nr.: FIN-01-2016

An Efficient Algorithm for Feature-Model Slicing

Sebastian Krieter, Reimar Schréter, Thomas Thim, Gunter
Saake

Arbeitsgruppe Datenbanken und Software Engineering

Technical report (Internet)

Elektronische Zeitschriftenreihe

der Fakultat far Informatik

der Otto-von-Guericke-Universitat Magdeburg
ISSN 1869-5078

/ ‘gﬁ

\

i Fakultat fir Informatik

; Otto-von-Guericke-Universitat Magdeburg

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Der Dekan

Verantwortlich fiir diese Ausgabe:
Otto-von-Guericke-Universitat Magdeburg
Fakultat fur Informatik

Sebastian Krieter

Postfach 4120

39016 Magdeburg

E-Mail: sebastian.krieter@ovgu.de

http://www.cs.uni-magdeburg.de/Technical_reports.html

Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss: 15.03.2016
Bezug: Otto-von-Guericke-Universitat Magdeburg

Fakultat fir Informatik
Dekanat

An Efficient Algorithm for Feature-Model Slicing

Sebastian Krieter
University of Magdeburg
Magdeburg, Germany

Reimar Schroter
University of Magdeburg
Magdeburg, Germany

Thomas Thim
TU Braunschweig
Brunswick, Germany

Gunter Saake
University of Magdeburg
Magdeburg, Germany

ABSTRACT

Feature models are a well-known concept to represent vari-
ability in software product lines. A feature model defines
all features of a product line and their corresponding in-
terdependencies. During software product line engineering,
there arise situations that require the removal of certain fea-
tures from a feature model such as feature-model evolution,
information hiding, and feature-model analyses. However,
crude deletion of features in a model typically has undesir-
able effects on interdependencies of the remaining features.
Moreover, current algorithms for dependency-preserving fea-
ture removal (known as feature-model slicing) do not per-
form well when removing a high number of features from
large feature models. Therefore, we propose an efficient al-
gorithm for feature-model slicing based on logical resolution
and CNF minimization.

Keywords

Feature-Model Evolution, Feature-Model Analyses, Software
Product Lines

1. INTRODUCTION

Today, industrial software systems are often based on a
high number of variable assets, called features. Feature
models are commonly used to handle and describe exist-
ing dependencies between these features. As prominent ex-
amples like the Linux kernel and other case studies |5} [15]
show, feature models can become very large with more than
10,000 features. Due to constant development, feature mod-
els evolve over time and their set of features and correspond-
ing interdependencies change. Thus, it is not surprising that
there are numerous applications that require the removal of
one or more features from a feature model. For instance,
during the evolution of feature models, features can become
obsolete and have to be removed or are replaced by other fea-
tures. Besides removing features under evolution, there are
other applications, such as removing abstract features [17],
the generation of feature-model interfaces [14], and decom-
position of feature models [1]. However, when removing a
feature, existing feature dependencies often need to be pre-
served. As example, consider the removal of feature B from
the feature model given by the following propositional for-
mula (A = B) A (B = (C A D)). In this case, the intended
result is A = (C' A D) as it maintains the dependencies be-
tween A, C, and D. However, a crude elimination of the
variable from the formula leads to unwanted results. For
example, a syntactical deletion of B from the formula leads

to the result (mA A C' A D), which is obviously wrong.

To resolve this issue, there exist algorithms that remove
a feature from a feature model without changing the de-
pendencies between other features. This technique is also
known as feature-model slicing [2]. However, when removing
a large number of features, existing algorithms still require
an insufficient amount of time. For instance, in our previous
investigations of feature models, in which we remove more
than 1,000 features, FeatureIDE’s algorithm for removing
abstract features did not scale well [14]. Therefore, we in-
vestigate existing algorithms and improve certain parts in
order to increase the performance.

Similar to feature-model analyses that, for instance, can
be used to identify feature-model inconsistency, the prob-
lem of feature-model slicing is NP-hard (e.g., using feature-
model slicing, the void analysis is trivially solvable by re-
moving all features from a feature model). However, previ-
ous investigations show that in the domain of feature models
the analysis problem is nonetheless solvable in an adequate
amount of time [12]. This motivates us to optimize feature-
model slicing and we aim to find heuristics that enable a
fast performance for real-world feature models. As result of
our investigations, we propose an algorithm that is based on
multiple satisfiability tests and logical resolution. In detail,
we propose an improved algorithm for feature-model slicing
based on

e an exchange of an existential quantification strategy to
logical resolution, and

e a new heuristic to optimize the order of features that
we want to remove.

