
Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.:

Andreas Meister, Gunter Saake

Arbeitsgruppe Datenbanken und Software Engineering

FIN-01-2019

Finding the best design options for the parallel
dynamic programming approach with skip vector
arrays for join-order optimization

Fakultät für Informatik
Otto-von-Guericke-Universität Magdeburg

Nr.: FIN-01-2019

Finding the best design options for the parallel
dynamic programming approach with skip vector
arrays for join-order optimization

Andreas Meister, Gunter Saake

Arbeitsgruppe Datenbanken und Software Engineering

Technical report (Internet)
Elektronische Zeitschriftenreihe
der Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg
ISSN 1869-5078

Impressum (§ 5 TMG)

Herausgeber:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik
Der Dekan

Verantwortlich für diese Ausgabe:
Otto-von-Guericke-Universität Magdeburg
Fakultät für Informatik

Postfach 4120
39016 Magdeburg
E-Mail:

http://www.cs.uni-magdeburg.de/Technical_reports.html
Technical report (Internet)
ISSN 1869-5078

Redaktionsschluss:

Bezug: Otto-von-Guericke-Universität Magdeburg
 Fakultät für Informatik
 Dekanat

Andreas Meister

andreas.meister@ovgu.de

22.08.2019

Fakultät für Informatik - Technical Report FIN-01-2019

Finding the best design options for the parallel
dynamic programming approach with skip vector
arrays for join-order optimization

Andreas Meister · Gunter Saake

Accepted: 22.08.2019

Abstract Relational databases need to select efficient join orders as join or-
ders can significantly influence the query execution times. Dynamic program-
ming determines efficient join orders by applying an exhaustive search. Based
on the exhaustive search, the applicability of sequential dynamic program-
ming variants is limited to simple queries. To extend the applicability, Han
et al. proposed the parallel dynamic programming variant using skip vector
arrays (PDPSVA) with specific design options regarding block size, partition re-
organization, allocation schema, partition sorting, skip vector arrays, solution
mapping, and solution merging.

In this paper, we extend the evaluation of Han et al. by empirically evalu-
ating the proposed design choices considering different query topologies. Based
on our evaluation results, we identified irrelevant (partition reorganization, al-
location schema, and solution merging) and relevant design options (block size,
partition sorting, skip vector arrays, solution mapping). For relevant design op-
tions, we provide insights how to achieve the best performance for PDPSVA.
Overall, our evaluation results should help to use PDPSVA correctly for further
evaluations.

1 Introduction

Relational database management systems (RDBMSs) use declarative query
languages to increase the usability by hiding details regarding the underlying
hardware, implementation, and data from the user. Hence, users only need to

Andreas Meister and Gunter Saake
Otto-von-Guericke University,
P.O. Box 4120,
D-39016 Magdeburg
Tel.: +49 391-6758828
Fax: +49 391-6742020
E-mail: first.lastname@ovgu.de

2 Andreas Meister, Gunter Saake

5 10 15 20
0

2

4

2

5

Linear

5 10 15 20
0

2

4

2

5

T
im

e
(r
a
ti
o
)

Cyclic

5 10 15 20
0

20

40

60

80

2

90

#Tables

Star

2 4 6 8 10 12 14
0

2

4

2

5

#Tables

T
im

e
(r
a
ti
o
)

Clique

Best Worst

Fig. 1: Optimization time (ratio) comparing the best and worst PDPSVA vari-
ants of our evaluation for different query topologies.

specify the result without providing an execution strategy. RDBMSs determine
efficient execution strategies while transforming declarative queries into an
executable format (called query execution plan (QEP)). For each declarative
query, several equivalent QEPs exist. Although equivalent QEPs provide the
same results, the execution time of equivalent QEPs can vary by several orders
of magnitude [7]. Hence, RDBMSs need to select efficient QEPs to ensure an
efficient query processing.

One main requirement of efficient QEPs is an efficient join order. Dynamic
programming selects efficient join orders by applying an exhaustive search.
In the past, different sequential dynamic programming variants for join-order
optimization were proposed [5, 9, 12]. Unfortunately, the applicability of se-
quential dynamic programming variants is limited to simple queries due to
the exhaustive search, complexity [6], and time constraints of the optimiza-
tion. To extend the applicability, Han et al. proposed the parallel dynamic
programming variant PDPSVA. PDPSVA provides up to linear scalability and
an increased optimization efficiency by using skip vector arrays (SVAs). Han
et al. proposed specific design options.

In this paper, we extend the evaluation of Han et al. by empirically evalu-
ating different design choices of PDPSVA. In specific, we provide an in-depth
evaluation of PDPSVA. We empirically evaluate 216 different PDPSVA vari-
ants using different design options regarding the block size, partition reorgani-
zation, partition sorting, allocation schema, skip vector arrays, solution map-
ping, and solution merging. We use four different query topologies with an

Finding the best design options for PDPSVA 3

q1 qnq3q2 ...

linear

q1 qnq3q2 ...

cyclic

q3q2 qn

q1

q3 ...

q2

qn

q1

star clique

...

Fig. 2: Different query topologies.

increasing query size of up to 20 tables. Considering the different optimiza-
tion time, we noticed that selecting an efficient PDPSVA variant can reduce the
optimization time by up to almost 99% (see Figure 1).

The remainder of this paper is structured as follows: In Section 2, we
provide background information for join-order optimization. In Section 3, we
introduce available sequential and parallel dynamic programming variants for
join-order optimization. In Section 4, we present the concept of PDPSVA, before
explaining and evaluating different design options of PDPSVA in Section 5. In
the last section, we conclude our work.

2 Join-Order Optimization

Similar to the relational algebra, most RDBMSs implement join operators as
binary operators. Hence, for joining more than two tables, RDBMSs need to
perform a join-order optimization to ensure an efficient query processing [7].

The runtime of join-order optimization mainly depends on the following
three aspects: optimization complexity, optimization approach, and cost esti-
mation.

2.1 Optimization Complexity

The complexity of join-order optimization is mainly based on the following
three aspects: the query size, query topology, and join tree type.

We define the query size as the number of tables joined within a query.
An increased query size leads to a higher complexity due to a higher number
of possible join orders.

The query topology defines how the available tables are linked. Based on
related work [2, 3, 5], we consider four main query topologies: linear, cyclic,
star, and clique queries (see Figure 2). In linear and cyclic queries, repre-
senting transactional workloads, one table is at most joinable with two other
tables. In star queries, representing analytical workloads, one (fact) table is
joinable with all other (dimension) tables. In clique queries, representing the
previous query types considering cross-joins, each table is joinable with all

4 Andreas Meister, Gunter Saake

q1 q3 q4q2
(a) Bushy

q1
q3

q4

q2
(b) Left-Deep

q1
q3

q4

q2
(c) Right-Deep

Fig. 3: Tree types of query execution plans.

other tables. Considering the four different topologies, the complexity is in-
creasing from linear to clique queries due to a higher number of possible join
orders [8].

Considering binary join operators, RDBMSs need to transform declarative
queries into binary trees (called join trees) during the join-order optimization.
The join tree type defines the form of these join trees. In related work, two
main types of join trees are considered: deep and bushy trees (see Figure 3).
In deep trees, joins must have at least one table as input. In bushy trees, both
tables or joins are allowed as inputs of joins. The complexity is increasing from
deep to bushy trees due to a higher number of possible join orders.

2.2 Optimization Approaches

The discussed complexity factors, define potential join orders. However, what
and how potential join orders are evaluated is determined by optimization
approaches. We roughly categorize existing approaches into two categories [10]:
deterministic and randomized approaches.

Deterministic approaches always provide the same output for the same
input. The most important deterministic approaches are exhaustive search
approaches (e.g., dynamic programming [9]). Exhaustive searches provide op-
timal join orders. Unfortunately, the runtime of exhaustive searches increases
as the complexity increases. Hence, the applicability of exhaustive searches is
limited to simple queries.

For selecting efficient join orders also for complex queries, randomized
approaches (e.g., genetic algorithms [1]) were proposed. Randomized ap-
proaches could provide different outputs for the same input and, hence,
cannot guarantee optimal join orders. Nevertheless, randomized approaches
provide practicable efficiency.

2.3 Cost Estimation

For selecting efficient join orders, optimization approaches need to compare
considered join orders. For comparing join orders, cost estimations provided
by cost functions are used. As the cost function needs to be executed for
each considered join order, the runtime of the cost function can significantly
influence the performance of join-order optimization [4].

Finding the best design options for PDPSVA 5

QS size1 2 3 4
q1q2q3q4

q4

q3

q2

q1

q3q4

q1q2 q1q2q3

q1q2q3q4

...

Fig. 4: Execution schema of dynamic programming (Colors indicating the
specific QS size).

3 Dynamic Programming

In this work, we focus on the exhaustive search approach, dynamic program-
ming. Dynamic programming uses the property that an optimal solution
only contains optimal sub-solutions to determine optimal join orders. Dynamic
programming first determines optimal table accesses (solutions with a single
quantifier), before combining existing solutions to iteratively create new so-
lutions (see Figure 4). Solution can be represented as quantifier sets (QSs).
Quantifier of QSs represent tables included in the solutions. As for each QS,
multiple equivalent QEPs exist, equivalent QEPs must be aggregated to select
optimal QEPs for the next iterations.

3.1 Sequential dynamic programming

In the past, three different sequential dynamic programming variants for join-
order optimization were proposed: DPSIZE [9], DPSUB [12], and DPCCP [5].

DPSIZE applies a partition-based evaluation [9]. Each partition is a group of
relevant solutions with a specific QS size. This enables an easy determination of
needed join pairs. Hereby, join pairs consist of two solutions, which should be
joined to create new solutions. The optimal join-order is determined iteratively
by combining two partitions to create solutions with an increasing QS size. For
partition pairs, all solutions of one partition are evaluated against all solutions
of the other partition. Hereby, two challenges arise: invalid and unconnected
join pairs.

Invalid join pairs are join pairs with overlapping QSs. As invalid join
pairs do not provide new solutions, all invalid join pairs can safely be skipped.

During the optimization of non-clique queries, also unconnected join pairs
occur.Unconnected join pairs are join pairs without a link between the QSs.
Similar to invalid join pairs, unconnected join pairs can safely be skipped.

To avoid invalid join pairs, we can use DPSUB [12], enumerating valid join
pairs based on QSs. Unfortunately, this enumeration considers all possible QSs
leading to the consideration of unconnected join pairs for non-clique queries.

To avoid both invalid and unconnected join pairs, we can use DPCCP [5],
enumerating join pairs based on the queries. Hence, only valid and connected
join pairs are evaluated.

6 Andreas Meister, Gunter Saake

3.2 Parallel dynamic programming

Although sequential dynamic programming variants optimize join orders effi-
ciently, the applicability of sequential dynamic programming variants is lim-
ited due to the exhaustive search, complexity, and time constraints of the
optimization. To extend the applicability, different parallel variants were pro-
posed: PDPSVA [3], DPEGEN [2], search state dependency graph (SSDG) [13],
and a distributed optimization [11].

PDPSVA parallelizes DPSIZE by allocating join pairs explicitly to available
workers. After workers determined solutions for the allocated join pairs, solu-
tions are merged to prepare the following iterations (see Section 4).

DPEGEN parallelizes enumeration schemes (e.g., DPSUB or DPCCP) for dy-
namic programming using the producer-consumer model. A single producer
enumerates relevant join pairs and pushes enumerated join pairs in a synchro-
nized buffer. Available consumers pull prepared join pairs from the buffer and
evaluate join pairs in parallel. Based on the preparation using partial orders
and equivalence classes, the synchronization between consumers is minimized.

Considering SSDG, for each task, a specific status is assigned determining
whether a task is runnable. Runnable tasks are executed in parallel by available
workers.

All the previous parallel dynamic programming variants are only executed
on a single node. Trummer et al. extended dynamic programming to a dis-
tributed optimization [11]. To minimize the communication overhead, a
master allocates join pairs implicitly to workers using constraints. Workers
determine allocated join pairs through the constraints, before evaluating all
join pairs in parallel. Workers transfer the determined solutions back to the
master. The master merges the solutions of the workers and returns the final
optimal join order.

4 PDPSVA: Concept

PDPSVA is a parallelization strategy for DPSIZE. PDPSVA introduces two major
concepts: parallelization and skip vector arrays (SVAs).

4.1 Parallelization Concept

PDPSVA parallelizes DPSIZE efficiently by allocating join pairs explicitly to
available workers. For the evaluation, two different roles with different tasks
exist: master and worker.

4.1.1 Master

The master manages the optimization including the optimization initializa-
tion, join pair allocation, and the solution merging (see Algorithm 1). For the

Finding the best design options for PDPSVA 7

Algorithm 1: PDPSVA [3]

Input : Join query with n quantifiers Q = {q1, . . . , qn}
Output: An optimal bushy join tree

/* Initialize optimization */

1 Thread-Pool tp // with m threads;

2 Hash-Table Memo;
3 PlanPartitions ts;
4 for i = 1 to n do
5 Memo[{qi}] = CreateTableAccessPaths(qi) ;
6 for S = 2 to n do

/* Assign join pairs to workers */

7 SSDVs = DetermineSearchSpaceDescriptionVectors(S,m);

/* Parallel evaluation of join pairs */

8 for i = 1 to m do
9 ts[i] = tp.SubmitJob(MutiplePlanJoin(SSDVs[i],S));

10 tp.sync();

/* Merge results of workers */

11 MergeAndPrunePlanPartitions(Memo, S,ts);

/* Parallel creation of SVAs */

12 for i = 1 to m do
13 tp.SubmitJob(BuildSkipVectorArray(S, i));
14 tp.sync();

15 return Memo[Q];

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)
(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)
(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)
(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)
(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)
(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)
(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

(q1q4,q1q4)(q1q4,q1q3)(q1q4,q1q2)
(q1q3,q1q4)(q1q3,q1q3)(q1q3,q1q2)
(q1q2,q1q4)(q1q2,q1q3)(q1q2,q1q2)
(q4,q1q3q4)(q4,q1q2q4)(q4,q1q2q3)
(q3,q1q3q4)(q3,q1q2q4)(q3,q1q2q3)
(q2,q1q3q4)(q2,q1q2q4)(q2,q1q2q3)
(q1,q1q3q4)(q1,q1q2q4)(q1,q1q2q3)

P1 P3

P2 P2

Worker 1 Worker 2

Fig. 5: Round Robin Inner Allocation [3]

optimization, the master first initializes relevant data structures (see Line 1-3).
Afterwards, the master determines the optimal table access paths (see Line 4-
5), before organizing the iterative construction of the optimal join order (see
Line 6-14). In each iteration, the QS size is increased (see Line 6). For each QS
size, the master allocates relevant join pairs to available workers using search
space description vectors (SSDVs) and an allocation schema [3] (see Line 7).