The paper is structured as follows. In[Section 2| we pro-
vide relevant background knowledge of feature models and
their representations. In we describe our algo-
rithm using pseudo code. Afterwards, in we dis-
cuss related work and present our conclusion with future

work in [Section 5l
2. FEATURE MODELS AND SLICING

Feature models define a set of features and specify depen-
dencies between them [10]. We now briefly introduce two
feature-model representations, feature diagrams and propo-
sitional formulas, which we use for our concept. For each
representation, we use our running example, a graph prod-
uct line, as illustration. In addition to our reflection on
feature-model representations, we also consider the state-of-
the-art procedure for feature-model slicing based on existen-
tial quantification.

Graph [R] Legend:
& Mandatory
Optional
Edge Properties [A] Algorithms [B] Or
A Alternative

Pz

Directed [C]

AN

Weighted [D] | | MST [E] | | Cycie [F]

N

Prim [G] Kruskal [H]

Cycle [F] = Directed [C]
MST [E] = Weighted [D]

Figure 1: Feature model of a graph product line.

2.1 Feature Diagrams

Feature diagrams are graphical representations of feature
models [10]. Compared to textual representations of feature
models, feature diagrams are easier to read and to manipu-
late by developers. A feature diagram organizes features in a
tree structure and thereby specifies their interdependencies.
Features are represented by nodes and their dependencies
are derived from the edges connected to them. Each feature
implies its direct parent feature. Additionally, features can
be mandatory, which means that they are required by their
parent feature. Furthermore, features with the same parent
can be organized in a group. Common groups are or-groups
and alternative-groups. In an or-group a parent feature re-
quires at least one of its children, whereas in an alternative
group exactly one feature is required. Since dependencies
between features in different subtrees cannot be represented
by the tree structure alone, feature diagrams allow devel-
opers to add additional cross-tree constraints. One of the
most common representations for cross-tree constraints are
propositional formulas, in which the additional dependencies
can be described using logical operations.

In we illustrate the representation as feature di-
agram using a graph product line. Depending on the al-
gorithm that we want to support, a graph library needs
to ensure special properties of edges. All graph libraries
contain the root feature Graph, and the feature Algorithms
(mandatory). Additionally, each graph library can provide
some edge properties and certain algorithms on the graph
structure (optional features). Possible properties for edges
are Directed and Weighted that are located in an or group
so that one of the properties needs to be selected if addi-
tional properties are desired. Besides additional properties
of edges, each graph can provide different algorithms. In
detail, it is possible to select the optional feature MST to
identify minimal spanning trees or the feature Cycle to iden-
tify cycles in the graph. Since different algorithms exist to
compute minimal spanning trees (MSTs), a user needs to
choose a specific algorithm if this feature is selected. There-
fore, we use an alternative group to force a decision between
the algorithms of Prim and Kruskal. Depending on the se-
lection of desired algorithms, different properties of edges
are necessary. Therefore, we add cross-tree constraints to
ensure a valid feature combination. For instance, the con-
straint Cycle — Directed ensures that all products, in which
feature Cycle is included, also feature Directed exist.

Besides the described representation of feature diagrams,

Root R A

Child-Parent (A= R) A (B=R) A (C= A) A
(D=A) AN (E=B) AN (F=B)A
(G=E) AN (H=E)A

Mandatory (R= B) A

Or group (A= (C Vv D) A

Alt. group (F=({(G Vv H) A =(GA H))) A

Constraints (F = C) A (E= D)

Figure 2: Propositional formula of the graph prod-
uct line.

numerous extensions exist to enrich the expressiveness of fea-
ture diagrams (cf. the survey of Benavides et al. to get an
overview [4]). One of these extensions are abstract features
that are features without implementation artifacts and thus
do not contribute to the final software product [17]. Thiim
et al. proposed the concept of abstract features to enable a
better organization within the tree structure and to distin-
guish already implemented from future features |17]. Since
abstract features do not contribute to a product line’s prod-
uct, they need to be eliminated if the number of possible re-
sulting products needs to be calculated. Therefore, abstract
features are not only an extension of feature diagrams but
also an application scenario in which feature-model slicing
is needed.