SSDVs contain the information about allocated join pairs for each worker.
The details of SSDVs are not relevant for our evaluation and, hence, skipped.
The allocation schema describes how join pairs are allocated to workers.
Han et al. proposed four different allocation schemes [3]. In this paper, we only
consider the allocation schema round-robin inner (RRI) (see Section 5.2.4),
because RRI achieved the best results in the previous evaluations [3]. For
each partition pair, RRI allocates join pairs to workers using a round robin
allocation based on the inner partition. In Figure 5, we see a small example

8 Andreas Meister, Gunter Saake

Algorithm 2: MultiplePlanJoin [3]
Input : SearchSpaceDescriptionVector SSDV, SolutionSize S

1 for i = 1 to �S/2� do
2 PlanJoin(SSDV[i],S);

Algorithm 3: PlanJoin [3]
Input : SearchSpaceDescriptionVectorElement ssdvElmt, SolutionSize S

1 smallSZ = ssdvElmt.smallSZ ;
2 largeSZ = S - smallSZ ;
3 Thread-Local Partition PS;
4 for blkIdx=ssdvElmt.stBlkIdx to ssdvElmt.endBlkIdx do
5 blk = blkIdx-th block in PlargeSZ;
6 〈stOutIdx, endOutIdx〉 = GetOuterRange(ssdvElmt, blkIdx);
7 for to = PsmallSZ[stOutIdx] to PsmallSZ[endOutIdx] by ssdvElmt.outInc do
8 〈stBlkOff, endBlkOff〉 = GetOffsetRangeInBlk(ssdvElmt, blkIdx, offset of to);
9 for ti = blk[stBlkOff] to blk[endBlkOff] by ssdvElmt.inInc do

10 if to.QS ∩ ti.QS != ∅ then
11 continue;
12 if !(to.QS connected to ti.QS) then
13 continue;
14 ResultingPlans = CreateJoinPlans(to, ti);
15 PrunePlans(PS,ResultingPlans);

for two partition pairs. Based on RRI, the solutions of the inner partition (P3)
are assigned to workers using round robin. Hence, join pairs containing the
QSs {q1q2q3} and {q1q3q4} of P3 are assigned to Worker 1, whereas join pairs
containing the QS {q1q2q4} of P3 are assigned to Worker 2. The same principle
applies to the second partition pair.

Then, the master submits the SSDVs to available workers (see Line 8-9).
After the workers evaluated all allocated join pairs (see Line 10), the master
merges solutions of the workers into a new partition of the memo table (see
Line 11). For the implementation of the merge, we can consider different design
options regarding solution mapping (Section 5.2.6) and solution merging (see
Section 5.2.7). If SVAs are used, we can consider further design options re-
garding partition reorganization (see Section 5.2.2) and partition sorting (see
Section 5.2.3) [3]. Using SVAs, the master also allocates the SVA construc-
tion to workers (see Line 12-13), and waits until SVAs are constructed (see
Line 14). After evaluating all join pairs, the optimal join order is returned (see
Line 15).

4.1.2 Worker

During the optimization, multiple workers evaluate allocated join pairs in par-
allel (see Algorithm 3) by iterating over all partition pairs (see Algorithm 2).

For the evaluation of allocated join pairs, each worker determines the outer
(see Line 1) and inner partition (see Line 2). To increase the cache efficiency,
each partition is further separated into blocks with a specific block size (see
Section 5.2.1) [3]. Hence, workers iterate over available blocks to evaluate all
allocated join pairs (see Line 4-15). For each block, workers determine relevant

Finding the best design options for PDPSVA 9

999…8
888…7

101010…9

788…6
868…5
5
4
3
2

58…4
5
5
5

QS

3
2
1

8
8
8

SV

…
…
…

PlanList

999…8
888…7

101010…9

788…6
868…5
5
4
3
2

58…4
5
5
5

QS

3
2
1

8
8
8

SV

…
…
…

PlanListP3 q1q2q3
q1q2q4
q1q2q5
q1q2q6
q1q3q4
q1q4q7
q1q4q8
q2q5q6
q4q7q8

Fig. 6: Skip vector array [3].

solutions in the outer partition (see Line 5-6), before iterating through them
(see Line 7). For each relevant solution of the outer partition, workers deter-
mine allocated solutions of the inner partition (see Line 8), before iterating
through them (see Line 9). For each allocated join pair, workers check whether
the join pair is valid (see Line 10-11) and connected (see Line 12-13). Valid
join pairs are evaluated (see Line 14) and pruned against available solutions
(see Line 15). The pruning requires again a mapping of equivalent solutions
(see Section 5.2.6).

4.2 Skip vector arrays

PDPSVA parallelizes the dynamic programming variant DPSIZE. Thus, during
the optimization workers need to evaluate also invalid and unconnected join
pairs. To reduce the overhead of invalid join pairs, Han et al. proposed skip
vector arrays (SVAs) (see Section 5.2.5) [3].

The concept of SVAs is to provide the offset of the next solution in parti-
tions, where a specific quantifier is changing (see Figure 6). Hence, if a specific
quantifier is available in both QSs of inner and outer partition, workers can
directly jump to the next valid join pair and skip all invalid join pairs in be-
tween. For example, if we want to combine the QS {q1} with the solutions of
P3. We start with the evaluation the join pair ({q1}, {q1, q2, q3}). As both QSs
contain the quantifier q1, we can lookup the corresponding skip vector entry
to determine the offset of the next valid solution (8: {q2q5q6}). If the QSs do
not overlap (e.g., ({q1}, {q2, q5, q6})), worker evaluate the next solution of the
partition (9 : {q4q7q8}).

To use SVAs, workers need an adapted evaluation of join pairs (see Algo-
rithm 4). First, workers determine their outer and inner partition (see Line
1-2). Afterwards, the workers iterate over allocated blocks of the outer parti-
tion (see Line 4). For each outer partition block, workers determine the cor-
responding blocks of the inner partition (see Line 5), before iterating through
them (see Line 6). For each block pair, the corresponding offset limits are
determined (see Line 7-8), before the block pair is evaluated (see Line 9).

10 Andreas Meister, Gunter Saake

Algorithm 4: PlanJoinSVA [3]
Input : SearchSpaceDescriptionVectorElement ssdvElmt, SolutionSize S

1 smallSZ = ssdvElmt.smallSZ;
2 largeSZ = S - smallSZ;
3 Thread-Local Partition PS;
4 for outerPartIdx = ssdvElmt.stOuterPartIdx to ssdvElmt.endOuterPartIdxby

ssdvElmt.outInc do
5 〈stInnerPartIdx, endInnerPartIdx〉 = GetInnerRange(ssdvElmt, outerPartIdx);
6 for innerPartIdx=stInnerPartIdx to endInnerPartIdx by ssdvElmt.inInc do
7 outerPartSize = |P{smallSZ,outerPartIdx}|;
8 innerPartSize = |P{largeSZ,innerPartIdx}|;
9 SVJ(

〈
P{smallSZ,outerPartIdx} , 1, outerPartSize〉),〈

P{largeSZ,innerPartIdx} , 1, innerPartSize〉);

Algorithm 5: Skip vector join (SVJ) [3]

Input : (P{smallSZ,outerPartIdx}(= R1), idxR1
, endIdxR1

),
(P{largeSZ,innerPartIdx}(= R2), idxR2

, endIdxR2
)

1 S = smallSZ + largeSZ;
2 Thread-Local Partition PS;
3 if idxR1

≤ endIdxR1
and idxR2

≤ endIdxR2
then

4 overlapQS = R1[idxR1
].QS ∩ R2[idxR2

].QS;

5 if overlapQS = ∅ then
6 if R1[idxR1

].QS connected to R2[idxR2
].QS then

7 ResultingPlans = CreateJoinPlans(R1[idxR1
],R2[idxR2

]);

8 PrunePlans(PS,ResultingPlans);

9 SVJ((R1, idxR1
+ 1, endIdxR1

),(R2, idxR2
, endIdxR2

));

10 SVJ((R1, idxR1
, idxR1

),(R2, idxR2
+ 1, endIdxR2

));

11 else
12 elmt = FirstElmt(overlapQS);
13 lvlR1

= GetLevel(R1[idxR1
].QS, elmt);

14 lvlR2
= GetLevel(R2[idxR2

].QS, elmt);

15 jpIdxR1
= R1[idxR1

].SV [lvlR1
];

16 jpIdxR2
= R2[idxR2

].SV [lvlR2
];

17 SVJ((R1, jpIdxR1
, endIdxR1

),(R2, idxR2
, endIdxR2

));

18 SVJ((R1, idxR1
, min(jpIdxR1

- 1, endIdxR1
)), (R2, jpIdxR2

, endIdxR2
));

The steps for evaluating block pairs with SVAs are shown in Algorithm 5.
First, workers need to check whether the current offset is still within the thresh-
old (see Line 3). For allocated join pairs, workers need to check the validity (see
Line 4-5). For valid join pairs, workers check the connectedness (see Line 6). If
a join pair is connected and valid, workers evaluate the join pair (see Line 7)
and prune it against existing solutions (see Line 8) using a solution mapping
(see Section 5.2.6). Afterwards, workers evaluate the next join pairs recur-
sively by adapting offsets and thresholds for the inner and outer partition (see
Line 9-10). For invalid join pairs, workers use SVAs to skip invalid join pairs
(see Line 12-18). For this, workers select the first quantifier of the overlapping
QSs (see Line 12). For the selected quantifier, workers determine the position
within the QS of outer and inner solution of the join pair (see Line 13-14).
Workers use the determined position to lookup the next offsets for outer and
inner partition using the SVAs (see Line 15-16). Afterwards, workers evaluate
the determined join pairs recursively by adapting offsets and thresholds for
outer and inner partition (see Line 17-18).

Finding the best design options for PDPSVA 11

5 PDPSVA: Design Option Evaluation

In this section, we discuss and evaluate different design options for PDPSVA.
We start by describing our evaluation setup. Then, we explain and empirically
evaluate different design options. For selected PDPSVA variants, we evaluate the
scalability and compare them against other dynamic programming variants.

We evaluate the different design options in a step-wise manner, starting
with the PDPSVA variant proposed by Han et al [3]. This PDPSVA variant uses
a partition reorganization, a complete sorting, the allocation scheme round-
robin inner zig-zag, skip vector arrays, a hash-based solution mapping, and
a sequential solution merging. According to our evaluation, we use the block
size 100.

Similar to Han et al. [3], we noticed a significant difference between a re-
cursive and iterative implementation of PDPSVA. Hence, all evaluated PDPSVA

variants follow an iterative execution.

5.1 Evaluation-Setup

In our evaluation, we considered four different query topologies: linear, cyclic,
star, and clique queries. To achieve a reasonable optimization time, we eval-
uated linear, cyclic, and star queries up to 20 tables and clique queries up
to 15 tables. For each topology, we evaluated 30 randomly-generated queries
and aggregated the measures using the average. We used a random number
generator to determine joinable tables considering the topology, join selec-
tivities, and table sizes. As we only evaluate different dynamic programming
variants, which provide the same results, we do not evaluate the result quality.
For similar reasons, we neither generated nor executed the query. During our
optimization, we only consider commutative joins with a single objective and
without parametrization. We use a simple cost-function based on the cardinal-
ity of solutions with an additional overhead to simulate complex cost functions
applied in practice.

For our evaluation, we use C/C++14 and GNU compiler (Version: 5.4) with
the optimization flag ”O3” on a machine having 256 GB RAM and Ubuntu
Linux 16.04 (Kernel-Version: 4.4.0-127) as operating system. The machine has
two Intel Xeon E5-2609 v2s-2013 CPUs each containing 4 cores with 2.5 GHz
clock speed and a cache of 20 MB. Since the available hardware supports
the parallel execution of 8 physical threads, we use up to 8 threads for our
evaluation.

5.2 Design Option Evaluation

In this section, we evaluate different design options regarding block size, par-
tition reorganization, partition sorting, allocation schema, skip vector arrays
(SVAs), solution mapping, and solution merging (see Table 1). Please note

12 Andreas Meister, Gunter Saake

Design
option

Description

Block size Defines the maximal number of solutions within one block of
each partition.

Partition
reorganization

Defines whether partitions of the memo table is reorganized after
merging the solutions.

Partition
sorting

Defines the sorting of solutions within partitions of the memo
table.

Allocation
schema

Defines how join pairs are allocated to available workers.

SVAs Defines whether SVAs are used for the optimization.

Solution
mapping

Defines the way how equivalent solutions are mapped.

Solution
merging

Defines the way how the master merges the solutions of workers.

Table 1: Evaluated Design options

that during our evaluation, we observed in many cases (mostly for small query
sizes) a high variance for our measures leading to insignificant differences be-
tween different variants. Hence, we report these cases, but do not discuss these
insignificant differences.

5.2.1 Block Size

As described in Section 4.1, PDPSVA tries to increase the cache-efficiency (sim-
ilar to a block nested loop join) by splitting available partitions into blocks.
The block size defines the maximal solution number in one block of partitions.

Evaluation Results In Figure 7, we show our evaluation results results for the
block sizes: 100, 1000, and 10000.

For linear and cyclic queries, we see that the different block sizes provide
comparable results1.

For star queries, we see that the different block sizes provide comparable
results for queries up to 10 tables1. For larger star queries, the larger block
sizes increase the optimization time by 4.37X (block size: 1000, tables: 13) -
5.74X (block size: 10000, tables: 15) compared to the block size 100. As the
query size increases further to 20 tables, the overhead of the larger block sizes
reduces to 10% (block size: 1000) - 71% (block size: 1000)

For clique queries, the different block sizes provide comparable results up
to 9 tables. For larger clique queries, the larger block sizes increase the op-
timization time by 2.64X (block size: 1000, tables: 12) - 2.92X (block size:

1 The observed differences are insignificant due to a high variance and standard deviation
of the aggregated measures.

Finding the best design options for PDPSVA 13

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

2

4

6

2

6

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

2

4

6

2

6

#Tables

Clique

100 1000 10000

Fig. 7: Optimization time (ratio) of different buffer sizes for different query
topologies.