2.2 Propositional Formulas

Another useful representation of feature models are propo-
sitional formulas [3]. This representation is used in many
analyses on product lines. For instance, to ensure a correct
specification of feature dependencies, to present statistics on
features models, or as base to ensure a correct implementa-
tion or behavior of product line’s products [4, [16]. The rep-
resentation of a feature model as a propositional formula is
mainly used for analysis as it allows a reduction to the well-
known satisfiability problem. In detail, features are repre-
sented by logical variables and their interdependencies are
expressed using logical operators such as negation (—), con-
junction (A), disjunction (V), implication (=), and equiva-
lence (<). Using our running example of the graph product
line, we illustrate the representation as propositional for-
mula based on the abbreviation characters of each feature
in Therefore, we transform all existing dependen-
cies into a logical representation.

For the formal description of our algorithm, we use the set
notation of a propositional formula in conjunctive normal
form (CNF). A CNF consists of a conjunction of clauses,
which consist of a disjunction of single literals. A literal
is a variable in either its positive or negative form. In set
notation, a feature model’s CNF representation consists of a
set of clauses C = {c1, 2, ..., ¢m } where m € N is the number
of clauses. Each clause ¢; is a subset of the set of literals
¢ CL=Al,.. —l,} where n € N is the number
of features.

2.3 State-of-the-Art Feature-Model Slicing

A possible approach for feature-model slicing is existen-
tial quantification of a propositional variable [2, [17]. To
illustrate the main idea, we use the small formula of our
introduction section. In detail, we consider the formula
(A= B) A (B = (CAD)) and want to remove the variable
B. The idea of existential quantification is to replace all oc-

A

currences of the variable B in the formula with both possible
assignments (true (T) and false (F)). Therefore, the formula
is duplicated and combined with a logical or, whereas the
variable is replaced with true on the one side and with false
on the other side. Afterwards, it is possible to simplify the
formula so that the performance of further variable removals
can be improved. The following steps present an overview
on how to remove variable B of the formula:

(1) Formula: (A= B) A (B= (CAD))

(2) CNF: (mAVB) A (-BVC) A (~BVD)

(3) Replace: ((mAVF) A(-FVC) A (-FV D))V
(FAVT) A (RTVC) A (ST VD))

(4) Simplify: (—=A)V (C A D)

(5) CNF: (mAVC) A (RAV D)

3. FEATURE-MODEL SLICING

In this section, we propose our new algorithm for feature-
model slicing based on logical resolution. Before we start to
present details of the algorithm, we give an overview about
the main idea of logical resolution and the effect on feature-
model slicing. Afterwards, we present the base algorithm in
pseudo code and illustrate its behavior using a small exam-
ple. Based on this knowledge, we describe the algorithms
details such as the heuristics for determining the feature or-
der and the method for simplifying the resulting formula.

Another method of removing variables from propositional
formulas is the application of logical resolution. The resolu-
tion rule derives a new clause cpew called resolvent from two
other clauses c1, c2 € C if there exists a literal [such that [€
c1 and -l € ca2. The resolvent is constructed by combining
both clauses and removing [(i.e., crew = (c1 Uca) \ {I,l}).
This resolvent represents a transitive dependency between
c1 and c2. The application of resolution with respect to the
variable that should be removed and a subsequent removal
of all clauses that contain the variable lead to the desired
result. In fact, resolution is a direct consequence from ex-
istential quantification and the subsequent transformation
into CNF. After the replacement step, during a variable’s
removal through existential quantification, there exist two
CNFs connected by a disjunction. All clauses that contain
either true or not false are tautologies and, thus, removed
from the respective CNF. Therefore, all clauses that pre-
viously contained the removed variable in its positive form
are now present in one CNF, whereas all clauses that con-
tained the variable’s negative form are present in the other
CNF. To reconstruct the overall CNF structure, the clauses
from both CNFs are combined pairwise. Thus, logical res-
olution yields the same result as existential quantification,
while additionally keeping the formula in CNF.