10000, tables: 15) compared to the block size 100. As the query size increases
further to 15 tables, the overhead of the block size 1000 reduces to 57%.

Discussion The reason for the observed results are mainly based on different
degrees of parallelism. For linear and cyclic queries as well as smaller star and
clique queries, only a limited number of independent join pairs are available.
Hence, independent of the block size the parallelism is limited leading to com-
parable results for the different block sizes. As the query size increases, the
number of independent join pairs increases leading to a higher potential par-
allelism. Hereby, a smaller block size is leading to a higher number of blocks,
which can be distributed better over available workers. Hence, the block size
100 achieves a better parallelism and performance compared to the larger
block sizes. As the query size increases further, also the number of indepen-
dent join pairs increases further. Hence, also the larger block size provide a
better parallelism and performance.

For future work, we suggest to extend the evaluation by smaller block sizes,
a larger query size, and an evaluation of a possible correlation between block
sizes and thread number.

Based on our results, we use a block size 100 for SVAs to evaluate the
following design options.

14 Andreas Meister, Gunter Saake

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

0.5

1

1.5

2

1.5

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

RORG NO-RORG

Fig. 8: Optimization time (ratio) of PDPSVA with and without partition re-
organization for different query topologies.

5.2.2 Partition Reorganization

Considering PDPSVA, three different types of join pairs need to be considered:
invalid, unconnected, and valid join pairs. For workers, the different join pair
types require different effort for their evaluation (see Section 4.1.2). Workers
can skip invalid and unconnected join pairs, while workers need to determine
QEPs for valid join pairs. Hence, to achieve equal loads, the different types of
join pairs need to be distributed evenly over available workers.

Therefore, Han et al. proposed to use different allocation schemes to allo-
cate join pairs to workers. Unfortunately, using SVAs, not single join pairs but
complete blocks are allocated to workers. In order to still support different al-
location schemes, Han et al. proposed to reorganize partitions so that solutions
of blocks are allocated according to the corresponding allocation schema [3].

Evaluation Results In Figure 8, we show our results with (RORG) and without
(NO-RORG) reorganization of memo table partitions.

We see for linear, cyclic, star, and clique queries comparable results con-
sidering an optimization with and without reorganization of the partitions of
the memo table1.

Discussion The goal of the reorganization is to distribute the load evenly
over available workers. However, the allocation schema RRI already provides

Finding the best design options for PDPSVA 15

a good load distribution [3]. Hence, RORG cannot improve the performance
of PDPSVA.

Based on our results, we use NO-RORG to evaluate the following design
options.

5.2.3 Partition Sorting

Considering SVA, we provide one additional vector for each quantifier in the
QS. SVAs encode at which partition offset the corresponding quantifier is
changing. Hence, if a specific quantifier is overlapping during the evaluation of
join pairs, we determine the position of the overlapping quantifier within the
QSs and use the corresponding offset in the SVA to skip further invalid join
pairs. The number of skipped join pairs depends on two aspects: the number
of available QSs and partition sorting.

On the one hand, the number of available QSs with the specific quan-
tifier determines the maximal number of skipped join pairs. The more QSs
contain a specific quantifier, the more join pairs can potentially be skipped.

On the other hand, also the partition sorting influences the efficiency of
SVAs. Han et al. suggested the sorting of both quantifiers and partitions. First,
the quantifier in a QSs should be sorted according to the connectivity of the
quantifier. A quantifier with more connections to other quantifiers should be
available before a quantifier with less connections. Second, solutions in the
memo table partitions should be sorted by the connectivity of the included
quantifier. This means that all QSs containing the quantifier with the highest
connectivity are located at the beginning of the partition.

Evaluation Results In Figure 9, we show our evaluation for PDPSVA with a
sorting of partitions (PARTITION-SORT), inserted quantifier (QUANTIFIER-
SORT), both partition and quantifier (COMPLETE-SORT), and no sorting
(NO-SORT).

For linear, cyclic, and clique queries, the different sorting variants achieve
comparable results1.

Also for smaller star queries (2-14 tables), the different variants provide
comparable results1. Only for larger star queries (15-20 tables), we see a sig-
nificant difference between the sorting variants with an overhead of up to 4.1X
(PARTITION-SORT) - 6.5X (NO-SORT) for 20 tables.

Discussion The reason for the observed differences are based on the charac-
teristics of the skip vector join (SVJ) (see Line 12 of Algorithm 5). If an invalid
join pair is detected, the SVJ selects the first quantifier of the overlapping QS.

For star queries, all (dimension) tables can only be joined through one
(fact) table. Hence, all QSs containing more than one quantifier contain the
fact table. The largest number of invalid join pairs can be skipped if the
fact table is included in the overlapping QS and selected for the skip. For
COMPLETE-SORT, we sort both quantifier and partitions. Hence, we ensure
that the fact table is selected for the skip. Interestingly, QUANTIFIER-SORT

16 Andreas Meister, Gunter Saake

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

2

4

6

2

7

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

COMPLETE-SORT PARTITION-SORT
QUANTIFIER-SORT NO-SORT

Fig. 9: Optimization time (ratio) of different sorting types for different query
topologies.

provides comparable results to COMPLETE-SORT. The reason for this is
based on our implementation. Considering QUANTIFIER-SORT, we guaran-
tee that the fact table has quantifier q1 by using a numeric representation.
The fact table is available in all QS containing more than one table. There-
fore, all skips regarding the fact table are performed. Considering the other
topologies (linear, cyclic, and clique), there is no dominant quantifier. Hence,
COMPLETE-SORT does not have a significant impact on the performance.

In order to guarantee the highest number of possible skips, we could adapt
the SVJ by selecting not the first quantifier of overlapping QSs, but evaluate
all possible skips of all overlapping QS and select the offset with the highest
number of skips. However, this additional check would also introduce an addi-
tional overhead. Hence, it is unclear, whether this method would improve the
overall performance of PDPSVA.

Based on our results, we use a complete sort for SVAs to evaluate the
following design options.

5.2.4 Allocation Schema

Han et al. proposed four different allocation schemes [3]. As RRI allocation
provided the best load balancing in the previous evaluation [3], we only con-
sider RRI allocation. To achieve a better load distribution, Han et al. proposed

Finding the best design options for PDPSVA 17

Algorithm 6: Round robin zig-zag [3]
Input : Thread-number m, thread-id j, calculation-id i
Output: Next calculation-id

1 if �i/m� == even then
2 return i + 2m − 2j − 1 ;
3 else
4 return i + 2j + 1 ;

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

0.5

1

1.5

2

1.5

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

RRI RRIZZ

Fig. 10: Optimization time (ratio) of different allocation types for different
query topologies.

to use a zig-zag variant (see Algorithm 6) instead of the traditional round-robin
variant [3].

Evaluation Results In Figure 10, we present our evaluation result regarding
both RRI variants: traditional (RRI) and zig-zag (RRIZZ). We see for all
topologies that both variants RRI and RRIZZ provide comparable results1.

Discussion Based on our evaluation results, we see that the RRI allocation
already achieves a good load distribution. Hence, RRIZZ does not provide
better results considering SVAs.

Based on our results, we use RRI to evaluate the following design options.

5.2.5 Skip vector array

PDPSVA can optimize join orders with and without SVAs. SVAs provide the
advantage that invalid join pairs can be skipped (see Section 4.2). However,

18 Andreas Meister, Gunter Saake

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

0.5

1

1.5

2

1.5

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

100 1000 10000

Fig. 11: Optimization time (ratio) of different buffer sizes for different query
topologies without SVAs.

SVAs also introduce an overhead. SVAs need to be constructed and the relevant
entry in the SVAs needs to be determined for skipping invalid join pairs. Both
overheads must be compensated through an increased efficiency by skipping
invalid join pairs.

Evaluation Results Before comparing PDPSVA with and without SVAs, we first
need to have another look at two already discussed design options for PDPSVA,
but this time without SVAs: the block size and the allocation schema.

In Figure 11, we show our evaluation results for PDPSVA without SVAs
with the block sizes 100, 1000, and 10000.

For linear and cyclic queries, the different buffer sizes achieve comparable
results1.

For smaller star queries (2-8 tables), the different block sizes provide com-
parable results1. As the query sizes increase (9-20 tables), the block sizes 1000
and 10000 reduce the optimization time by up to 25% for 20 tables.

For smaller clique queries (2-6 tables), the different buffer sizes achieve
comparable results1. As the query size increases, the overhead of the larger
block sizes vanishes. For 20 tables, the larger block sizes reduce the optimiza-
tion time by 6% (block size: 1000) - 8% (block size: 10000).

In Figure 12, we show our evaluation results for PDPSVA without SVAs for
the two different allocation schemes RRI and RRIZZ (see Section 5.2.4).

For linear and cyclic queries, both allocation schemes RRI and RRIZZ
provide comparable results1.

Finding the best design options for PDPSVA 19

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

0.5

1

1.5

2

1.5

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

RRIZZ RRI

Fig. 12: Optimization time (ratio) of different allocation types for different
query topologies without SVAs.

For smaller star queries (2-9 tables), again both allocation schemes provide
comparable results1. For larger star queries (10-20 tables), RRI reduces the
optimization time by up to 58% for 20 tables compared to RRIZZ.

For smaller clique queries (2-9 tables), both allocation schemes provide
comparable results1. As the query size increases (10-20 tables), RRI slightly
reduces the optimization time by up to 10% for 15 tables compared to RRIZZ.

Based on our results, we use the block size 1000 and allocation schema RRI
for PDPSVA without SVAs to evaluate the following design options.

In Figure 13, we show our results for an optimization with (SV) and without
(NO-SV) SVAs.

For linear and cyclic queries, NO-SV reduces the optimization time by up
to 44% (linear: 11 tables) - 62% (cyclic: 4 tables) compared to SV. As the
query size increases, the differences between both variants are getting smaller.

For smaller star queries (2-13 tables), we see that also NO-SV achieves
better results, reducing the optimization time by up to 65% for 10 tables. For
larger star queries (14-20 tables), SV achieves better results. For 20 tables, SV
reduces the optimization time by 95% compared to NO-SV.

For clique queries, NO-SV achieves better results, reducing the optimiza-
tion by up to 60% for 8 tables. As the query size increases further, the differ-
ences of both variants vanish. For 15 tables, SV and NO-SV achieve comparable
results.

20 Andreas Meister, Gunter Saake

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

5

10

15

20

2

20

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

SV NO-SV

Fig. 13: Optimization time (ratio) of PDPSVA with and without SVAs for
different query topologies.

Discussion Considering an evaluation without SVAs, we saw a different be-
havior for both the block size and allocation schema.

Considering the block size, the larger block sizes 1000 and 10000 achieved
better or comparable results compared to the block size 100 in contrast to the
evaluation with SVAs. The reason for the differences are mainly based on the
different block management proposed by Han et al [3]. For an evaluation with-
out SVAs, Han et al. proposed to allocate calculations based on the level of
join pairs, in contrast to an allocation on block level for an evaluation with
SVAs. This means that each worker needs to determine the offset of relevant
solutions each time a block switches for an optimization without SVAs. A
smaller block size increases the block number significantly. Hence, the offset
calculation poses a significant overhead. With the block size 1000, the bottle-
neck switches to the evaluation of the join pairs. Hence, there are no significant
differences between the block sizes 1000 and 10000.

Based on similar reasons, we see a significant difference between the alloca-
tion schemes RRI and RRIZZ especially for star queries. As the allocation
is done on the level of join pairs, workers need to increment the offsets of
partitions according to the allocation schema. For RRIZZ, a slight overhead
is introduced compared to RRI. As we need to evaluate a high number of
join pairs for star and clique queries, this slight overhead of a single increment
sums up to a significant overhead for the optimization. Nevertheless, for clique
queries, this overhead has not such a significant impact as for star queries. The
reason for this is the different ratio of invalid and valid calculations. For star

Finding the best design options for PDPSVA 21

queries, more invalid join pairs (proportional to valid join pairs) need to be
evaluated compared to clique queries. Hence, the iteration through join pairs
poses the major bottleneck. For clique queries, the evaluation of join pairs is
the major bottleneck. Hence, the overhead of RRIZZ does not have the same
impact on the optimization time as in star queries. Nevertheless, the overhead
also increases for clique queries as the query size increases. We assume that a
switch from allocation on join pair level to the block level for the optimization
without SVAs will lead to observations similar to an optimization with SVAs.

Comparing an optimization with (SV) and without (NO-SV) SVAs, we
saw that for linear, cyclic, and clique queries NO-SV achieved better results.
Although the construction of SVAs adds an overhead, the construction is not
the main reason for the differences. The differences are mainly based on the
different iteration of join pairs using SVAs. For skipping invalid join pairs, also
an overhead is introduced. This overhead must be compensated by an increased
efficiency through skipping invalid join pairs. For the considered query sizes,
the number of skipped join pairs seems to be too small to compensate the
overhead. For future work, we suggest to extend the evaluation with larger
query sizes to evaluate the suitability of SVAs for linear, cyclic, and clique
queries.

PDPSVA focuses on larger star and clique queries. Hence, we use SVAs to
evaluate the following design options2.

5.2.6 Solution mapping

During the evaluation of join pairs, workers need to compare equivalent QEPs
to determine the optimal QEPs for the returned results. Similarly, the master
needs to compare equivalent QEPs from different workers to select the opti-
mal QEPs for the next iterations. We see two alternatives to map equivalent
solutions: hashing and indexing.

Considering hashing, we use the numeric representation as hash key. The
hash function determines the corresponding hash bucket for the corresponding
solution. Through collision of hash values, one hash bucket does not only
include equivalent but also different solutions. Hence, multiple solutions need
to be evaluated to return the needed solution.

To avoid collisions due to hashing, we can directly use the numeric repre-
sentation as index for the solution. The index contains 2n−1 entries containing
the solution offsets, one for each possible solution. Invalid index entries (< 0)
represent that this solution is not available, whereas valid index entries (>= 0)
provide the partition offset for the corresponding solution.

Evaluation Results In Figure 14, we show our results regarding a hash and
index-based solution mapping.