Again, we consider our formula example of the introduc-
tion section (A = B) A (B = (C A D)) to illustrate the
mechanism of logical resolution. Here, we want to remove
the variable B. Thus, when we apply resolution to the CNF
of our formula (i.e., (FAVB)A(=BVC)A(—~BV D)), we get
the resolvents (A V C) and (—A V D) that we add to the
input formula. If we then delete all clauses used for the res-
olution we get the desired CNF. We exemplify the necessary
steps as follows:

(1) Formula:
(2) CNF:

(A= B) A (B=
(mAV B) A

(CAD))
(-BV C) A (-BV D)

(3) Resolution: (mAV B) A
(mAVC) A

(4) Clause Deletion: (=AVC) A

(-BVvC) A (-mBV D)
(mAV D)
(mAV D)

3.1 Slicing Algorithm Overview

Now, we take a look into the details of our algorithm. The
algorithm takes a feature model and a set of features as input
and returns a newly constructed formula in CNF represent-
ing the sliced feature model, which contains no variable from
the given set. Therefore, we use an iterative process that re-
moves a variable in two phases. First, the CNF is simplified
to remove redundancies, e.g., clauses that are redundant be-
cause of the resolution of a previous iteration. Second, reso-
lution is performed with respect to the variable. Of course,
as necessary for feature-model slicing, the algorithm ensures
to keep all dependencies between all other variables in the
formula.

In Algorithm [I} we present the pseudo code of the ap-
proach. In our code, we use the following variable notation:
variable name
set of variable names
literal
set of literals (clause)
set of clauses (CNF)
feature model

wao ~<e
Liddld

M

Algorithm 1 Main algorithm - Iteratively removes all vari-
ables in Vyemove from FM

1: function REMOVEVARIABLES(FM, Viemove)

2: Cens < GETCNF(FM)

3 Cdirty — @7 Cclean — @

4: for all ¢; € Cepny do

5: CLASSIFY(Cl, Vremo'ue7 Cdi'rtyy Cclean)
6: end for

7: while Viemove # 0 A Cairty # 0 do

8 REMOVEREDUNDANT(Ceiean)

9: REMOVEREDUNDANT (Cairty)

10: v1 4 NEXT(FM, Vremove)

11: v’remove — Vremo'ue \ {vl}
12: RESOLUTION(v1, Vremove, Cdirty, Celean)

13: end while

14: return Ceean
15: end function

Our main algorithm has two input parameters, the feature
model FM and a set of variables that should be removed
(Vremove). At first, FM is converted into CNF so that the
feature model is represented by a set of clauses (Cenp). Then,
all clauses of the given formula are divided into one of two
sets, dirty or clean (cf. Lineand Algorithm. The dirty
set contains all clauses that contain at least one variable from
Vremove. Consequently, the clean set contains all clauses in
which no variable of Vyemove exists. Next, the algorithm
removes one variable at a time from the clauses in Cgiry by
continuously processing all variables in the given variable
set (cf. Line [7HI3). When the algorithm is finished, the
clean set contains all remaining clauses, whereas the dirty
set is empty. Thus, the final formula is constructed by a
conjunction of all clauses in the clean set.

Considering the details of each iteration of the main pro-
cedure (cf. Line , the algorithm simplifies the current

Algorithm 2 Tests whether the clause c¢neq contains a vari-
able from Viemove and adds it to the corresponding set of
clauses (Cgirty OF Celean)

1: procedure CLASSIFY (Cnew, Vremove, Cdirtys Celean)
2: dirty < false

3: for all l; € chew do

4: if NAME(l1) € Viemove then
5: dirty < true

6: break for

7: end if

8: end for

9: if dirty then

10: Cdi'rty <~ Cdirty U {Cnew}
11: else

12: Celean < Celean U {Cnew}
13: end if

14: end procedure

CNF in Cgirty and Cciean by removing invalid and redun-
dant clauses. The detection of redundancy depends on the
specific strategy that is used. We present more insights to
the different strategies in After the CNF sim-
plification, the next method returns a variable from Vyemouve
(cf. Line |10) that is removed in this iteration (cf. Line [L1]).
We describe the internal functionality of the next method
in For each variable, resolution is perform with
respect to the clauses in set Cgirey (cf. Line [12).