Considering smaller linear and cyclic queries (2-16 tables), both variants
hash and index-based solution mapping achieve comparable results1. Only

2 Please note that PDPSVA provided similar results for the following design options inde-
pendent of the variant.

22 Andreas Meister, Gunter Saake

5 10 15 20
0

1

2

2

2.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

1

2

2

2.5

Cyclic

5 10 15 20
0

0.5

1

1.5

2

1.5

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

Hash Index

Fig. 14: Optimization time (ratio) of different types of result mapping for
different query topologies.

for larger linear and cyclic queries (17-20 tables), the index-based solution
mapping poses a significant overhead increasing the optimization time by up
to 58% (cyclic) - 107% (linear) compared to a hash-based solution mapping
for 19 tables.

For smaller star queries (2-17 tables) both variants provide comparable
results1. Only for larger star queries (18-20 tables), we see that an index-based
solution mapping decreases the optimization by up to 28%.

For clique queries, both variants provide comparable results1.

Discussion In our evaluation, we noticed mainly two different use cases re-
garding the hash and index-based solution mapping.

For linear and cyclic queries, a hash-based solution mapping provides a
higher efficiency for the optimization. The advantage of the hash-based solu-
tion mapping is that the used hash-table is built incrementally, whereas the
index is completely allocated and initialized before the actual optimization.
Especially the initialization already poses a significant overhead, which can-
not be compensated by the increased efficiency of the solution mapping. The
problem for linear and cyclic queries is that only a small ratio of all possible
index entries is used.

In star queries, a higher number of entries need to be evaluated. Hence,
the initialization effort is compensated and also the overall efficiency of the
optimization is increased.

Finding the best design options for PDPSVA 23

5 10 15 20
0

0.5

1

1.5

2

1.5

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

1.5

Cyclic

5 10 15 20
0

0.5

1

1.5

2

1.5

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

0.5

1

1.5

2

1.5

#Tables

Clique

SEQ INT

Fig. 15: Optimization time (ratio) of different types of result merging for
different query topologies.

For clique queries, the same arguments apply. However, for clique queries,
the main bottleneck is the cost function. Hence, an increased efficiency of the
solution mapping does not provide a significant improvement of the optimiza-
tion.

PDPSVA focuses on larger star and clique queries. Hence, we use an index-
based solution mapping to evaluate the following design option2.

5.2.7 Solution merging

During the optimization, the master allocates join pairs to workers for a par-
allel evaluation. Before merging the solutions of workers, the master waits for
all workers to be finished. This concept is fine as long as the load is distributed
equally over all available workers. For unequally distributed loads, the master
waits for the worker with the highest load. To reduce the waiting time, the
master can perform an interleaved solution merging by processing solutions of
finished workers, while workers with a higher load still evaluate allocated join
pairs.

Evaluation Results In Figure 15, we show our results for a sequential (SEQ)
and interleaved (INT) solution merging.

We see that both types of solution merging provide comparable results for
linear, cyclic, star, and clique queries1.

24 Andreas Meister, Gunter Saake

Discussion Our evaluation results of the solution merging show that the allo-
cation schema RRI achieves a good load distribution over available workers.
Hence, the interleaved solution merging does not provide an improvement.

Based on our results, we use a sequential solution merging for the following
evaluations.

5.2.8 Summary

Based on our evaluation results, we identified irrelevant design options regard-
ing partition reorganization, allocation schema, and solution merging. Hence,
the simplest design options should be preferred (no partition reorganization
(see Section 5.2.2), the allocation schema RRI (see Section 5.2.4 and Sec-
tion 5.2.5), and a sequential solution merging (see Section 5.2.7)).

For the relevant design options, our evaluation results indicate to use the
following options to achieve the best performance for PDPSVA:
• A block size of 100 using SVAs (see Section 5.2.1), and 1000 without SVAs

(see Section 5.2.5).
• A complete sorting using SVAs (see Section 5.2.3).
• SVAs only for star-like queries (see Section 5.2.5).
• An index-based solution mapping (see Section 5.2.6).

5.3 Scalability

In the previous sections, we only considered an optimization using 8 threads.
In this section, we evaluate the scalability for selected PDPSVA variants. Based
on the our evaluation results, we select the following four variants: SV+HASH,
SV+INDEX, NO-SV+HASH, and NO-SV+INDEX. The four variants are cre-
ated by combining the design options regarding SVAs and solution mapping.
The other options are selected based on our previous evaluation results (see
Section 5.2.8).

5.3.1 Evaluation Results

In Figure 16, we show our evaluation results regarding the four selected PDPSVA

variants.
For linear and cyclic queries, we see that the different PDPSVA variants

provide comparable results. On the one hand, the hash-based solution mapping
provides a better scalability compared to the index-based solution mapping.
On the other side, PDPSVA variants without SVAs (NO-SV) provide a better
scalability compared to an evaluation with SVAs (SV). Overall for both linear
and cyclic queries, the scalability is limited by up to 2.35X (linear) - 3.53X
(cyclic) using 8 threads.

For star queries, again, the PDPSVA variants without SVAs (NO-SV) pro-
vide a better scalability compared to an evaluation with SVAs (SV). For SV,

Finding the best design options for PDPSVA 25

2 4 6 8
0

1

2

3

4

1

4

S
p
ee
d
u
p

Linear

2 4 6 8
0

1

2

3

4

1

4

Cyclic

2 4 6 8
0

2

4

6

8

1

8

#Threads

S
p
ee
d
u
p

Star

2 4 6 8
0

2

4

6

8

1

8

#Threads

Clique

SV+HASH SV+INDEX
NO-SV+HASH NO-SV+INDEX

Fig. 16: PDPSVA scalability for different query topologies with maximal query
size (non-clique: 20, clique:15).

the index-based variant provided a higher scalability compared to the hash-
based variant. For NO-SV, both, the hash and index-based variant achieve
a comparable scalability. All variants increased their scalability up to 7.59X
using 8 threads.

For clique queries, NO-SV achieves a similar scalability compared to star
queries. In contrast to star queries, also both SV variants achieve a comparable
scalability. Overall, the different variants achieve a scalability of up to 7.54X
using 8 threads.

5.3.2 Discussion

In our evaluation results, we see different use cases for the evaluated vari-
ants. For linear and cyclic queries, we observed that the hash-based variants
provided a better scalability as the index-based counterparts. Again, the prob-
lem for an index-based variant is that the index must be initialized. As each
worker needs an own index, the overhead is increased by increasing the number
of workers.

Also for linear and cyclic queries, we noticed that the scalability is quite
limited considering the different variants. Hereby, the main problem is that
only few calculations are available for the simple query topologies, linear and
cyclic queries. Hence, the overhead of distributing the join pairs over available
workers cannot be compensated through the parallel evaluation.

26 Andreas Meister, Gunter Saake

For all different topologies, we noticed that the PDPSVA variants without
SVAs (NO-SV) achieved a higher scalability. The reason for this is that the NO-
SV variants have a higher overhead for iterating the join pairs as the iteration
is done on the level of the join pairs and not on the block level like for the SV
variants. However, the better scalability does not mean a shorter optimization
time. Especially, in star queries, the SV variants reduce the overhead by using
SVAs and, hence, provide a better optimization time (see Section 5.2.5).

For star queries, both NO-SV variants achieve a comparable scalability.
The reason for this is that considering the NO-SV variants the bottleneck
is the iteration and evaluation of join pairs. Hence, an improved efficiency
in the solution mapping does not have a significant impact on the overall
performance. For the SV variants, we see that the index-based variant still
provides a better scalability compared to the hash-based variant. The reason
for this is again the usage of SVAs. A significant number of invalid join pairs
are skipped moving the bottleneck to the evaluation of join pairs and pruning
of solutions. The index-based variant uses the collision free access to provide
an improved performance and scalability compared to the hash-based variant.