In Algorithm [3] we show the pseudo code for resolution in
more detail. The input parameters are the current variable
v1 that we want to remove, the set of all variables that we
want to remove Vyemove, and the set of dirty Cgirey and clean
clauses Ceieqn. For each clause c¢; in the dirty set the algo-
rithm checks if it contains the current variable v1 (cf. Line|3).
In this case, the algorithm removes ¢; from the dirty set and
searches for clauses that contain the complement of v; in ¢;
(cf. Lines . For each of these clauses c2, the algorithm
constructs a new combined clause (i.e., the resolvent) which
is then again classified as clean or dirty dependent on its
contained variables (cf. Lines [§] [0). After all clauses are
processed, v1 is no longer contained in any clause.

In the pseudo code, we did not specify the implementation
for the functions next and removeRedundant. Therefore, our
algorithm contains two major variation points. This allows
us to use different strategies for both functionalities that
influence the algorithm’s performance. However, before we
start to describe these details, we give a small example on
how our algorithm proceeds with an input formula and a set
of features that we want to remove.

The Graph Product Line Example

Using a smaller version of the graph product line (cf.
, we visualize the functionality of our algorithm. We
execute our algorithm with the feature model F M = Graph
and Vremove = {B, D} as input parameters. The algorithm
starts with the transformation of the feature model into the
conjunctive normal form Ccny = {{R},{-A4, R}, {-B, R},
{_'0714}7 {_‘DaA}v {_'EvB}’ {_'F7B}7 {_‘Fa C}, {ﬁEvD}v
{-R, B}, {—-A,C, D}}. Using the CNF as additional infor-
mation, we now show the intermediate results of the algo-
rithm. Therefore, in we depict the content of the
sets of clean and dirty clauses. As first intermediate result

Algorithm 3 Performs resolution on clauses containing v

1: procedure RESOLUTION(v1, Vremove, Cdirty, Celean)
2 for all ¢; € Cgirty do

3 l1 «+ LITERAL(c1, v1)

4 if 1 # null then

5 Cairty < Cairey \ {c1}

6 for all ¢; € Cairty do

7 if —l1 € c2 then

8: Cnew + (c1Uc2) \ {l1, 11}

9 CLASSIFY(Cnew, Vremove, Cdirty7 Cclean)
10 end if
11 end for
12 end if
13 end for

14: end procedure

Graph [R] Legend:
' 4 Mandatory
g Optional
Edge Properties [A] Algorithms [B] A or

N

Directed [C] = Weighted [D] = MST[E] @ Cycle [F]

Cycle [F] = Directed [C]
MST [E] = Weighted [D]

Figure 3: Small feature model of a graph product
line.

(cf. #1), we depict the content of the dirty and clean set after
their instantiation through the classification step of the algo-
rithm. The resulting sets are: Cqirty = {{—B, R}, {—-D, A},
{-E,B}, {~F,B}, {~E,D}, {-R,B}, {-A,C,D}} and
Ceiean = {{R},{—A4A, R}, {-C, A}, {=F,C}}. Next, the al-
gorithm tries to remove redundancies from both sets. It re-
moves the clause {—B, R} from the dirty set and the clause
{—A, R} from the clean set as they are subsumed from the
clause {R}. The result is our second intermediate result
(#2), in which the corresponding clauses are removed. Next,
resolution is performed to all clauses in the dirty set that
contain the current variable. In the first iteration, we as-
sume that the variable D is chosen first. Thus resolution is

Cdirty Cclean
1 {{_‘BvR}v{_‘DvA}7{_‘E7B}= {{R}v{_‘Av R},{—\C, A}v
{ﬁFzB}v{ﬁEvD}v{ﬁIiB}: {ﬁFv C}}
{-A,C,D}}
2 {{—\D,A},{—\E,B},
{_'F7 B}7 {_‘Ev D}v
{-R,B},{-A,C,D}}
{{ﬁEv B}» {ﬁFv B}: {ﬁR’ B}} {{R}v {ﬁcv A}7 {ﬁF: C}:
{_‘E’A}v {_'A7A7C}}
{{R}7 {_‘07 A}7 {_‘F7 C}:

{-

{{R}7 {_‘07 A}: {_‘F7 C}}

w

4 {{-E,B},{-F,B},{-R,B}

5 0 {{R}v{_‘ﬁv A}v{_‘Fv C}v

-E,

Table 1: Intermediate result of the dirty and clean
set in the algorithm’s example execution.

applied to the clauses {—D, A}, {—E, D}, and {—A,C, D},
which results in the resolvent {—E, A} and {—A, A, C}. The
original clauses are removed from the dirty set. The new
clauses {—A, A,C} and {—F, A} are classified as clean as
they contain no variable from V,emove. The resulting set
of clauses is represented in our third intermediate result, in
which the variable D is completely removed (#3).

In the second iteration, the algorithm removes variable B.
Again the algorithm tries to remove redundant clauses first
and removes the clause {A, A, C} as it is a tautology. We
depict the result as our fourth intermediate result (#4). Af-
terwards, the resolution with B finds no resolvent and, thus,
the algorithm only removes the clauses {—FE, B}, {-F, B},
and {—R, B} that contain B from the dirty set (cf. #5). The
dirty set is now empty, which means that all variables are
removed. The remaining clauses in the clean set form the
resulting CNF: RA (-CV A) A (~FV C) A (mEV A).

3.2 Feature Order

In we stated that function next returns the
next variable that should be removed. Finding a suitable
order is crucial as it heavily influences the number of new
clauses that are generated by the resolution. As there are
n! possible feature orders when removing n feature from a
feature model, the computation of the optimal order is an
expensive problem. Thus, the usage of a heuristic that at
least specifies a good order is more feasible.

We propose the strategy minimum clauses generation that
considers the number of new clauses that are generated in
each resolution phase. Thus, the strategy directly aims to
reduce the number of generated clauses during resolution.
It is a greedy strategy that selects the best variable in each
iteration. That is the variable, whose removal introduces
the fewest new clauses to the CNF.

While the exact number of newly generated clauses is hard
to compute beforehand (due to possible redundancy), we can
easily determine an approximation by counting the number
of clauses in which a given variable is contained. By multi-
plying the number of clauses that contain the variable in its
positive form with the ones containing its negative form, we
get the approximate number of clauses that would be gener-
ated by resolution. This estimated number is used as sorting
criteria, whereas the variable with the lowest value will be
removed next. Since new clauses are generated when a vari-
able is removed, we have to update the comparative values
before removing the next variable. Thus, this strategy is
dynamically adapted in each iteration.

3.3 CNF Simplification

The main issue when using resolution to find the transitive
dependencies in the CNF is that it introduces new clauses
to the formula. As result, this can lead to an exponential
growth of clauses in the dirty set and, thus, a bad overall
performance when removing a large number of features. The
function removeRedundant addresses this problem as most
of the newly generated clauses contain no new information.
Either because they can be derived from other clauses in
the formula or because they are always true. For a high
performance of the algorithm, it is important to minimize
the number of clauses in the formula by remove all redundant
clauses.

A first and straight-forward approach to remove clauses is
to check whether a clause is a tautology, because it contains

a variable and also its complement. More formally, if for a
clause ¢ € C with {l,—l} C ¢ applies for some literal [€ L it
is a tautology and thus, always evaluates to true. Therefore,
the clause has no effect on complete formula and can be
removed from C. Since, it is possible to check this property
for all clauses in linear time with respect to the number
of clauses, the algorithm tests each new clause after every
resolution phase and removes it if necessary.

Additionally, the function removeRedundant tries to de-
tect redundancies between clauses and removes one or more
of the responsible clauses. However, a complete check for
redundancy is again an expensive task. Therefore, we con-
sider three different levels of redundancy: A new clause cpew
is redundant if

(a) 3c € C: ¢ = cpew (Equivalence),
(b) 3ec € C: ¢ C cnew (Subsumption), or
(¢) C\{cnew} F cnew (Derivation).

This classification arises from the computational effort re-
quired to check the property and number of detected redun-
dant clauses. In general, checking whether there exists a
clause equal to cnew can be done in less time, than checking
whether cpe can be derived from other clauses. However,
the check for equivalence finds less redundant clauses than
the check for derivation, which is able to find all redundant
clauses. In particular, all clauses that can be detected us-
ing a certain redundancy level can also be detected with
any higher level. For example, given the clause set C =
{{—-4, B}, {—B, C}} and the new clause cpew, = {4,-B,C},
Cnew; 18 not redundant with respect to (a), because there
exists no equal clause in C. However, cpew, is subsumed
by {—B,C} and, thus, is redundant with respect to (b) and
(c). Furthermore, the clause cpew, = {74, C'} has no equal
clause in C and is not subsumed either, but can be derived
from C, which makes it redundant considering (c).