Considering clique queries, also for the SV variants both hash and index-
based variants provide a comparable scalability. The reason for this is that
in clique queries, the major bottleneck is the evaluation of join pairs. Hence,
other aspects do not significantly influence the scalability.

Please note that these observations are only valid for the maximal query
size (non-clique: 20 tables, clique: 15 tables). For the scalability, also the query
sizes significantly influences the scalability. If the query size is reduced, less
join pairs are evaluated, reducing scalability, and vice versa.

5.4 Comparison

In the previous sections, we only considered the evaluation of different PDPSVA

variants to select suitable design options. In this section, we want to extend
the evaluation by comparing the optimized PDPSVA against other dynamic
programming variants.

5.4.1 Evaluation Results

In Figure 17, we show our evaluation results comparing the parallel dynamic
programming variants PDPSVA with (SV) and without (NO-SV) SVAs, DPEGEN

(DPE) and the sequential dynamic programming variant DPCCP (CCP).
For all different topologies, we see a similar behavior. For small query

sizes, CCP provides the best results. As the query size increases further, the
parallel dynamic programming variants become better. Nevertheless, even for
larger linear and cyclic queries, CCP still provides comparable results. Only
for star and clique queries, the parallel dynamic programming variants provide
significantly better results. Notably, we could achieve better results with SV
compared to DPE in contrast to previous evaluations [2].

Finding the best design options for PDPSVA 27

5 10 15 20
0

0.5

1

1.5

2

2

2

T
im

e
(r
a
ti
o
)

Linear

5 10 15 20
0

0.5

1

1.5

2

2

2

Cyclic

5 10 15 20
0

2

4

6

8

2

8

#Tables

T
im

e
(r
a
ti
o
)

Star

2 4 6 8 10 12 14
0

2

4

6

8

2

8

#Tables

Clique

DPE SV NO-SV CCP

Fig. 17: Optimization time (ratio) of different dynamic programming variants.

5.4.2 Discussion

For linear and cyclic queries, the scalability for PDPSVA is limited (see Sec-
tion 5.3). Furthermore, the parallel dynamic programming variants introduce
further overhead for distributing the evaluation of join pairs over available
workers. Hence, CCP still provides comparable results. For similar reasons,
CCP provides better results for small query sizes considering the different
query topologies.

Although DPE evaluates only needed join pairs using the enumeration
schema of DPCCP, the optimized variants of PDPSVA (SV and NO-SV) still
provide comparable results. The advantage of PDPSVA is that the overhead for
distributing join pairs is less compared to DPEGEN and that no synchronization
between workers is required. Furthermore, especially for star queries, the use
of SVAs significantly reduces the overhead of invalid join pairs.

Notably, we included only one variant of DPEGEN into the evaluation. Sim-
ilar to PDPSVA, different variants of DPEGEN are suitable for different use
cases.

5.5 Threats to Validity

Although we achieved similar results with respect to the previous published
results, we could not completely reconstruct the published results. We achieved
a worse scalability regarding PDPSVA with SVAs considering star queries, but

28 Andreas Meister, Gunter Saake

achieved a slightly better scalability for clique queries. Furthermore, we could
not confirm the suitability of the partition reorganization and the allocation
schema RRIZZ.

For the different evaluation results, several possible causes exist, such as
differences in hardware, cost function [4], implementation, operating system, or
compiler. Unfortunately, we could not get access to the original implementation
to determine the main causes for the differences.

Furthermore, we used several layers of abstraction to manage the high
variability of the different PDPSVA and DPEGEN variants. Hence, the presented
evaluation results do not represent the peak performance.

6 Conclusion

In this paper, we comprehensively evaluated the parallel dynamic program-
ming variant PDPSVA regarding the following design options proposed by Han
et al [3]: 3 buffer sizes, 2 types of partition reorganization, 4 types of partition
sorting, 2 allocation schemes, 2 options regarding SVAs, 2 types of solution
mapping, and 2 types of solution merging.

We evaluated overall 216 PDPSVA variants using 4 different query topologies
with an increasing query size. For the maximal query size, we noticed that the
best variant reduces the optimization time by up to almost 99% (see Figure 1).

Based on our evaluation results, we identified irrelevant design options
(partition reorganization, allocation schema, and solution merging), where the
simplest option should be selected (no partition reorganization, the allocation
schema RRI, and a sequential solution merging).

For the remaining design options (block size, partition sorting, SVAs, and
solution mapping), our evaluation results indicate to use a block size of 100
using SVAs and 1000 without SVAs, a complete sorting using SVAs, an index-
based solution mapping.

Our evaluation results also indicate that SVAs should only be used for
star-like queries and that PDPSVA should only be used for larger queries with
a higher complexity (e.g., star and clique queries).

Acknowledgments

Thanks to David Broneske, Gabriel Campero Durand, Balasubramanian Gu-
rumurthy, and Roman Zoun for giving valuable feedback.

Finding the best design options for PDPSVA 29

References

1. Bennett K, Ferris MC, Ioannidis YE (1991) A Genetic Algorithm for
Database Query Optimization. Morgan Kaufmann, ICGA, pp 400–407

2. Han WS, Lee J (2009) Dependency-aware Reordering for Parallelizing
Query Optimization in Multi-core CPUs. ACM, SIGMOD, pp 45–58

3. Han WS, Kwak W, Lee J, Lohman GM, Markl V (2008) Parallelizing
Query Optimization. PVLDB 1(1):188–200

4. Meister A, Saake G (2017) Cost-Function Complexity Matters: When
Does Parallel Dynamic Programming Pay Off for Join-Order Optimiza-
tion. Springer, ADBIS, pp 297–310

5. Moerkotte G, Neumann T (2006) Analysis of Two Existing and One New
Dynamic Programming Algorithm for the Generation of Optimal Bushy
Join Trees Without Cross Products. VLDB End., VLDB, pp 930–941

6. Moerkotte G, Scheufele W (1996) Constructing Optimal Bushy Processing
Trees for Join Queries is NP-hard. Tech. Rep. Informatik-11/1996

7. Neumann T, Radke B (2018) Adaptive Optimization of Very Large Join
Queries. ACM, SIGMOD ’18, pp 677–692

8. Ono K, Lohman GM (1990) Measuring the Complexity of Join Enumera-
tion in Query Optimization. Morgan Kaufmann, VLDB, pp 314–325

9. Selinger PG, Astrahan MM, Chamberlin DD, Lorie RA, Price TG (1979)
Access Path Selection in a Relational Database Management System.
ACM, SIGMOD, pp 23–34

10. Steinbrunn M, Moerkotte G, Kemper A (1997) Heuristic and Randomized
Optimization for the Join Ordering Problem. VLDB Journal 6(3):191–208

11. Trummer I, Koch C (2016) Parallelizing Query Optimization on Shared-
nothing Architectures. PVLDB 9(9):660–671

12. Vance B, Maier D (1996) Rapid Bushy Join-order Optimization with
Cartesian Products. ACM, SIGMOD, pp 35–46

13. Waas FM, Hellerstein JM (2009) Parallelizing Extensible Query Optimiz-
ers. ACM, SIGMOD, pp 871–878