For the function removeRedundant, we use a combination
of all mentioned redundancy levels in a certain order. By
applying the more efficient checks first, we attempt to min-
imize the input for subsequent checks and, thus, decrease
the overall time consumption. To specify the best order, we
consider the complexity of the three checks in our implemen-
tation with regard to the number of clauses and the number
of features within the clauses.

At first, the function checks whether there exist equivalent
clauses in the respective set and removes all duplicates. Our
implementation ensures that the literals within the clauses
data structure are sorted. Thus, checking two clauses for
equivalence has a linear complexity regarding the number
of features in both clauses. Normally, comparing all clauses
with each other requires quadratic time complexity with re-
spect to the number of clauses. However, using data struc-
tures such as hash tables, equivalence for all clauses typically
can be checked in linear time.

Afterwards, the function detects and removes all clauses
that are subsumed by other clauses in the formula. Simi-
lar to the check for equivalence, the check whether a clause
subsumes another clause has a linear time complexity with
respect to the number of features in the clauses. Regard-
ing the number of clauses, the check for subsumption has a
quadratic complexity.

Finally, the function removes all clauses that can be de-
rived from other clauses in the formula. This final check
guarantees a formula that contains no redundancy among

all contained clauses. However, checking for derivation is
again an NP-hard problem. This can be shown by reducing
the satisfiability problem to the problem of derivation. If
false can be derived from a set of clauses then the corre-
sponding formula is unsatisfiable and satisfiable otherwise.
Thus, the problem has an exponential complexity regard-
ing the number of features in the formula and, since every
clause must be tested, it has a linear complexity regarding
the number clauses. Nevertheless, the benefit of removing
as much clauses as possible outweighs the approach’s large
overhead when removing a high amount of features.

The consideration of different levels of redundancy aims to
reduce the overhead of the derivation check by applying the
checks for equivalence and subsumption first. The concept is
that both previous checks are able to efficiently remove some
obvious redundancies and consequently reduce the input size
for the following derivation check.

4. RELATED WORK

Feature-model slicing and its application were originally
introduced and discussed by Acher et al. [1] [2]. Their de-
scription of the algorithm uses existential quantification to
remove variables in CNFs. As mentioned above, the tools
FAMILIAR and FeatureIDE use implementations of exis-
tential quantification. In our work, we showed that logical
resolution can also be used for feature-model slicing and is
in fact a more direct way than existential quantification.
Another approach, to remove features from a feature model
is the usage of feature-model views [9] [13]. In contrast to
feature-model slicing, feature-model views only hide infor-
mation from certain users without deleting the feature and
updating dependencies.

For our algorithm, we use multiple techniques to simplify
a CNF and remove redundancies. However, there exist many
other methods for CNF simplification, as this task is crucial
for many CNF applications. For instance, tautology, sub-
sumption, and blocked-clause elimination |7, |8]. Another
useful technique is unit-clause propagation, which is used
by the DPLL algorithm in modern satisfiability solvers [6].
In future work, we plan to exploit this mechanism to further
improve the performance of our stated approach.

The concept of slicing was originally introduced for source
code by Weiser, called program slicing, which removes un-
wanted source code fragments from a program [19]. Con-
trary to feature-model slicing, program slicing operates on
the implementation level rather than on the abstract mod-
eling level. Slicing is also implemented for other models
such as UML model slicing [11]. In addition, Thiim et al.
use slicing techniques to implement information hiding in
source code specifications (i.e., method contracts) [18].

S. CONCLUSION AND FUTURE WORK

In this work, we proposed a new base algorithm for feature-
model slicing to improve the algorithm’s runtime based on
logical resolution and CNF minimization. In detail, we pro-
pose a minimum-clauses heuristic to optimize the order in
which we apply the removal of features and present an algo-
rithm to simplify the CNF.

In future work, we plan to evaluate our algorithm through
a comparison with the state-of-the-art feature-model slicing
techniques. Furthermore, we plan to investigate further pos-
sibilities to optimize the algorithm. For instance, the usage

of other CNF simplification methods could speed up the al-
gorithm. If we are able to define a heuristic for removing
enough redundancy in a CNF to avoid exponential clause
growth, the algorithm would scale better for large feature
models.

6. REFERENCES

[1] M. Acher, P. Collet, P. Lahire, and R. B. France.
Decomposing Feature Models: Language,
Environment, and Applications. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages
600-603. IEEE, 2011.

[2] M. Acher, P. Collet, P. Lahire, and R. B. France.
Slicing Feature Models. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages
424-427. IEEE, 2011.

[3] D. Batory. Feature Models, Grammars, and
Propositional Formulas. In Proc. Int’l Software
Product Line Conf. (SPLC), pages 7-20. Springer,
2005.

[4] D. Benavides, S. Segura, and A. Ruiz-Cortés.
Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems,
35(6):615-708, 2010.

[5] T. Berger, R. Rublack, D. Nair, J. M. Atlee,

M. Becker, K. Czarnecki, and A. Wasowski. A Survey
of Variability Modeling in Industrial Practice. In Proc.
Int’l Workshop Variability Modelling of
Software-intensive Systems (VaMoS), pages 7:1-7:8.
ACM, 2013.

[6] M. Davis, G. Logemann, and D. Loveland. A Machine
Program for Theorem-Proving. Commun. ACM,
5(7):394-397, 1962.

[7] N. Eén and A. Biere. Effective Preprocessing in SAT
Through Variable and Clause Elimination. In Proc.
Int’l Conf. Theory and Applications of Satisfiability
Testing (SAT), pages 61-75. Springer, 2005.

[8] M. Heule, M. Jirvisalo, and A. Biere. Clause
elimination procedures for CNF formulas. In Proc.
Int’l Conf. Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), pages 357-371.
Springer, 2010.

[9] A. Hubaux, P. Heymans, P.-Y. Schobbens,

D. Deridder, and E. K. Abbasi. Supporting Multiple
Perspectives in Feature-Based Configuration. Software
and System Modeling, 12(3):641-663, 2013.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute,
1990.

[11] K. Lano and S. Kolahdouz-Rahimi. Slicing of UML
Models Using Model Transformations. In Proc. Int’l
Conf. Model Driven Engineering Languages and
Systems (MODELS), pages 228-242. Springer, 2010.

[12] M. Mendonga, A. Wasowski, and K. Czarnecki.
SAT-Based Analysis of Feature Models is Easy. In
Proc. Int’l Software Product Line Conf. (SPLC),
pages 231-240. Software Engineering Institute, 2009.

[13] J. Schroeter, M. Lochau, and T. Winkelmann.
Multi-Perspectives on Feature Models. In Proc. Int’l

Conf. Model Driven Engineering Languages and
Systems (MODELS), pages 252-268. Springer, 2012.
R. Schréter, S. Krieter, T. Thiim, F. Benduhn, and
G. Saake. Feature-Model Interfaces for Compositional
Analyses. Technical report, University of Magdeburg,
2015.

R. Tartler, D. Lohmann, C. Dietrich, C. Egger, and
J. Sincero. Configuration Coverage in the Analysis of
Large-Scale System Software. ACM SIGOPS
Operating Systems Review, 45(3):10-14, 2012.

T. Thiim, S. Apel, C. Kistner, I. Schaefer, and

G. Saake. A Classification and Survey of Analysis
Strategies for Software Product Lines. ACM

(17]

(18]

(19]

Computing Surveys, 47(1):6:1-6:45, 2014.

T. Thiim, C. Késtner, S. Erdweg, and N. Siegmund.
Abstract Features in Feature Modeling. In Proc. Int’l
Software Product Line Conf. (SPLC), pages 191-200.
IEEE, 2011.

T. Thiim, T. Winkelmann, R. Schréter, M. Hentschel,
and S. Kriiger. Variability Hiding in Contracts for
Dependent Software Product Lines. In Proc. Int’l
Workshop Variability Modelling of Software-intensive
Systems (VaMoS), pages 97-104. ACM, 2016.

M. Weiser. Program Slicing. IEEE Trans. Software
Engineering (TSE), 10(4):352-357, 1984.

	Introduction
	Feature Models and Slicing
	Feature Diagrams
	Propositional Formulas
	State-of-the-Art Feature-Model Slicing

	Feature-Model Slicing
	Slicing Algorithm Overview
	Feature Order
	CNF Simplification

	Related Work
	Conclusion and Future Work
	References

